Climatic Variation of Maximum Intensification Rate for Major Tropical Cyclones over the Western North Pacific
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Index for Maximum Intensification Rate of Intense TCs
3.2. Effect of ENSO on RI Variation and PDO Modulation
3.3. Environmental Factors Contributing to LMIR Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pielke, R.A., Jr.; Landsea, C.W. Normalized hurricane damages in the United States: 1925–1995. Weather Forecast. 1998, 13, 621–631. [Google Scholar] [CrossRef]
- Elsberry, R.L.; Lambert, T.D.B.; Boothe, M.A. Accuracy of Atlantic and Eastern North Pacific tropical cyclone intensity forecast guidance. Weather Forecast. 2007, 22, 747–762. [Google Scholar] [CrossRef]
- Jiang, H.; Ramirez, E.M. Necessary conditions for tropical cyclone rapid intensification as derived from 11 Years of TRMM data. J. Clim. 2013, 26, 6459–6470. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M.; Knaff, J.A. A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M. Large-Scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhou, X. Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol. Atmos. Phys. 2008, 99, 1–16. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, D.L.; Carton, J.; Atlas, R. On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Weather Forecast. 2011, 26, 885–901. [Google Scholar] [CrossRef]
- Foltz, G.R.; Balaguru, K. Prolonged El Niño conditions in 2014–2015 and the rapid intensification of Hurricane Patricia in the eastern Pacific. Geophys. Res. Lett. 2016, 43, 10347–10355. [Google Scholar] [CrossRef] [Green Version]
- Lander, M.; Guard, C.; Camargo, S.J. Tropical cyclones, super-typhoon Haiyan, in State of the Climate in 2013. Bull. Am. Meteorol. Soc. 2014, 95, S112–S114. [Google Scholar]
- Wang, X.; Liu, H. PDO modulation of ENSO effect on tropical cyclone rapid intensification in the western North Pacific. Clim. Dyn. 2015, 46, 15–28. [Google Scholar] [CrossRef]
- Gray, W.M. Hurricanes: Their formation, structure and likely role in the tropical circulation. In Supplement to Meteorology Over Tropical Oceans; Shaw, D.B., Ed.; Royal Meteorological Society, James Glaisher House: Berkshire, UK, 1979; pp. 155–218. [Google Scholar]
- Emanuel, K.A. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Cione, J.J.; Kalina, E.A.; Zhang, J.A.; Uhlhorn, E.W. Observations of air–sea interaction and intensity change in hurricanes. Mon. Weather Rev. 2013, 141, 2368–2382. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Xie, S.P.; Primeau, F.; McWilliams, J.C.; Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 2015, 1, e1500014. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, Y. A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Weather Forecast. 2015, 30, 692–701. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Tan, Z. The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J. Atmos. Sci. 2016, 73, 4979–4988. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Wolter, K. The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Clim. Appl. Meteorol. 1987, 26, 540–558. [Google Scholar] [CrossRef] [Green Version]
- Wolter, K.; Timlin, M.S. Measuring the strength of ENSO events—How does 1997/98 rank? Weather 1998, 53, 315–324. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Mogensen, K.; Weaver, A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 2013, 139, 1132–1161. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.K.; Bessemoulin, P.; et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D. Feasibility of a 100 years reanalysis using only surface pressure data. Bull. Am. Meteorol. Soc. 2006, 87, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.L. Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. R. Soc. Lond. 2008, 464A, 249–272. [Google Scholar] [CrossRef]
- Chan, J.C.L. Thermodynamic control on the climate of intense tropical cyclones. Proc. R. Soc. A 2009, 465, 3011–3021. [Google Scholar] [CrossRef]
- Chan, J.C.L. Global warming and tropical cyclone activity in the western North Pacific from an observational perspective. In Climate Dynamics: Why Does Climate Vary? Sun, D.-Z., Bryan, F., Eds.; American Geophysical Union: Washington, DC, USA, 2010; Volume 189, pp. 193–205. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W. Changes in Western Pacific tropical cyclones associated with the El Niño–Southern oscillation cycle. J. Clim. 2012, 25, 5864–5878. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W. Interdecadal changes in summertime tropical cyclone precipitation over southeast China during 1960–2009. J. Clim. 2015, 28, 1494–1509. [Google Scholar] [CrossRef]
- Kang, N.Y.; Elsner, J. Trade-off between intensity and frequency of global tropical cyclones. Nat. Clim. Chang. 2015, 5, 661–664. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.-I.; Pun, I.-F.; Lien, C.-C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef]
- Price, J.F. Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci. 2009, 5, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.-I.; Wu, C.C.; Pun, I.-F.; Ko, D.-S. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Weather Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.-I.; Pun, I.-F.; Wu, C.-C. Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part II: Dependence on translation speed. Mon. Weather Rev. 2009, 137, 3744–3757. [Google Scholar] [CrossRef]
- Lin, I.; Chan, J. Recent decrease in typhoon destructive potential and global warming implications. Nat. Commun. 2015, 6, 7182. [Google Scholar] [CrossRef] [Green Version]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on hurricane opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Pun, I.F.; Lin, I.-I.; Lo, M.-H. Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys. Res. Lett. 2013, 40, 4680–4684. [Google Scholar] [CrossRef]
- Jin, F.F.; Boucharel, J.; Lin, I.-I. Eastern Pacific tropical cyclones intensified by El Nino delivery of subsurface ocean heat. Nature 2014, 516, 82–85. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhang, L.; Wang, X. Multi-decadal variability of tropical cyclone rapid intensification in the Western North Pacific. J. Clim. 2015, 28, 3806–3820. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Liu, J.-C.; Liu, C.-P.; Liu, C.-C. Season-Dependent distributions and profiles of seven super-typhoons (2014) in the Northwestern Pacific Ocean from satellite cloud images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2949–2957. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.-A.; Terry, J.P. Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Sci. Total Environ. 2019, 682, 31–46. [Google Scholar] [CrossRef] [PubMed]
Maximum Intensity Threshold (kts) | TC Count | Annual Mean LMIR (kts/24 h) | ||
---|---|---|---|---|
Mean | Min | Max | ||
103 | 360 | 48.2 | 32.5 | 65 |
108 | 333 | 49.1 | 32.5 | 67.5 |
113 | 303 | 49.6 | 32.5 | 67.5 |
118 | 271 | 50.7 | 33.8 | 67.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Yan, X.-H.; Li, Y.; Mei, H.; Liou, Y.-A.; Li, G. Climatic Variation of Maximum Intensification Rate for Major Tropical Cyclones over the Western North Pacific. Atmosphere 2021, 12, 494. https://doi.org/10.3390/atmos12040494
Wu X, Yan X-H, Li Y, Mei H, Liou Y-A, Li G. Climatic Variation of Maximum Intensification Rate for Major Tropical Cyclones over the Western North Pacific. Atmosphere. 2021; 12(4):494. https://doi.org/10.3390/atmos12040494
Chicago/Turabian StyleWu, Xiangbai, Xiao-Hai Yan, Yan Li, Huan Mei, Yuei-An Liou, and Gen Li. 2021. "Climatic Variation of Maximum Intensification Rate for Major Tropical Cyclones over the Western North Pacific" Atmosphere 12, no. 4: 494. https://doi.org/10.3390/atmos12040494
APA StyleWu, X., Yan, X. -H., Li, Y., Mei, H., Liou, Y. -A., & Li, G. (2021). Climatic Variation of Maximum Intensification Rate for Major Tropical Cyclones over the Western North Pacific. Atmosphere, 12(4), 494. https://doi.org/10.3390/atmos12040494