Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Results and Comments
3.1.1. A Few Comments on Past Trends
3.1.2. Potential Future Impacts: The Big Picture
3.2. Specific Results
3.2.1. Impacts on Phenology
3.2.2. Impacts on Product Quality
3.2.3. Impacts on Yield
3.2.4. Impacts on Viticultural Area
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
[Reference] European Country (Region) | Climate Change Projection and Impact Assessment Methods | Climate Parameters Change | Plant Phenology Change | Product Quality and Yield Change | Viticultural Area Change |
---|---|---|---|---|---|
Alikadic et al., 2019 [109] Italian Alps (Trentino) | RCMs-ENSEMBLES project; A1B future scenario; 2021–2050 and 2071–2099/phenological model FENOVITIS | (↑) T (notably at higher altitudes) | Earlier harvest, advancement of phenological stages notably at higher altitudes, shorter intervals | ||
Blanco-Ward et al., 2019 [120] Northern Portugal (Douro Valley) | RCM; RCP8.5 scenario; 2046–2065, 2081–2100)/phenological model | (↑) T (↓) P (↑) WS | Advancement in phenology and shorteningof the budburst to véraison period | (↓) of wine quality | |
Bonfante et al., 2018 [107] Southern Italy (Valle Telesina) | RCP 4.5 and 8.5 scenarios; (2010–2040–2100)/thermal index; SWAP model | (↑) T (↑) EP | Anticipation of harvesting dates | Shifting of suitable areas/reduction in suitable surface area | |
Caffarra and Eccel, 2011 [105] Italian Alps (Trentino) | Statistical down scaling of HadCM3; SRESA2,B2 scenarios; (2020–2029, 2070–2079)/phenological model FENOVITIS | (↑) T | Phenological advancement more pronounced at higher elevations | ||
Cardell et al., 2019 [96] Europe | RCMs – CORDEX project; RCP4.5 and RCP8.5 scenarios/(2021–2100)/climatic variables; bioclimatic indices | In southern Europe(↑) T (↓) P (↑) EP Towards North Europe (↑) T (↑) P | (↓) of wine grape production (in southern Europe) (↓) of table grape quality vines (in southern Europe) | Northward extension of high quality viticultural areas (in western and central Europe) | |
Costa et al., 2019 [118] Northern Portugal (Douro/Porto) | RCMs – EURO-CORDEX project; RCP4.5 scenario (2020–2100)/phenological models | (↑) T | Anticipations of phenophase timings | ||
Cuccia et al., 2014 [104] Central France (Burgundy) | Temperature increase scenarios; (2050, 2100)/phenological models | (↑) T | Advancement of phenological phase (veraison) | ||
Duchene et al., 2010 [102] Northeastern France (Alsace) | RCM ARPEGE-Climat; A2, B2, A1B scenarios; (2070–2100)/degree day model | (↑) T | Advancement of phenological stages | Possible negative impact on grape quality Possible negative impact on wine quality | |
Eitzinger et al., 2009 [146] Austria | RCM-EU-project ADAGIO, SRES A2 scenario (by 2050)/ agroclimatic index | (↑) T | Potential doubling of viticultural areas | ||
Ferrise et al., 2014 [126] Mediterranean basin | GCM; A1B scenario; (2021–2050) /grapevine growth simulation model) | In southern Balkans (↑) T (↓) P In southern France and the western Balkans (↑) T (↑) P | General acceleration and shortening of the phenological stages | (↓) of yield (in southern Balkans) (↑) of yield (in southern France and the western Balkans) | |
Fraga et al., 2016 [77] Europe | (GCM/RCM) – EUROCORDEX Project; (RCP4.5, RCP 8.5 scenarios); (2041–2070)/STICS crop model | In southern Europe (↑) T (↓) P (↑) DRS In central northern Europe (↑) T (↑) P | Advancement of phenological timings | (↓) of yield (in southern Europe) (↑) of yield (in central northern Europe) | Northward expansion of viticultural area |
Fraga et al., 2016 [106] Northeastern, Northwestern, Central-western, Portugal (Douro, Lisbon, Vinhos Verdes, respectively) | (GCM/RCM) – EUROCORDEX Project; (RCP4.5, RCP 8.5 scenarios); (2006–2100)/phenological models | (↑) T | Earlier phenophase onset and shorter interphases | ||
Gaál et al., 2012 [147] Hungary | RCM (RegCM3); A1B scenario (2021–2100)/bioclimatic indices | (↑) T | Northeast expansion of grapevine regions | ||
Gouveia et al., 2011 [134] Northern Portugal (Douro Valley) | RCM—PRUDENCE project; (2071–2100); A1, A2 scenarios/ regression model for wine production | (↑) T (↓) P | (↑) of wine production | ||
Kartschall et al., 2015 [100] Germany | high resolution derivate—STARSdata base; RCP8.5, RCP2.6 scenarios; (2011–2100)/crop simulation model | (↑) T | Acceleration of phenological development, earlier harvest ripeness | ||
Koufos et al., 2018 [142] Greece | RCM; RCP 4.5, RCP 8.5 scenarios (2021–2050, 2061–2090)/bioclimatic Indices | (↑) T (↑) DRS | Earlier occurrence of vine phenological stages/earlier harvest | Possible detrimental impacts on wine quality | |
Lazoglou et al., 2018 [141] Greece | RCM; A1B scenario (1981–2100)/bioclimatic indices | (↑) T (↑) DRT | Mountainous areas suitable for viticulture | ||
Leolini et al., 2018 [103] Europe | RCM – MARS project;RCP 4.5, RCP 8.5 scenarios (2036–2065, 2066–2095)/phenology model | (↑) T | Earlier occurrence of phenology stages | ||
Lionello et al., 2013 [130] Southeastern Italy (Apulia) | RCMs; ENSEMBLES/CIRCE projects; A1B scenario; (2001 2050)/linear regression model | (↑) T (↓) P | (↓) of wine production by 20–26% | ||
Malheiro et al., 2010 [95] Europe | RCM; B1, A1B scenarios; (2011–2100)/bioclimatic indices | (↑) T (↓) P | Growing season length increase | Negative impacts on table vine (in southern Europe) (↓) of wine yield and wine quality (in southern Europe) (↑) of wine quality (in central western Europe) | New potential viticultural areas in central western Europe |
Malheiro et al., 2012 [143] Iberia | RCM;A1B scenario; (2041–2070, 2071–2100)/bioclimatic indices | (↑) T (↓) P | Growing season length increase | (↓) of wine yield and wine quality (in southern Iberia) | New potential viticultural areas in northwest Spain |
Mesterházy et al., 2014 [145] Hungar | RCMs; ENSEMBLES project; A1B Scenario; (2021−2100)/bioclimatic indices | (↑) T | Growing season length increase | ||
Molitor and Junk, 2019 [121] Southern Luxembourg (Remich) | RCMs-ENSEMBLES project(2001–2090); scenario/phenological model | (↑) T | Advancement of phenological stages/shortening of ripening period | Potential threat of wine typicity | |
Ramos, 2017 [125] Northeastern Spain (Penedès) | RCMs-CMIP5; RCP4.5, RCP8.5 scenarios, (2020–40, 2040–60, 2060–80)/heat accumulation | (↑) T (↓) P | Advancement of phenological stages/shortening of intervals between phases | Potential (↓) of grape quality and grape yield | |
Ruml et al., 2012 [144] Serbia | RCM; A1, A1B scenarios; 2001–2030, 2071–2100/agro-climatic indices | (↑) T (↓) P | Lengthening of growing season, earlier ripening | Potential (↑) of grape quality (↑) of grape yields | Marginal and elevated areas climatically suited to viticulture |
Santos et al., 2011 [133] Northern Portugal (Douro Region) | GCM/RCM ensemble; A1B scenario; (2001–2100)/grapevine yield model | (↑) T (↓) P | (↑) of grape yields | ||
Santos et al., 2013 [132] Northern Portugal (Douro Region) | GCM/RCM ensemble; A1B scenario; 2001–2099/regression model for wine production | (↑) T | (↑) of production Potential (↓) of product quality | ||
Valverde et., 2015 [131] Southern Portugal (Guadiana river basin) | GCM downscaled; A2, A1B, B1 scenarios; (2011–2040/2041–2070)/soil water balance model | (↑) T (↓) P | (↓) of grape yield | ||
Xu et al., 2012 [108] Central France (Burgundy) | RCM; A2 scenario; 2031–2040/phenological model | (↑) T (↓) P | Advancement of phenological dates |
Appendix B
Glossary
References
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. ISBN 92-9169-122-4. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, N., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; IPCC: Cambridge, UK, 2001; p. 881. ISBN 0521-80767-0. [Google Scholar]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Tank, A.M.G.K.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Bartolini, G.; Morabito, M.; Crisci, A.; Grifoni, D.; Torrigiani, T.; Petralli, M.; Maracchi, G.; Orlandini, S. Recent trends in tuscany (Italy) summer temperature and indices of extremes. Int. J. Climatol. 2008, 28, 1751–1760. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for european agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Fuhrer, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric. Ecosyst. Environ. 2003, 97, 1–20. [Google Scholar] [CrossRef]
- Maracchi, G.; Sirotenko, O.; Bindi, M. Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperature Regions. Eur. Clim. Chang. 2005, 70, 117–135. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate change in Europe. 3. Impact on agriculture and forestry. A review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V. Climate, grapes, and wine: Structure and suitability in a changing climate. Acta Hortic. 2012, 931, 19–28. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Jones, G.V.; Duchêne, E.; Tomasi, D.; Yuste, J.; Braslavska, O.; Schultz, H.; Martinez, C.; Boso, S.; Langellier, F.; Perruchot, C.; et al. Changes in european winegrape phenology and relationships with climate. In Proceedings of the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August 2005; pp. 54–61. [Google Scholar]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- OIV. Statistical Report on World Vitiviniculture; International Organisation of Vine and Wine: Paris, France, 2019; Available online: https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf (accessed on 2 December 2020).
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Santos, M.; Fonseca, A.; Fraga, H.; Jones, G.V.; Santos, J.A. Bioclimatic conditions of the Portuguese wine denominations of origin under changing climates. Int. J. Climatol. 2020, 40, 927–941. [Google Scholar] [CrossRef]
- Fraga, H. Climate change: A new challenge for the winemaking sector. Agronomy 2020, 10, 1465. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H. Viticulture and winemaking under climate change. Agronomy 2019, 9, 783. [Google Scholar] [CrossRef] [Green Version]
- Spellman, G. Wine, weather and climate. Weather 1999, 54, 230–239. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate induced historic and future changes in viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Jones, G.V.; Webb, L.B. Climate change, viticulture, and wine: Challenges and opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Chuine, I.; Yiou, P.; Viovy, N.; Seguin, B.; Daux, V.; Le Roy Ladurie, E. Historical phenology: Grape Ripening as a past climate indicator. Nature 2004, 432, 289–290. [Google Scholar] [CrossRef]
- Meier, N.; Rutishauser, T.; Pfister, C.; Wanner, H.; Luterbacher, J. Grape harvest dates as a proxy for swiss April to August temperature reconstructions back to AD 1480. Geophys. Res. Lett. 2007, 34, L20705. [Google Scholar] [CrossRef] [Green Version]
- Fernández-González, M.; Rodriguez-Rajo, F.J.; Escuredo, O.; Aira, M.J. Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia 2013, 29, 523–535. [Google Scholar] [CrossRef]
- Gladstones, J. Viticulture and Environment; Winetitles: Adelaide, SA, Australia, 1992; p. 320. ISBN 1-875130-12-8. [Google Scholar]
- Bindi, M.; Fibbi, L.; Gozzini, B.; Orlandini, S.; Miglietta, F. Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim. Res. 1996, 7, 213–224. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Coombe, B.G. Influence of temperature on composition and quality of grapes. Acta Hortic. 1987, 206, 23–36. [Google Scholar] [CrossRef]
- Schultz, H.R.; Stoll, M. Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Aust. J. Grape Wine Res. 2010, 16, 4–24. [Google Scholar] [CrossRef]
- Fennell, A. Genomics and functional genomics of winter low temperature tolerance in temperate fruit crops. Crit. Rev. Plant Sci. 2014, 33, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The interplay between atmospheric conditions and grape berry quality parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Amerine, M.; Winkler, A. Composition and quality of musts and wines of California grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef] [Green Version]
- Dokoozlian, N.K. Chilling temperature and duration interact on the budbreak of ‘perlette’ grapevine cuttings. Hortscience 1999, 34, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Bates, T.; Dunst, R.; Forster, P. Seasonal dry matter, starch, and nutrient distribution in ‘concord’ grapevine roots. HortScience 2002, 37, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Field, S.K.; Smith, J.P.; Holzapfel, B.P.; Hardie, W.; Emery, R. Grapevine response to soil temperature: Xylem cytokinins and carbohydrate reserve mobilization from budbreak to anthesis. Am. J. Enol. Vitic. 2009, 60, 164–172. [Google Scholar]
- Berry, J.; Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 2003, 31, 491–543. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine responses to heat stress and global warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Poudel, P.R.; Mochioka, R.; Beppu, K.; Kataoka, I. Influence of temperature on berry composition of interspecific hybrid wine grape ‘Kadainou R-1’ (Vitis ficifolia Var. Ganebu × V. vinifera ‘Muscat of Alexandria’). J. Jpn. Soc. Hort. Sci. 2009, 78, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Guidoni, S. Grape aroma precursors in Cv. Nebbiolo as affected by vine microclimate. Food Chem. 2016, 211, 947–956. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of shiraz and cabernet franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Steel, C.C.; Greer, D.H. Effect of climate on vine and bunch characteristics: Bunch rot disease susceptibility. Acta Hortic. 2008, 785, 253–262. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate Influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C.; Peterson, D.L. Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Jones, G.V.; Martínez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in Northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, S.J.; Pickering, G.J. The effects of soil management techniques on grape and wine quality. In Fruits: Growth, Nutrition and Quality; Dris, R., Ed.; WFL Publisher, Meri-Rastilan tie 3 C: Helsinki, Finland, 2006; pp. 195–208. ISBN 978-952-99555-0-3. [Google Scholar]
- Agosta, E.; Canziani, P.; Cavagnaro, M. Regional climate variability impacts on the annual grape yield in Mendoza, Argentina. J. Appl. Meteorol. Climatol. 2012, 51, 993–1009. [Google Scholar] [CrossRef]
- Bondada, B.; Shutthanandan, J. Understanding differential responses of grapevine (Vitis vinifera L.) leaf and fruit to water stress and recovery following re-watering. Am. J. Plant Sci. 2012, 3, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.P.; Lopes, C.M.; Rodrigues, M.L.; de Souza, C.R.; Maroco, J.P.; Pereira, J.S.; Silva, J.R.; Chaves, M.M. Partial rootzone drying: Effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct. Plant Biol. 2003, 30, 663–671. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Schultz, H.R.; Lebon, E. Modelling the effect of climate change on grapevine water relations. Acta Hortic. 2005, 689, 71–78. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T. Plant responses to water stress. Annu. Rev. Plant Biol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Lebon, E.; Pellegrino, A.; Louarn, G.; Lecoeur, J. Branch development controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying soil. Annu. Bot. 2006, 98, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Gambetta, G.A. Water stress and grape physiology in the context of global climate change. J. Wine Econ. 2016, 11, 168–180. [Google Scholar] [CrossRef]
- Matthews, M.A.; Anderson, M.M. Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar]
- Beauchet, S.; Cariou, V.; Renaud-Gentié, C.; Meunier, M.; Siret, R.; Thiollet-Scholtus, M.; Jourjon, F. Modeling grape quality by multivariate analysis of viticulture practices, soil and climate. OENO One 2020, 54, 601–622. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera Cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ. 2012, 35, 1050–1064. [Google Scholar] [CrossRef]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of Sunlight and temperature effects on the composition of Vitis Vinifera Cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
- Smart, R.E.; Robinson, J.B.; Due, G.R.; Brien, C.J. Canopy microclimate modification for the Cultivar Shiraz I. Definition of canopy microclimate. Vitis 1985, 24, 17–31. [Google Scholar] [CrossRef]
- Archer, E.; Strauss, H.C. The effect of vine spacing on some physiological aspects of Vitis vinifera L. (Cv. Pinot Noir). S. Afr. J. Enol. Vitic. 1990, 11, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Bindi, M.; Fibbi, L.; Miglietta, F. Free Air CO2 Enrichment (FACE) of Grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur. J. Agron. 2001, 14, 145–155. [Google Scholar] [CrossRef]
- Tate, A.B. Global warming’s impact on wine. J. Wine Res. 2001, 12, 95–109. [Google Scholar] [CrossRef]
- Moutinho Pereira, J.; Gonçalves, B.; Bacelar, E.; Boaventura Cunha, J.; Coutinho, J.; Correia, C.M.; Correia, C. Effects of elevated CO2 on Grapevine (Vitis vinifera L.): Physiological and yield attributes. Vitis 2009, 48, 159–165. [Google Scholar] [CrossRef]
- Fraga, H.; Molitor, D.; Leolini, L.; Santos, J.A. What is the impact of heatwaves on European viticulture? A modelling assessment. Appl. Sci. 2020, 10, 3030. [Google Scholar] [CrossRef]
- Zanis, P.; Katragkou, E.; Ntogras, C.; Marougianni, G.; Tsikerdekis, A.; Feidas, H.; Anadranistakis, E.; Melas, D. Transient high-resolution regional climate simulation for Greece over the period 1960–2100: Evaluation and future projections. Clim. Res. 2015, 64, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Haylock, M.R.; Cawley, G.C.; Harpham, C.; Wilby, R.; Goodess, C.M. Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol. 2006, 26, 1397–1415. [Google Scholar] [CrossRef]
- Wang, Y.; Leung, L.R.; McGregor, J.L.; Lee, D.-K.; Wang, W.-C.; Ding, Y.; Kimura, F. Regional climate modeling: Progress, challenges, and prospects. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 1599–1628. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. Earth Environ. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Santos, J.A.; Costa, R.; Fraga, H. New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theor. Appl. Climatol. 2018, 135, 1215–1226. [Google Scholar] [CrossRef]
- Reis, S.; Fraga, H.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Rodrigues, P.; Santos, J.A. Grapevine phenology in four Portuguese wine regions: Modelling and predictions. Appl. Sci. 2020, 10, 3708. [Google Scholar] [CrossRef]
- Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. Modelling olive trees and grapevines in a changing climate. Environ. Model. Softw. 2015, 72, 387–401. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- IPCC. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Nakićenović, N., Swart, R., Eds.; The Press Syndicate of the University of Cambridge: Cambridge, UK, 2000; p. 599. ISBN 978-0-521-80081-5. [Google Scholar]
- Moss, R.H.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.A.; Elgizouli, I.; Emori, S.; Lin, E.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008; p. 132. ISBN 978-92-9169-125-8. [Google Scholar]
- Christensen, J.H.; Christensen, O.B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Heinrich, G.; Gobiet, A. The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. Int. J. Climatol. 2012, 32, 1951–1970. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Seguin, B.; Garcia de Cortazar, I. Climate warming: Consequences for viticulture and the notion of ´terroirs´ in Europe. Acta Hortic. 2005, 689, 61–70. [Google Scholar] [CrossRef]
- Cook, B.I.; Wolkovich, E.M. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Chang. 2016, 6, 715–719. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and Climate Changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Koufos, G.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Jones, G.V. Viticulture–Climate relationships in Greece: The impacts of recent climate trends on harvest date variation. Int. J. Climatol. 2014, 34, 1445–1459. [Google Scholar] [CrossRef]
- Laget, F.; Tondut, J.-L.; Deloire, A.; Kelly, M.T. Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J. Int. Sci. Vigne Vin. 2008, 42, 113–123. [Google Scholar] [CrossRef]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the phenology and composition of wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Bock, A.; Sparks, T.H.; Estrella, N.; Menzel, A. Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS ONE 2013, 8, e69015. [Google Scholar] [CrossRef]
- Camps, J.O.; Ramos, M.C. Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of North-East Spain with a Mediterranean climate. Int. J. Biometeorol. 2012, 56, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Irimia, L.M.; Patriche, C.; Roşca, B. Climate change impact on climate suitability for wine production in Romania. Theor. Appl. Climatol. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Cardell, M.F.; Romero, R.; Amengual, A.; Homar, V.; Ramis, C. A quantile–quantile adjustment of the EURO-CORDEX projections for temperatures and precipitation. Int. J. Climatol. 2019, 39, 2901–2918. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Cardell, M.F.; Amengual, A.; Romero, R. Future Effects of climate change on the suitability of wine grape production across Europe. Reg. Environ. Chang. 2019, 19, 2299–2310. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Chang. 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal estimation of the olive and vine cultivations’ growing degree days in the Balkans region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M. Impact of climate change on the phenology of typical Mediterranean crops. Ital. J. Agrometeorol. 2007, 3, 5–12. [Google Scholar] [CrossRef]
- Kartschall, T.; Wodinski, M.; von Bloh, W.; Oesterle, H.; Rachimow, C.; Hoppmann, D. Changes in phenology and frost risks of Vitis vinifera (Cv Riesling) between 1901 and 2100. Meteorol. Z. 2015, 24, 189–200. [Google Scholar] [CrossRef]
- Andrade, C.; Fraga, H.; Santos, J.A. Climate change multi-model projections for temperature extremes in Portugal. Atmos. Sci. Lett. 2014, 15, 149–156. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Leolini, L.; Moriondo, M.; Fila, G.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M. Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res. 2018, 222, 197–208. [Google Scholar] [CrossRef]
- Cuccia, C.; Bois, B.; Richard, Y.; Parker, A.K.; Garcia de Cortázar-Atauri, I.; van Leeuwen, C.; Castel, T. Phenological model performance to warmer conditions: Application to pinot noir in burgundy. J. Int. Sci. Vigne Vin. 2014, 48, 169–178. [Google Scholar] [CrossRef]
- Caffarra, A.; Eccel, E. Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Aust. J. Grape Wine Res. 2011, 17, 52–61. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Moutinho-Pereira, J.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Mota, T.; Malheiro, A.C. Statistical modelling of grapevine phenology in Portuguese wine regions: Observed trends and climate change projections. J. Agric. Sci. 2016, 154, 795–811. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Xu, Y.; Castel, T.; Richard, Y.; Cuccia, C.; Bois, B. Burgundy regional climate change and its potential impact on grapevines. Clim. Dyn. 2012, 39, 1613–1626. [Google Scholar] [CrossRef]
- Alikadic, A.; Pertot, I.; Eccel, E.; Dolci, C.; Zarbo, C.; Caffarra, A.; De Filippi, R.; Furlanello, C. The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agric. For. Meteorol. 2019, 271, 73–82. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar]
- Buttrose, M.S.; Hale, C.R.; Kliewer, W.M. Effect of temperature on the composition of “Cabernet Sauvignon” berries. Am. J. Enol. Vitic. 1971, 22, 71–75. [Google Scholar]
- Bureau, S.M.; Razungles, A.J.; Baumes, R.L. The aroma of muscat of frontignan grapes: Effect of the light environment of vine or bunch on volatiles and glycoconjugates. J. Sci. Food Agric. 2000, 80, 2012–2020. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Garnier, C.; Agut, C.; Baculat, B.; Besnard, E.; Bois, B.; Boursiquot, J.-M.; Chuine, I.; Dessup, T.; Dufourcq, T.; et al. Heat Requirements for Grapevine Varieties Is Essential Information to Adapt Plant Material in a Changing Climate. In Proceedings of the VIIème Congrès International des Terroirs Viticoles; Murisier, F., Ed.; CCSD: Nyon, Switzerland, 2008; pp. 222–227. [Google Scholar]
- Wolkovich, E.M.; Garcia de Cortazar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From pinot to xinomavro in the World’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Oliveira, A.A.; Moutinho-Pereira, J.; Jones, G.V. Climatic Suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Jones, G.V.; Alves, F. Impact of climate change on wine production: A global overview and regional assessment in the douro valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Fraga, H.; Garcia de Cortazar-Atauri, I.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Fraga, H.; Fonseca, A.; García de Cortázar-Atauri, I.; Val, M.C.; Carlos, C.; Reis, S.; Santos, J.A. Grapevine phenology of Cv. Touriga Franca and Touriga nacional in the Douro wine region: Modelling and climate change projections. Agronomy 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. J. Int. Sci. Vigne Vin. 2013, 47, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Climate change impact on a wine-producing region using a dynamical downscaling approach: Climate parameters, bioclimatic indices and extreme indices. Int. J. Climatol. 2019, 39, 5741–5760. [Google Scholar] [CrossRef]
- Molitor, D.; Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO One 2019, 53, 409–422. [Google Scholar] [CrossRef]
- Pieri, P.; Lebon, E.; Brisson, N. Climate change impact on French vineyards as predicted by models. Acta Hortic. 2012, 931, 29–37. [Google Scholar] [CrossRef]
- Omazić, B.; Prtenjak, M.T.; Prša, I.; Vozila, A.B.; Vučetić, V.; Karoglan, M.; Kontić, J.K.; Prša, Ž.; Anić, M.; Šimon, S.; et al. Climate change impacts on viticulture in Croatia: Viticultural zoning and future potential. Int. J. Climatol. 2020, 40, 1–22. [Google Scholar] [CrossRef]
- Vrsic, S.; Sustar, V.; Pulko, B.; Sumenjak, T.K. Trends in climate parameters affecting winegrape ripening in Northeastern Slovenia. Clim. Res. 2014, 58, 257–266. [Google Scholar] [CrossRef]
- Ramos, M.C. Projection of phenology response to climate change in rainfed vineyards in North-East Spain. Agric. For. Meteorol. 2017, 247, 104–115. [Google Scholar] [CrossRef]
- Ferrise, R.; Trombi, G.; Moriondo, M.; Bindi, M. Climate change and grapevines: A simulation study for the Mediterranean basin. J. Wine Econ. 2014, 11, 88–104. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Fagarazzi, C.; Ferrise, R.; Trombi, G. Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg. Environ. Chang. 2011, 11, 553–567. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic Changes and Associated Impacts in the Mediterranean Resulting from a 2 °C Global Warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Kimball, B.A.; Kobayashi, K.; Bindi, M. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 2002, 77, 293–368. [Google Scholar] [CrossRef]
- Lionello, P.; Congedi, L.; Reale, M.; Scarascia, L.; Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Chang. 2013, 14, 2025–2038. [Google Scholar] [CrossRef]
- Valverde, P.; de Carvalho, M.; Serralheiro, R.; Maia, R.; Ramos, V.; Oliveira, B. Climate change impacts on rainfed agriculture in the Guadiana River Basin (Portugal). Agric. Water Manag. 2015, 150, 35–45. [Google Scholar] [CrossRef]
- Santos, J.A.; Grätsch, S.D.; Karremann, M.K.; Jones, G.V.; Pinto, J.G. Ensemble projections for wine production in the Douro Valley of Portugal. Clim. Chang. 2013, 117, 211–225. [Google Scholar] [CrossRef]
- Santos, J.A.; Malheiro, A.C.; Karremann, M.K.; Pinto, J.G. Statistical Modelling of grapevine yield in the port wine region under present and future climate conditions. Int. J. Biometeorol. 2011, 55, 119–131. [Google Scholar] [CrossRef]
- Gouveia, C.; Liberato, M.L.R.; DaCamara, C.C.; Trigo, R.M.; Ramos, A.M. Modelling past and future wine production in the Portuguese Douro Valley. Clim. Res. 2011, 48, 349–362. [Google Scholar] [CrossRef]
- Schultz, H.R. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Austr. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Schultz, H.R. Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Gonçalves, B.; Falco, V.; Moutinho-Pereira, J.; Bacelar, E.; Peixoto, F.; Correia, C. Effects of elevated CO2 on grapevine (Vitis vinifera L.): Volatile composition, phenolic content, and in vitro antioxidant activity of red wine. J. Agric. Food Chem. 2009, 57, 265–273. [Google Scholar] [CrossRef]
- Rabbinge, R.; van Latesteijn, H.C.; Goudriaan, J. Assessing the greenhouse-effect in agriculture. Ciba Found. Symp. 1993, 175, 62–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wramneby, A.; Smith, B.; Samuelsson, P. Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe. J. Geophys. Res. 2010, 115, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Climate factors driving wine production in the Portuguese Minho Region. Agric. For. Meteorol. 2014, 185, 26–36. [Google Scholar] [CrossRef]
- Lazoglou, G.; Anagnostopoulou, C.; Koundouras, S. Climate change projections for greek viticulture as simulated by a regional climate model. Theor. Appl. Climatol. 2018, 133, 551–567. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece. Int. J. Climatol. 2018, 38, 2097–2111. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Future scenarios for viticultural climatic zoning in Iberia. Acta Hortic. 2012, 931, 55–61. [Google Scholar] [CrossRef]
- Ruml, M.; Vuković, A.; Vujadinović, M.; Djurdjević, V.; Ranković-Vasić, Z.; Atanacković, Z.; Sivčev, B.; Marković, N.; Matijašević, S.; Petrović, N. On the use of regional climate models: Implications of climate change for viticulture in Serbia. Agric. For. Meteorol. 2012, 158-159, 53–62. [Google Scholar] [CrossRef]
- Mesterházy, I.; Mészáros, R.; Pongrácz, R. The effects of climate change on grape production in Hungary. Idojárás 2014, 118, 193–206. [Google Scholar]
- Eitzinger, J.; Kubu, G.; Formayer, H.; Gerersdorfer, T. Climatic wine growing potential under future climate scenarios in Austria. Sustain. Dev. Bioclim. Rev. Conf. Proc. 2009, 146–147. [Google Scholar]
- Gaál, M.; Moriondo, M.; Bindi, M. Modelling the impact of climate change on the Hungarian wine regions using random forest. Appl. Ecol. Environ. Res. 2012, 10, 121–140. [Google Scholar] [CrossRef]
- Neumann, P.A.; Matzarakis, A. Viticulture in Southwest Germany under climate change conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- IPCC. Glossary of terms. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastandrea, M.D., Mach, K., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 555–564. [Google Scholar]
- Van Leeuwen, C.; Destrac-Irvine, A.; de Resseguier, L.; Garcia de Cortazar-Atauri, I.; Duchêne, É.; Barbeau, G.; Dufourcq, T. Phenology: Follow the Internal Clock of the Vines. Available online: https://ives-technicalreviews.eu/article/view/2587 (accessed on 2 November 2020).
- USA National Phenology Network. Phenophase. Available online: https://usanpn.org/taxonomy/term/16 (accessed on 15 November 2020).
Keywords Related to: | |||
---|---|---|---|
Climate | Wine | Grape | Vine |
climate change | wine sector | grapevine(s) | vine grape yields |
climate change projections | wine grapes | grapewine | viticulture |
climate change modelling | wine production | grapevine growth model | Vitis vinifera L. |
climate models | wine yields | grape quality | |
regional climate model | wine grape production | grape maturity | vineyard |
climate variability | wine regions | grapevine yield | |
thermal climate | wine quality | grape ripeness | viticultural zoning |
regional climate change | wine typicity | ||
climate risk | winegrapes | ||
climate simulation | wine production modelling | ||
climatic factors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. https://doi.org/10.3390/atmos12040495
Droulia F, Charalampopoulos I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere. 2021; 12(4):495. https://doi.org/10.3390/atmos12040495
Chicago/Turabian StyleDroulia, Fotoula, and Ioannis Charalampopoulos. 2021. "Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances" Atmosphere 12, no. 4: 495. https://doi.org/10.3390/atmos12040495
APA StyleDroulia, F., & Charalampopoulos, I. (2021). Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere, 12(4), 495. https://doi.org/10.3390/atmos12040495