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Abstract: An important aspect in environmental sciences is the study of air quality, using statistical
methods (environmental statistics) which utilize large datasets of climatic parameters. The air-quality-
monitoring networks that operate in urban areas provide data on the most important pollutants,
which, via environmental statistics, can be used for the development of continuous surfaces of
pollutants’ concentrations. Generating ambient air-quality maps can help guide policy makers and
researchers to formulate measures to minimize the adverse effects. The information needed for a
mapping application can be obtained by employing spatial interpolation methods to the available
data, for generating estimations of air-quality distributions. This study used point-monitoring data
from the network of stations that operates in Athens, Greece. A machine-learning scheme was
applied as a method to spatially estimate pollutants’ concentrations, and the results can be effectively
used to implement missing values and provide representative data for statistical analyses purposes.

Keywords: artificial neural networks; shallow neural networks; machine learning; spatial interpola-
tion; missing data; air quality

1. Introduction

Studying the distribution of air-quality parameters is an important task of urban com-
munities. According to the European Environment Agency (EEA), air pollution is identified
as a major environmental health hazard in Europe, as hundreds of thousands of Europeans
are affected each year by air-quality issues [1–3]. Furthermore, air-quality parameters’ con-
centrations are associated with effects that are non-health-related and can influence the in-
teractions between humans and the environment that surrounds them [4,5]. Effective plan-
ning strategies require constant monitoring of the various pollutants, creating databases
suitable for statistical analysis. Increased data availability can help researchers produce
more reliable results. However, for areas where the number of air-quality-monitoring sites
that are part of a network is limited and/or not fully functional (possibly due to high
establishment and maintenance costs, etc.) and, subsequently, a lower number of available
observations cannot reflect the spatiotemporal distribution; thus, interpolation methods are
of great significance. Spatial interpolation techniques have been widely used in air-quality
studies [6,7], as they can be utilized effectively for data implementation in pollutant time
series with missing values and even for sites of interest with no data availability. There
are several categories in which these techniques can be classified. According to Li and
Heap [8], they can be typically grouped into non-geostatistical, geostatistical and combined
methods. The importance of using these methodologies to fill data gaps has been proved
by the abundance of research studies on this subject, which, especially during the last few
years, emphasize the need for the development of more advanced methodologies [9–12].
Machine learning (ML) and, in particular, artificial neural networks (ANNs) are consid-
ered as a novel superior alternative to traditional data implementation techniques, due
to their ability to perceive the relationships among the various air-quality parameters as
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nonlinear in contrast with other statistical schemes which assume that these linkages are
linear [13,14]. While ANNs have been mostly utilized for temporal predictions in the field
of air-quality and climatic-parameters forecasting [15–18], they have been additionally
applied as a tool to provide spatial estimations in order to create datasets without missing
values [12,19–21]. Additionally, by using these implemented databases, the development
of informational tools, such as Air Quality Indices (AQIs), can be beneficial for presenting,
in a comprehensible manner, new insight to policy makers and the public [22–24]. The EEA
proposed a European Air Quality Index (EAQI) which is based on hourly concentrations of
five key pollutants (PM10, PM2.5, NO2, O3 and SO2) and has six different levels based on
each pollutant’s concentrations. This study aimed to present an ANN scheme for filling
gaps in environmental and climate sciences and specifically in the field of air quality. ANNs
usage for spatial-interpolation purposes is limited, and this work concentrates on the devel-
opment of an effective method to spatially approximate air-quality parameters. From the
original datasets and based on concentration time series for the selected pollutants of the
EAQI, a shallow neural network implementation process was followed. This methodology
can be utilized as a fast and effective tool which will contribute to the development of
indexes such as the EAQI, which will subsequently visualize air pollutants’ profiles and
provide insight in patterns and relationships.

2. Data and Methodology
2.1. Data

The air-quality-monitoring sites, from which the data were derived, are located at the
metropolitan city of Athens in Greece. As part of the Southeastern Mediterranean region,
Athens climate is defined by dry summers (long periods, during which the temperatures
are considerably high) and wet, mild winters [25]. The basin is bounded by mounts
Parnitha, Pentelikon, Hymmetus and Aigaleo to the north, northeast, east–central and
west, respectively. Due to the transport mechanisms, the topography of the area and the
proximity to the sea, the air pollution fields are greatly affected by various flows of different
scales [26–28]. The monitoring sites in the area are part of an air-quality-monitoring
network that has operated since 1984, under the supervision of the Hellenic Ministry of
Environment and Energy (MEE). Figure 1 presents the area of study and the locations of
the monitoring sites (Table 1).
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Table 1. Air-quality-monitoring stations and their corresponding abbreviation and type.

Station Abbreviation Type

Ag. Paraskevi AGP Suburban/Background
Athinas ATH Urban/Traffic

Aristotelous ARI Urban/Traffic
Geoponiki GEO Suburban/Industrial

Elefsina ELE Suburban/Industrial
Thrakomakedones THR Suburban/Background

Koropi KOR Suburban/Background
Liosia LIO Suburban/Background

Lykovrisi LYK Suburban/Background
Marousi MAR Urban/Background

N. Smyrni SMY Urban/Background
Patission PAT Urban/Traffic
Piraeus PIR Urban/Traffic
Peristeri PER Urban/Background

The network is considered representative of the pollutants’ spatial variability and,
thus, suitable for the application of advanced statistical methodologies. As input data for
the development of the neural network models, a different number of stations was selected
for each pollutant. The criterion for this selection was that a station should have at least
a small percent of available data and, thus, could contribute to the data implementation
methodology. The percentage of data availability for each station and pollutant was, in
most cases, above 80%. However, the few exceptions for which the percentage was lower
than 80% were also included in the analysis, as they could contribute to the interpolation
process and, additionally, many of their missing concentrations could be targeted for data
implementation. Only the stations that had no data availability for a whole year were
excluded from this process. For the five pollutants, NO2, O3, PM10, PM2.5 and SO2, the
number of stations used was fourteen, thirteen, eleven, six and six, respectively. All five
were monitored hourly, and the time period of the analysis was three years (2016–2018).

2.2. Methodology

The first step in this study, after the database development, was to find the number of
gaps that are present in each station’s data (target station/missing hourly concentrations)
for 2018. This task was performed for all pollutants individually. However, in order to
be able to apply effectively the machine learning spatial interpolation scheme, a specific
criterion was adopted. For each one of these gaps at a target station, at the same time, all the
remaining stations must have an available measurement. Even if one of them also also a gap,
it was not included in the interpolation process. This process was followed in order to avoid
using a limited number of stations (or even an individual station) to interpolate missing
values. The networks perform better when more information is provided. However, the
same procedure could be performed by using less stations’ data (and thus, not fulfilling
the criterion that was mentioned before). In this case, less information would be available
for the models in order to train, but more gaps could be filled, which would lead to a more
complete database.

The results of the first step of the methodology are presented in Table 2 and reveal the
number of missing values that can be potentially estimated initially and used to increase the
available data points. The next step was to apply an ANN approach for spatial estimation
purposes. To achieve this, a Shallow Neural Network (SNN) was utilized as a practical
and fairly simple ANN that is moderately demanding in terms of time and computational
power. However, it can effectively simulate complex nonlinear relationships between
parameters. In detail, two-layer networks with sigmoid hidden neurons and linear output
neurons were used (Figure 2).
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Table 2. Number of missing values (gaps) during 2018, for the original and spatially interpolated dataset.

Original Gaps Gaps after Interpolation Difference Estimated Percentage (%)

NO2 13,253 11,145 2108 15.91
O3 10,814 7961 2853 26.38

PM10 7182 3948 3234 45.03
PM2.5 4558 2524 2034 44.62
SO2 7043 4746 2297 32.61
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Figure 2. A two-layer network with sigmoid hidden neurons and linear output neurons.

The training of the networks was performed with the Levenberg–Marquardt backprop-
agation algorithm. The dataset was divided into three subsets used for training, validation
and testing randomly, and each subset corresponded to specific percentages of the origi-
nal data (70% training, 15% validation and 15% testing). To reduce overfitting, the early
stopping approach was utilized on the validation subset [26]. This approach terminates
the training process when the validation subset’s error begins to increase. Depending on
the pollutant, the number of data points used for the subsets was different (as the number
of stations with data availability is different) and is presented in Table 3. The network
architecture includes a number of inputs equal to the number of all stations minus the
target station (13 for NO2, 12 for O3, 10 for PM10, 5 for PM2.5 and 5 for SO2), while the
output is always one (target station). Regarding the number of neurons in the hidden layer,
the performance of each network was evaluated by using the Mean Absolute Error (MAE)
statistical criterion [29–33], which is calculated by using the following equation:

MAE =
1
n

n

∑
i=1
|Ei −Oi| (1)

where E denotes the estimated concentration, O the observed concentration and n the
number of data points.

Table 3. Number of data points distributed to the training, validation and testing subset for the
2016/2017 time period.

Training Validation Testing Total

NO2 47,151 10,101 10,101 67,353
O3 25,272 5412 5412 36,096

PM10 13,410 2880 2880 19,170
PM2.5 37,785 8100 8100 53,985
SO2 13,925 3080 3080 20,085

Two more statistical metrics, the Root Mean Squared Error (RMSE) and the coefficient
of determination (R2), were also calculated, and in combination with MAE, they were used
to provide a comparison between the results of the ANN methodology and a Multiple
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Linear Regression (MLR) scheme. The MLR was applied according to the same criterion as
with the ANN models. The equations for RMSE and R2 are the following:

RMSE =

√
1
n

n

∑
i=1

(Ei −Oi)
2 (2)

R2 =

 ∑n
i=1
(
Oi −O

)(
Ei − E

)√
∑n

i=1
(
Oi −O

)2
√

∑n
i=1
(
Ei − E

)2

2

(3)

Lower MAE and RMSE values and higher R2 illustrate the optimum performing
scheme. Regarding the ANN method, five runs were performed for all models and
for hidden layer neurons that ranged from 1 to 40. The best performing networks and
their architecture are presented in Table 4. By using these selected SNN models for the
corresponding inputs of 2018, the gaps in each station and pollutant were filled. Finally, on
the interpolated datasets, mean and variance values were calculated and compared with
the corresponding values of the original datasets for 2018.

Table 4. Number of input, hidden (average) and output neurons as well as the average Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) and coefficient of determination (R2) values and mean concentrations for the best
performing models and the 2016/2017 time period. The MAE, RMSE and R2 metrics include the results for the Multiple
Linear Regression (MLR) scheme. For the MAE metric, the percentage of error (MAE to mean concentrations) was
additionally calculated.

Number of Neurons MAE RMSE R2

Input Hidden Output Mean ANNs Error (%) MLR ANNs MLR ANNs MLR

NO2 13 21.7 1 32.70 5.80 17.74 7.23 8.31 9.87 0.76 0.67
O3 12 22.3 1 58.86 6.86 11.65 9.32 9.78 12.49 0.87 0.77

PM10 10 23.6 1 29.53 5.71 19.34 7.17 11.55 11.65 0.88 0.87
PM2.5 5 25.2 1 23.81 5.17 21.71 5.68 8.47 8.97 0.69 0.65
SO2 5 22.5 1 6.06 1.89 31.19 2.39 3.29 3.74 0.55 0.39

3. Results and Discussion

A total of 12,526 missing values were estimated, and the percentage of gaps that were
filled out in each station was above 40% for PM10 and PM2.5, above 20% for O3 and SO2 and
above 15% for NO2. Regarding O3 and NO2 where the percentage of interpolated values
is lower, it needs to be considered that they had a higher number of stations with data
availability (inputs for the networks), and, thus, the criterion that none of the inputs should
have a missing value for each gap of the target station was more difficult to fulfill. Table 2
presents in detail the gaps originally and the number of them that will be eventually filled,
after the interpolation, as well as the percentage of missing values that were estimated. It is
noted that the number of gaps after the interpolation were calculated based on the criterion
explained in the Methodology section and, thus, before the interpolation process, which
provided the corresponding concentrations for each missing value.

The number of data points for the training, validation and testing subsets and for
each pollutant is presented in Table 3. Pollutants with a lower number of input stations
are associated with higher data points numbers per station (smaller probability for all the
stations to have a missing value at the same time). However, more stations (NO2 and O3)
provide additional data points. NO2 and PM2.5 are the pollutants which provided more
data for training, validation and testing purposes.

The architecture of the optimum performance models is presented in Table 4. The
hidden neurons number is an average of all the stations for each pollutant. The MAE,
RMSE and R2 average values (MAE and RMSE are measured in the same units as the
concentrations of the pollutants, µg/m3) in these cases are also included. However, all
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pollutant-specific networks have the same number of inputs and all networks have a single
output (the target station). The average hidden neuron value ranges from 21.7 to 25.2,
which reveals that the models are at an almost equal complexity level. As mentioned
beforehand, to illustrate the validity of the ANN approach, the steps of the analysis that
were applied on the available datasets were also performed for MLR. Table 4 additionally
presents the MAE, RMSE and R2 results for the MLR method. It is evident that the ANNs
are superior in all cases. The detailed results that include a station-by-station comparison
are also provided in Supplementary Materials Tables S1–S5.

Tables 5–9 present the results for the mean and variance values of both the original
and the gap-filled datasets for the five pollutants and the 2018 time period. It is noted
that the differences are marginal in nearly all cases, and this is evident by the error value
percentages (mean error and variance error).

Table 5. Mean and variance values results, for the original (O) and the interpolated (I) datasets, along
with the corresponding error, per monitoring station for NO2.

Mean Mean Error Variance Variance Error

O I O I

AGP 14.06 14.06 −1.83 × 10−6 147.91 147.86 −3.53 × 10−4

ATH 44.24 42.90 −0.03 377.36 387.47 0.03
ARI 47.95 47.95 −5.35 × 10−5 405.37 405.23 −3.45 × 10−4

GEO 28.01 27.99 −7.81 × 10−4 326.76 311.44 −0.05
ELE 24.41 24.42 2.99 × 10−4 204.55 204.82 13 × 10−4

THR 7.96 7.68 −0.04 94.85 87.34 −0.08
KOR 8.26 8.35 0.01 183.60 184.53 0.01
LIO 16.68 16.69 7.88 × 10−4 187.13 187.86 39 × 10−4

LYK 19.98 20.01 11 × 10−4 286.24 284.08 −0.01
MAR 26.40 26.40 −8.63 × 10−6 466.69 466.59 −2.17 × 10−4

SMY 29.16 29.23 25 × 10−4 480.56 483.84 0.01
PAT 70.95 70.94 −1.59 × 10−4 750.28 750.33 6.07 × 10−5

PIR 62.53 62.53 −4.43 × 10−5 602.95 603.12 2.82 × 10−4

PER 27.69 27.69 −7.61 × 10−5 462.81 462.49 −6.80 × 10−4

Table 6. Mean and variance values results, for the original (O) and the interpolated (I) datasets, along
with the corresponding error, per monitoring station for O3.

Mean Mean Error Variance Variance Error

O I O I

AGP 82.61 82.66 5.05 × 10−4 804.22 809.52 0.01
ATH 40.50 40.50 1.28 × 10−5 882.74 882.54 −2.26 × 10−4

GEO 56.27 59.01 0.05 1329.6 1334.4 36 × 10−4

ELE 63.78 63.60 −29 × 10−4 1226 1226 −6.03 × 10−5

THR 96.50 96.51 1.24 × 10−4 677.91 678.06 2.10 × 10−4

KOR 65.77 65.77 −2.58 × 10−5 607.77 608.73 16 × 10−4

LIO 64.71 65.33 0.01 1199.8 1193.3 −0.01
LYK 64.42 64.07 −0.01 1352.1 1344.6 −0.01
MAR 65.81 65.88 11 × 10−4 1387.2 1348.5 −0.03
SMY 73.65 73.87 30 × 10−4 1314.2 1318.6 33 × 10−4

PAT 16.52 16.83 0.02 278.29 296.92 0.07
PIR 40.45 40.43 −3.74 × 10−4 944.15 943.88 −2.90 × 10−4

PER 66.04 66.43 0.01 1385.3 1388.4 23 × 10−4

By examining the total number of gaps in the original and interpolated databases of
all pollutants (Table 2), it is evident that a considerable number of missing data points
was estimated after the application of the methodology, which relies on the data-point
availability of all the selected stations to interpolate the corresponding missing data points
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(time-related) of the target station. In particular, the application of the ANNs, which
utilized the available observations of the pollutants’ concentrations based on the criterion
that was introduced in the methodology, added a percent of missing values that ranged
from about 16% to 45%, which depended on how many stations were used as inputs and
the overall existing concentrations’ distribution (whether for the same hour one or more
stations had data availability). While the ANNs could be used to estimate data points at
the target station, when not all stations had available data at the same hour, there are some
factors that need to be considered. Although the ANNs provide representative estimations,
there is always an associated error percentage when the results are compared with the
observational data. This error percentage can be enhanced when the information provided
at the models is not adequate for them to train effectively. If fewer stations were utilized,
it could possibly lead to higher errors, and, in any case, the results should be analyzed
carefully to find out how using a different number of inputs affects the output.

Table 7. Mean and variance values results, for the original (O) and the interpolated (I) datasets, along
with the corresponding error, per monitoring station for PM10.

Mean Mean Error Variance Variance Error

O I O I

AGP 19.85 19.83 −7.09 × 10−4 432.11 429.55 −0.01
ARI 36.38 36.37 −3.18 × 10−4 630.70 628.58 −33 × 10−4

ELE 29.27 29.06 −0.01 488.50 479.02 −0.02
THR 20.40 20.44 18 × 10−4 414.02 401.35 −0.03
KOR 30.72 30.67 −16 × 10−4 601.64 597.62 −0.01
LIO 33.74 32.93 −0.02 806.56 704.83 −0.13
LYK 27.03 27.63 0.02 378.55 657.21 −0.74
MAR 29.48 29.48 7.46 × 10−5 685.14 680.14 −0.01
SMY 31.03 30.79 −0.01 666.01 644.88 −0.03
PIR 39.34 39.49 37 × 10−4 695.72 697.59 27 × 10−4

PER 30.31 30.32 2.16 × 10−4 713.39 707.80 −0.01

Table 8. Mean and variance values results, for the original (O) and the interpolated (I) datasets, along
with the corresponding error, per monitoring station for PM2.5.

Mean Mean Error Variance Variance Error

O I O I

AGP 11.60 11.60 −4.47 × 10−4 42.35 42.17 −42 × 10−4

ARI 19.11 18.92 −0.01 213.67 204.40 −43 × 10−4

ELE 17.81 17.83 9.18 × 10−4 100.90 99.98 −92 × 10−4

THR 13.44 13.43 −10 × 10−4 45.47 44.63 −186 × 10−4

LYK 15.28 15.47 0.01 133.63 133.81 14 × 10−4

PIR 18.00 18.24 0.01 178.46 183.70 29 × 10−4

Table 9. Mean and variance values results, for the original (O) and the interpolated (I) datasets, along
with the corresponding error, per monitoring station for SO2.

Mean Mean Error Variance Variance Error

O I O I

ATH 4.21 4.21 15 × 10−4 12.22 12.29 53 × 10−4

ARI 4.46 4.58 265 × 10−4 11.57 11.70 109 × 10−4

ELE 10.73 10.57 −150 × 10−4 45.35 47.76 529 × 10−4

KOR 4.92 4.91 −25 × 10−4 7.49 7.45 −51 × 10−4

PAT 8.87 8.85 −28 × 10−4 20.17 20.20 14 × 10−4

PIR 9.93 9.92 −13 × 10−4 66.21 65.52 −105 × 10−4
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As proposed by Willmott and Matsuura [29], dimensioned evaluations of model-
performance error should be based on MAE. However, a better understanding of the MAE
values can be achieved by calculating the percentage of error (MAE to mean concentration).
According to Table 4 results, it can be concluded that the error percentage is higher when
the number of input stations is lower and subsequently the information provided for
training is more limited. O3 is an exception to this statement because, although the number
of input stations is 12 versus 13 for NO2 and correspondingly the available data points are
nearly half, the error percentage is considerably lower. This can be explained by examining
other behavioral characteristics of this pollutant (differences in mean values among stations,
more easily identifiable patterns in datasets, etc.). When comparing PM2.5 and SO2, where
the input neurons are five for both, the prediction performance for SO2 is lower, possibly
due to the smaller number of data points, according to Table 3 (PM2.5 has nearly three times
more data points). Different approaches to evaluate the performance of the models can
be followed (scatter diagrams, etc.), and more types of similar complexity neural network
models can be examined.

4. Conclusions

This study applied SNN models as a tool for point spatial interpolation of air-quality
parameters, using data from an air-quality-monitoring network located at a densely pop-
ulated urban area. Five air-quality parameters were selected (PM10, PM2.5, NO2, O3 and
SO2), due to their importance in the field of air-quality indices and, more specifically, based
on the EAQI (proposed by EEA). The results highlight that the models’ performance is
significantly affected by the density of the air-quality-monitoring network (number of
stations and data points per station), as well as the specific patterns that characterize
each pollutant’s concentrations. The training dataset is crucial for the networks’ develop-
ment and needs to be carefully selected in order to provide adequate information which
will augment the networks’ generalization ability. This work can be utilized as an alter-
native for commonly used spatial interpolation methods in the field of air quality, and
further improvements can be made by using more advanced networks and/or adding
meteorological/climatic parameters as inputs.
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