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Abstract: This work presents a full statistical analysis and accurate prediction of low-visibility events
due to fog, at the A-8 motor-road in Mondofiedo (Galicia, Spain). The present analysis covers two
years of study, considering visibility time series and exogenous variables collected in the zone affected
the most by extreme low-visibility events. This paper has then a two-fold objective: first, we carry
out a statistical analysis for estimating the fittest probability distributions to the fog event duration,
using the Maximum Likelihood method and an alternative method known as the L-moments method.
This statistical study allows association of the low-visibility depth with the event duration, showing
a clear relationship, which can be modeled with distributions for extremes such as Generalized
Extreme Value and Generalized Pareto distributions. Second, we apply a neural network approach,
trained by means of the ELM (Extreme Learning Machine) algorithm, to predict the occurrence of
low-visibility events due to fog, from atmospheric predictive variables. This study provides a full
characterization of fog events at this motor-road, in which orographic fog is predominant, causing
important traffic problems during all year. We also show how the ELM approach is able to obtain
highly accurate low-visibility events predictions, with a Pearson correlation coefficient of 0.8, within
a half-hour time horizon, enough to initialize some protocols aiming at reducing the impact of these
extreme events in the traffic of the A-8 motor road.

Keywords: low-visibility events; orographic and hill-fogs; extreme learning machines; prediction
problems; machine learning algorithms

1. Introduction

Low-visibility events are extreme atmospheric situations which deeply affect transport
and transportation facilities [1-3]. They cause a large number of deaths in developed
countries, associated with traffic accidents [4,5]. It is therefore a serious hazard to vehicles
when visibility varies over short distances or periods of time at so-called fog “black spots”
or fog-walls [6]. On the other hand, low-visibility events reduce the transport capacity on
affected roads, leading to closures in extreme cases, with the consequent economic cost [7].

These extreme situations are recurrent in an important motor-road in Spain, the A-8
at Mondoriedo (Galicia, Spain). The A-8 motor-road is the largest and most important
highway running along northern Spain, all along the Cantabrian coast. It runs from
the Basque Country to the province of Lugo in Galicia, as can be observed in Figure 1.
The geographical situation and the weather conditions of the place favor the occurrence of
low-visibility events due to orographic or hill fogs at specific points (specially at “Alto de
O Fiouco” area). This issue remains as an unresolved problem since the construction of

Atmosphere 2021, 12, 679. https:/ /doi.org/10.3390/atmos12060679

https:/ /www.mdpi.com/journal /atmosphere


https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-5721-1242
https://orcid.org/0000-0001-9692-8871
https://orcid.org/0000-0001-6532-5314
https://orcid.org/0000-0001-7018-4800
https://orcid.org/0000-0002-4048-1676
https://www.mdpi.com/article/10.3390/atmos12060679?type=check_update&version=1
https://doi.org/10.3390/atmos12060679
https://doi.org/10.3390/atmos12060679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12060679
https://www.mdpi.com/journal/atmosphere

Atmosphere 2021, 12, 679

2 0f 22

the motor-road some years ago, with an average of over 700 h a year of closure due to fog
events. Solving this problem has become a priority for the local and national government,
not only to reduce the number of traffic crashes associated with low-visibility events in the
motor-road, but also to reduce the economic impact in the zone. In fact, there are studies
such as [8], which have shown differences in economic growth after the construction of
important traffic infrastructures such as motor-roads, i.e., these infrastructures have an
impact on population dynamics and business performance. In this case, the economic
impact of the A-8 motor-road is deeply affected by the issues related to fog events. As part of
the solution to this problem, it is important the characterization of fog events, both in terms
of their statistical physics, and also in terms of the meteorological causes of fog formation. It
is also important the development of robust approaches to carry out an accurate prediction
of the phenomenon, within a short-time prediction horizon. There are different previous
works dealing with statistical characterization of different fog properties, such as its short-
term and long-term persistence [9-11], dynamic processes [12], onset and duration [13] or
general statistical characterization of fog for specific zones [14,15], and some other studies
dealing with meteorological causes affecting fog formation [16-18]. In turn, regarding
previous works dealing with prediction algorithms for fog events, very different techniques
have been developed and applied. Numerical weather prediction is one of the most widely
used approaches [19-22]. However, due to the local nature of this type of phenomenon,
forecasting low visibility events by means of numerical weather prediction is a complex
process. This is partly because fog formation is very sensitive to small-scale variations
in atmospheric variables (changes in wind or in atmospheric stability) and many current
models do not capture such spatial resolution. Moreover, the prediction of fog events is
very sensitive to initial conditions in the numerical methods [23]. Alternative approaches
involve statistical methods to predict fog events. One of the first attempts introduced the
use of linear regression for marine fog events prediction [24]. In the last decade, Machine
Learning (ML) techniques have been successfully applied to the prediction of low-visibility
extreme events related to fog. Examples include neural networks [1,2,25], Bayesian decision
approaches [26], different ML regression techniques such as Support Vector Regression or
Extreme Learning Machine (ELM) algorithms for regression [27-31], evolutionary neural
approaches [32] or ordinal regression techniques [33]. Note that many of these previous
works are related to fog prediction in transportation facilities such as airports.

In this work we carry out a detailed study on real visibility data collected on the A-8
motor-road at Mondoriedo, Galicia, Spain. It includes the statistical characterization of
the fog event, and also its prediction by using an ELM algorithm. First, we deal with the
statistical characterization of the fog events at this zone. To this end, we try to obtain
the fittest probability distributions to the low-visibility events available, considering its
duration. We compare two methods for this task: the Maximum Likelihood and the
L-moments method. For this purpose, we have tried distributions appropriate for extreme
events, since the most general approach to the study of rare extreme events is based on the
Extreme Value Theory (EVT) [34], especially in cases with very few samples available [35].
Second, we propose an accurate prediction algorithm for low-visibility events in the
A-8 motor-road based on ELMs [36] and exogenous atmospheric variables collected in a
measuring station at the motor-road. We will show that the ELM algorithm provides an
excellent performance in terms of error metrics, with a low computational cost.

The rest of this paper has been structured as follows: next section presents the data
description and the variables considered in the analysis and prediction of fog events at
A-8 motor-road. In this section we also describe the considered distributions and the
main concepts of the ELM network. Section 3 presents the experimental part of the work.
First we carry out a statistical analysis of low-visibility events” duration using probability
distribution fitting. We then show the performance of the ELM in the short-term prediction
of these low-visibility events. Finally, Section 4 closes the paper with some concluding
remarks about this study.
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Figure 1. Location of the A-8 motor-road (in blue), and the situation of the measuring station
in Mondofedo (+ symbol in red), in Galicia, Spain. The zoomed image precisely determines the
coordinates of Mondofiedo and the A8 motor-road.

2. Data and Methods
2.1. Data Description

We consider visibility data from a weather station located at Mondofiedo (43.3841 N,
7.3692 W), Galicia, Spain (Figure 1). In this area the formation of orographic or hill fog
events is quite common. It directly impacts the visibility in the motor-road on deep
episodes leading to the closure of the motor-road. The weather station is equipped with a
Biral WS-100 visibility sensor. In this study we start considering as low-visibility events
all visibility data below 2000 m, since this is the limit of visibility value provided by
the sensor. Subsequently, the same analysis is performed in Section 3.1.2 for different
(more restrictive) thresholds in the definition of low-visibility events: 600, 300 and 50 m.
In these cases, we consider as low-visibility event any measurement under these different
thresholds. The time series considered encompasses 23 months of data (from 1 January
2018 to 30 November 2019). In the prediction process, we evaluated the occurrence of low-
visibility conditions by considering exogenous meteorological variables (also registered by
the weather station), in order to take into account the atmospheric state. All the variables
considered in this paper are summarized in Table 1.

Table 1. Description of the prediction (input) variables in the database for fog events description
and forecasting at Mondofiedo, Galicia, Spain.

Variable Units
Accumulated precipitation mm/24 h
Salinity %
Visibility (target) m
Relative Humidity %
Air temperature °C
Floor temperature °C
Dew temperature °C
Global solar radiation W/m?
Wind speed km/h
Wind direction Degrees
Atmospheric pressure hPa

The temporal resolution of all the variables and target is 5 min.

2.2. Methods for Statistical Analysis of Fog Events Duration

In this work we study the behavior of the fog events attending to their duration
in each season and during the two years of the study, 2018 and 2019. Estimating the
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probability distributions of the fog duration in different seasons guarantees a certain level
of stationarity, in the sense that we can expect that the forcing of wind, radiation, average
temperatures, etc., are similar in each season (also the orographic conditions are similar).

In this respect, our main goal consists of identifying the occurrence of fog events with
some theoretical probability distributions, and how they change depending on the season
and thus on the physical processes that take place in each of them. Table 2 summarizes
the theoretical probability distributions used in the study together with their Cumulative
Distribution Function (CDF).

Table 2. Theoretical distributions used in the fog events duration analysis carried out. The non-
negative variable x refers to the duration of fog events.

Distribution CDF

Exponential (EXP) FlxiA) = { (1), e x> 8
! x <

Logistic (LOG) F(x;p,8) = WJW

Normal (NRM) F(x;p,0) = ® %

Generalized Pareto (GPa) F(x;€) = 1—(1+&)VYe for¢#0
! 1—e* for& =0

Generalized Extreme Value (GEV) !

(
Log-Normal (LN) F(x;p,0) = <I>(
Gamma (GAM) F(x;a,B) = W(FK(f)X)
Extreme Value 2 (EV) Flx;p,0) = EXP{ - EXP{ - % } }
Log-Logistic (LLG) F(x: - -
Eo8 i B) = T /) P
Stable (STA) Does not have an explicit CDF 3

1 We present here the most frequent case of the GEV distribution where ¢ # 0 and ¢ ( ﬂ) > —1. If £ = 0 the

o
distribution converges to an Extreme Value distribution, see Table 2. For ¢ (%) < —-land¢ >0or¢ >0,

the GEV distributions is 0 and 1 respectively. > Additionally known as Gumbel distribution. 3 The CDF for
the STA distribution does not have an explicit formula in general. Only for some suitable parameters does it
have a closed-form expression. However, the CDF can be described in terms of its characteristic function. See
reference [37] for more details. The A, y, 0, s, ¢, a, B, are the parameters of the distributions; ® is the standard
NRM distribution function. I’ is the gamma function evaluated in &, and v is the lower incomplete gamma
function. More details about I' and -y functions can be read in the reference [38] if the reader is interested.

We chose the most used distributions which better represent the duration events (the
life of the events), which are commonly named as lifetime distributions. All these theoretic
distributions are described by a few parameters, usually 2 parameters, except for the
stable distribution which needs 4. We include among them light-tail distributions, such as
the exponential (EXP), the normal (NRM) or the gamma (GAM) distributions; and long-tail
(heavy-tail) distributions, such as the Log-Normal (LN) and Generalized Pareto (GPa)
distributions. Some of them are more general distributions, such as the Stable (STA) or the
Generalized Extreme Value (GEV) distributions. Almost all of the proposed probability
density functions are positive semi-definite as the low-visibility event duration variable is
non-negative. Therefore, some symmetric probability distributions may be considered by
left-truncating their domains, such as the normal distributions. If the goals of the present
work were to obtain a phenomenological fitting to seasonal probability distributions with
no relation whatsoever to a given random variable, it would be perfectly acceptable to
truncate PDFs defined in the line of real numbers and accordingly adjust for the modified
area. However, since we are searching for meaningful random variable distributions that
we can relate to physical processes (heavy-tailed, as we can deduce from the results), no
amount of truncation can adjust for the shape of the tail relative to the main mode of the
distribution. The poor results obtained by the normal distribution in the analysis is a red
flag referring to the potential improvement that it could be obtained by using truncated
symmetrical probability distributions.
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Extreme distributions were mainly used, since they are more suitable to determine
the correct distribution from a finite set of samples [35]. Furthermore, they detect the
maximum values better than other types of probability distributions. Due to the fact that
our data are distributed forming long tails at first sight, it is expected that the use of these
distributions is appropriate (as we see in Section 3). Furthermore, because extreme values
are special cases of order statistics and, conversely, problems that involves order statistics
can be solved by the EVT [39].

For estimating the parameters associated with the mentioned theoretical distributions
(and summarized in Table 3), two different approaches were carried out: the Maximum
Likelihood criterion [40,41] and another more recent approach in terms of application,
the L-moments approach [42].

Table 3. Range of the distribution parameters.

Distribution Range of Parameters
EXP A>0
LOG ueR,s>0
NRM HER,0?>0
GPa ¢ € (—o0,00)
GEV wEER, 02>0
LN { j € (oo, F00)
>0
GAM a,B>0
EV u,eR, 02 >0
LLG a,>0
a € (0,2] — stability parameter
STA B € [—1,1] — skewness parameter

¢ € (0, 00) — scale parameter
i € (—o0,00) — location parameter

The first method mentioned is a common method for parameter estimation and model
fitting. It allows estimation of the parameters of a probabilistic model, or the coefficients
of a mathematical model, so that they are the most probable from the data obtained.
Mathematically, the goal of the Maximum Likelihood is to find the value of the parameters
6 which maximize the likelihood function L, (6, x) of an n-dimensional observed sample
x = (x1,-++,X,) over the parameter space ©:

OvL = argmax Ly, (6,x) 1)
0cO

For some distributions with 1-dimensional parametric spaces, the maximum likelihood
estimator has an analytic expression, such as for the A parameter of the EXP distribution
which results in the sample mean. For distributions with n-dimensional parametric spaces,
they must be numerically computed [43].

The L-moments approach is an alternative theory to traditional moments theory.
L-moments can be estimated by linear combinations of order statistics, i.e., by L-statistics [44].
That is, you can obtain moments from the sorted data. The advantages over using traditional
moments is that L-moments are able to characterize a wider range of distributions and are
more robust to the presence of outliers in the data. In addition, parameters estimations
by L-moments are sometimes more accurate in small number of samples than estimations
by the Maximum Likelihood criterion [42]. For this reason it is not necessary to handle a
large amount of data in order to make inference. Briefly, the L-moments approach estimates
the parameters solving the n-dimensional generally non-linear system forms by equalizing
the population L-moments {A;(0)} associated with the population distribution F(x) (see
Table 2). Those F(x) are functions of the parameters 6 to be estimated, with the sample
L-moments {/;(x) }, which uniquely depend on the sample data:

/\1(9) :li(x), 1<i<N (2)
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We require as many equations (N) as the number of parameters to be determined
to complete rank (depending of the theoretical distribution F(x) see Table 2). General
expressions for population {A;} and sample {/;} L-moment can be found in [44]. For all
the evaluated theoretical distributions, there are explicit inverse functions which avoid
numerical calculation of the system (2), see the work [44].

For evaluating the goodness of the distribution estimation, there exist multiple func-
tional metrics which analyze the similarity between the estimated distributions and the
data distribution. In this work, we employ the Kolmogorov-Smirnov (KS) statistic dy, [45],
which has the following expression:

dis = sup|Fy(x) — F(x)] ®)

This function measures the maximum (or supremum) distance between the cumulative
distributions, the CDF F(x) and the Empirical CDF (ECDF) F,(x), see Figure 2. Note that
the best estimation of F, (x) will minimize Equation (3).

e e o — ——

0.8

0.6

cdf

0.4 = e= = LECDF

0.2 Theoretical CDF

. | . | . | .
OU 5 10 15 20

Event duration (h)

Figure 2. KS-distance diagram. ECDF is represented with a dotted black curve. CDF is represented
with a continuous blue curve. The supremum of the distances between both curves is the KS-distance.

2.3. ELM for Accurate Prediction of Fog Events

Neural networks are information processing algorithms of the Artificial Intelligence
family, able to efficiently solve hard problems of classification and regression from data,
among other applications. The operation of feed-forward neural networks (Figure 3) starts
by introducing a series of input variables (features) to the system, with known associated
labels (classification) or outputs (regression). The internal layers carry out guided (by means
of a training process) non-linear combinations of the inputs with their associated weights.
There are several well-known algorithms for carrying out this training of the system, such
as the back-propagation method [46], the Levenberg—Marquardt algorithm [47] or the
ELM-type training method, which is the one applied in this work. As a result of this
learning phase, we obtain a final prediction model that can be evaluated (tested) with new
samples, to obtain the final predicted output. The comparison of this prediction with the
real or actual output allows us quantifying the goodness of the model by means of an
error measurement.

Specifically, the ELM [36] is a fast training method mainly used for feed-forward multi-
layer perceptron structures, see Figure 3. In the ELM algorithm the network weights of
the first layer are randomly set, usually using an uniform probability distribution. Then, it
establishes the output matrix of the hidden layer and computes the Moore-Penrose pseudo-
inverse of this matrix. The optimal weights of the output layer are directly obtained by
multiplying the computed pseudo-inverse matrix with the target, that is, the weights of
the output layer which fit best with the objective values (see [48] for details). This method
obtains competitive results with respect to other classical training methods, and the training
computation efficiency overcomes multi-layer perceptrons, or even Support Vector Machine
algorithms [48].
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Figure 3. Multi-layer perceptron structure considered in the ELM algorithm. It has N different
inputs and the hidden layer is composed by N neurons.

Mathematically, the ELM algorithm considers a training set of input—output pairs
{(x;,yi) | x; € RN,y; € R} . Each input-output pair (x;,;) is a realization of the input
variable vector x and the output scalar variable i, which are related by a function we want
to learn. In this work, the output y will be the visibility expressed in meters and the inputs
x will be a collection of atmospheric variables, specifically the shown in Table 1. The main
goal is to fit the weights {B;} of the output layer which multiply each output of the N
hidden nodes. It follows the next steps:

1. Randomly assign input weights w; and the bias b;, where i = 1,..., N, using a
uniform probability distribution in [—1,1].
2. Calculate the hidden-layer output matrix H, defined as follows:

gwixy +by) -+ g(wgxy +by)
H= : : . (4)
g(W1Xn+bl) g(wNX"+bN) IxN

where g(x) is an activation function.
3. Finally, calculate the output weight vector p as follows:

B=H'T, ®)

where H' is the Moore-Penrose inverse of the matrix H [36], and T is the training
output vector, T = [y, ... ,yn]T.

Note that the number of hidden nodes N is a free parameter to be set before the training
of the ELM algorithm, and must be estimated for obtaining good results by scanning a
range of N. In this paper, we use the ELM implemented in Matlab by G. B. Huang, freely
available at [49].

3. Experiments and Results
3.1. Statistical Characterization of Fog Events Duration at A-8 Motor-Road

The statistical characterization of low visibility events associated with fog at the A-8
motor-road is discussed in this experimental subsection. The KS-distances (3) between the
considered CDFs (see Table 2) and the ECDF for each year and season have been calculated
taking into account the two approaches described in Section 2.2, i.e., Maximum Likelihood
and L-moments methods. A seasonal analysis has been taken into account, in order to
discuss whether the statistical characterization of fog events is independent (or not) from
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the season of the year. First, Table 4 shows the statistics of the low-visibility events at
Mondofiedo in the years of the study (2018 and 2019).

Table 4. Low-visibility events statistics at Mondofiedo station for years 2018 and 2019, and for the
2000 m threshold.

Fog Events Average Duration (Minutes) # of Fog Events
2018 2019 2018 2019
Winter 122.69 149.22 285 168
Spring 201.42 144.02 246 246
Summer 317.63 346.98 224 191
Autumn 161.23 81.21 206 276

As can be seen, the number of low-visibility events (<2000 m) by season in both years
is quite high, over 200 episodes or quite close to 200 in all cases.

In general, the number of fog events does not seem to have a dependence with the
season, as in the case of radiative-type fogs, which are associated with cool/cold periods.
In this case, since we have here a type of orographic fog, the number of low-visibility
events is very similar in all seasons. In fact, as can be seen in Table 4, the longest average
duration of the events is found in summer, with durations about 300 min in both years
of study. The shortest durations appear in autumn with 81.21 min of average duration in
2019, or winter with 122.69 min in 2018. Figure 4 shows the different fog events occurred in
years 2018 and 2019 at Mondofiedo and their minimal visibility associated value. Observe
that those events of longer duration are associated with the lowest visibility minimum
value, i.e., denser fog events take longer to dissipate.

A Winter H Spring ¢ Summer ® Autumn
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2018 1000 g
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Figure 4. Representation of minimum visibility vs. event duration for 2018 and 2019, and for the
2000 m threshold. Low visibility events from the different seasons are distinguished by different
markers and colors. For each year, the inset in the upper right corner represents a zoom in the

horizontal axis.

We proceed now with the analysis of the probability distributions for fog events
duration, by means of minimizing the KS-distance for the two methods of evaluation
considered: Maximum Likelihood and L-moments. We start with the Maximum Likelihood
case. Table 5 shows the obtained numerical KS-distance using the Maximum Likelihood
method. Moreover, Figure 5 illustrates the estimated distributions where the y-axis is
plotted logarithmically scaled. In this case, ten distribution functions described in Table 2
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were analyzed. We show which distributions best characterize the fog events duration,
based on this statistical and seasonal analysis. Specifically we show the KS-distance,
which provides a quantitative reference for the best distribution. According to the results,
the extremes are significant; i.e., there are many long-term events, or in other words,
extreme events of low visibility, and we can see that best results in terms of KS-distance are
obtained with the heavy-tail distributions. There are three distributions which fit better
than the rest the duration of fog events at Mondofiedo along the seasons: These are the
GEV, GPa and STA distributions. These three distributions have the shortest KS-distance
and a stationary behavior through the time period. The GEV has a KS-distance around 0.07
through the seasons in both years of study, around 0.09 for the GPa, and 0.06 for the STA
in 2018, but with worse values in 2019. LLG also fits well to the data distribution among
all seasons around 0.1 in 2018 and 0.08 in 2019, even better than STA this last year. This
can also be seen more visually in Figure 5, where heavy-tailed distributions such as GEV
(in orange) or STA (in burgundy) best fit the data. The same is not true for light-tailed
distributions such as EXP (in black) or NRM (in blue) and also for Logistic (LOG) (the
red curve). In fact the EXP and LOG, are straight lines far from the origin in logarithmic
representation, so that they do not fit very well, or NRM and EV (in cyan) which have a
concave shape in this representation. Especially when we find more extreme events in
the data since, as previously mentioned, those distributions are characterized by a rapid
decrease in the probability of generating extreme values.

If we look at Table 5, we see that, in most seasons, in both years of study, the short-
est KS-distance on average through seasons is obtained by the GEV distribution. It is
known that this distribution is well suited for estimating the maximum of samples of size
n, from sufficiently long sequences of independent and identically distributed random
variables [50]. On the other hand, stable type distributions explain more adequately the
extreme or rare phenomena, since they usually explain observations with extreme values
and skewness. This denotes the presence of heavy tails [51]. This justifies the inclusion
of this type of distribution in the study. Note that these distributions are a more efficient
alternative to analyze high volatility phenomena due to their capacity to generate extreme
values [51]. Finally, the GPa distribution also plays an important role in the EVT, and it
is very common in the study of extreme events related to hydrological issues [52,53]. Its
adjustment in our results shows a quite stationary behavior (in both methods) in spite of
not showing the smallest KS-distance. This is not the case with the short tail distributions
used in the study, i.e., EXP, LOG, NRM and EV. These distributions adapt worse to the fog
events data than heavy-tail distributions, as they are characterized by a rapid decrease in
the probability of generating extreme values, with KS-distance values around 0.3, or even
0.4 for the EV.

Table 5. KS-distances results for the Maximum Likelihood, and for the 2000 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.294 0.342 0.340 0.311 0.289 0.282 0.343 0.172
LOG 0.302 0.331 0.309 0.321 0.302 0.291 0.313 0.247
NRM 0.301 0.347 0.302 0.337 0.305 0.286 0.317 0.262
GPa 0.099 0.084 0.095 0.093 0.088 0.094 0.075 0.087
GEV 0.063 0.060 0.094 0.067 0.090 0.074 0.071 0.074
LN 0.126 0.102 0.121 0.122 0.108 0.116 0.100 0.086
GAM 0.189 0.186 0.169 0.176 0.175 0.177 0.178 0.154
EV 0.403 0.463 0.402 0.460 0.427 0.393 0417 0.384
LLG 0.103 0.083 0.105 0.101 0.088 0.089 0.080 0.080

STA 0.059 0.063 0.125 0.060 0.092 0.287 0.087 0.613
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Figure 5. Probability density functions of fog events over time for the Maximum Likelihood approach
fixing the threshold to 2000 m. The CDF is located in the insets. Each row corresponds to a season
and each column to a year.

Table 6 shows the obtained numerical KS-distance using the L-moments method.
Furthermore, Figure 6 illustrates the estimated distributions where the y-axis is plotted
logarithmically scaled. A total of nine distributions were taken into account in this case,
because the moments of the STA distribution do not converge for certain parameters of the
distribution. The results show that the distributions that best fit to the fog events in these
two years of study are the LN, GAM and GPa with KS-distances around between 0.1 and
0.2. In addition the Log-Logistic (LLG) presents KS-distance stationary values over time,
about 0.1. These four distributions are used for modelling hydrological processes or more
generally in natural systems [53]. Specifically, the GAM distribution applies to a wide range
of physical processes and is related to other distributions: EXP, Pascal, Erlang, Poisson,
and chisquare. It is commonly used in meteorological processes i.e., to represent pollutant
concentrations and precipitation quantities [54]. Moreover, it is used to measure the time
between the occurrence of events when the event process is not completely random [55].
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Similarly, in our case, fog events in northwest of Iberian Peninsula, especially in summer,
are impulsed by the displacement of the Azores anticyclone. GAM distribution seems to
benefit from the L-moments estimation method obtaining lower KS-distances than in case of
being estimating by the maximum likelihood method, see Tables 5 and 6. However, from a
qualitatively point of view, GAM probability density function resembles more of a straight
line as we move away towards +oc in Figures 5 and 6. This is not the observed behavior
of the data distribution. It is expected that, as soon as the number of samples increases,
GAM will fit worse to the data distribution. Once again, heavy-tailed distributions are
the ones that best fit to these meteorological situations in Mondofiedo, except for GAM
which is a light-tailed and also obtains good results. The light-tailed distributions such as
EXP, NRM and EV obtain the poorest fitting to the data. See for example Spring 2018 with
a KS-distance of 0.517 in EV distribution, and how together with the LOG, EXP and the
NRM they do not adjust correctly to the extreme values of two events of more than 70 h
located in the tail of the data distribution.

[ Histogram EXP == = ==« NRM GEV Bl GAM LG
ECDF — = e LOG @=——@ GPa &= - =9 LN EV

2018

15 25 . 35
Event duration (h) 3

pdf
=
b
Winter

107*

min KS-test: LN

pdf

—

j=}
5

E\féﬂt durgpion (h 0 3

Spring

pdf

—

3
Summer

1074F

0 3
L2 i < 7;" min KS-test: LN
1

r

0 Evemg([fumr,ionl(%) E|

60 70 80

50
1
1
e
/ min KS-test: LN

E\?em dum(]'lgm (h) =

pdf
—
9

Autumn

/-Y

Event duration (h) Event duration (h)

Figure 6. Probability density functions of fog events over time for L-moments approach fixing the
threshold to 2000 m. The CDF is located in the insets. Each row corresponds to a season and each
column to a year.
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Table 6. KS-test results for the L-moment estimation, and for the 2000 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.294 0.342 0.340 0.310 0.289 0.282 0.343 0.172
LOG 0.318 0.355 0.327 0.336 0.313 0.320 0.325 0.272
NRM 0.302 0.340 0.313 0.325 0.297 0.307 0.308 0.260
GPa 0.116 0.121 0.169 0.107 0.115 0.119 0.148 0.064
GEV 0.148 0.130 0.161 0.137 0.141 0.152 0.160 0.091
LN 0.097 0.065 0.380 0.075 0.130 0.171 0.248 0.059
GAM 0.144 0.240 0.080 0.223 0.107 0.110 0.215 0.091
EV 0.496 0.517 0.506 0.510 0.498 0.488 0.509 0.449
LLG 0.151 0.131 0.165 0.139 0.145 0.156 0.163 0.097

Observing the obtained results in Table 5, there exist some distributions whose KS-
distances hardly vary among seasons, such as, GPa or GEV. This is due to the fact that these
distributions explain the low visibility event durations equally well among seasons, even
though their durations may change between seasons. On the contrary, those distributions
whose KS-distances vary among seasons, such as GAM, cannot adapt to the new conditions
by simply changing their parameters.

It is possible to notice some differences between the Maximum Likelihood and L-
moments methods in the results previously shown. Note that we obtain slightly better
KS-distances in the fittest distributions estimated with the Maximum Likelihood method
than with L-moments method. This is the case of GEV, which obtains the best KS results
through Maximum Likelihood, below 0.08, see Table 5. However, LN, which best fits the
data distribution, obtains KS-distances around 0.1 with a high variance among seasons and
years, as can be seen in Table 6. It may seem in some instances that the fitting of the GAM
distribution is marginally better than that of the LN in some cases. However, it should
be noted that, true to its light-tailed nature, the GAM distribution crosses over all of the
heavy-tailed distributions (and specifically that of the LN) at large values of fog duration.
Therefore, even though GAM may seem a good fit, it fails at large values of fog duration.
This is proof that the Maximum Likelihood method fits the main body of the distribution
(thus, failing at large values of fog duration) while the L-moment method fits the tails of
the present data (failing at low values of fog duration).

As a final note on this point, an accurate statistical characterization of fogs events
with extreme-valued distributions can be used to simulate their occurrence at Mondofiedo,
within traffic simulators. This way the real effects of deep fog events on traffic causing jams
and important circulation problems can be studied.

3.1.1. Discussion: Physical Mechanism

The data used in this study show that, although the number of low visibility events is
quite similar in all seasons (see Table 4) they last longer in the warm season. The explanation
for this pattern can be found in the high pressure system most influential for the Atlantic
and Europe: the Azores Anticyclone. In summer, this pressure system strengthens and
reaches its most northerly position [56], bringing northerly winds to the Iberian Peninsula.
As have been discussed by some authors [57,58] the main ingredients needed for the
formation of the low visibility events that affect the “Alto de O Fiouco” area are northward
winds that push warm and humid air masses coming from the sea. Since in this region there
is a large mountain barrier of around 600-700 m pretty close to both, the Atlantic Ocean
and the Cantabrian Sea, these parcels of air are lifted adiabatically becoming saturated at
relatively low levels. In addition, the presence of the typical subsidence inversion caused
by the Azores Anticyclone forces the formation of low level layers of clouds (mainly stratus
and stratocumulus) which can affect the A-8 motor-road since its elevation at this specific
location is quite similar to the level at which these clouds are formed (the so-called lifting
condensation level). Furthermore, it should be noted that because this meteorological
phenomena is caused by a maritime air mass the number of hygroscopic particles (mainly
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sea salt) can be considerably higher than normal, which can play a major role in the
formation of dense fog events [58].

3.1.2. Statistical Study with Different Thresholds for Defining Low-Visibility Events

The results on statistical characterization of low-visibility fog episodes shown above
consider as low-visibility events those under the limit of the visibilimeter (<2000 m, light
low-visibility). However, note that this threshold to consider a fog event as low-visibility
can be set by the practitioner at alternative values. For example, we can choose different
thresholds related to traffic protocols, such as 600 m (moderate low-visibility), 300 m
(severe low-visibility), and 50 m (extremely severe low-visibility), all of them with an
important effect in secure driving conditions. In fact, visibility below 50 m (extremely
severe) very probably leads to motor-road closure. Tables 7 and 8 show the statistics for the
low-visibility events at A8 motor-road in the years of the study (2018 and 2019), considering
low-visibility those events under 600 m and 300 m, respectively. As can be seen, the number
of low-visibility events with the new thresholds is similar, between them and also to the
case of the threshold set at 2000 m (light low-visibility events). The low visibility event
durations are also quite similar for these three thresholds and their proportions among the
seasons remain constant. The low visibility events in the warmer seasons continue to be
the longest lasting, see Tables 4 and 7-9. This is due to the fact that fog events are usually
very intense at Mondofiedo in this season. Table 9 shows the case of the threshold at 50 m.
In this extreme severe case, the number of events is very reduced with respect to other
thresholds. This indicates that extreme severe low-visibility events are less frequent than
moderate and severe events, mainly in winter and autumn, but with a significant incidence
in spring and summer.

Table 7. Low-visibility events statistics at Mondofiedo station for the years 2018 and 2019, and for
the 600 m threshold.

Fog Events Average Duration (Minutes) # of Fog Events
2018 2019 2018 2019
Winter 102.17 116.72 278 180
Spring 187.32 135.11 237 224
Summer 274.77 283.10 240 220
Autumn 126.67 61.99 226 260

Table 8. Low-visibility events statistics at Mondofiedo station for the years 2018 and 2019, for
the 300 m threshold.

Fog Events Average Duration (Minutes) # of Fog Events
2018 2019 2018 2019
Winter 97.41 98.90 256 186
Spring 194.56 124.62 235 222
Summer 249.76 293.95 254 204
Autumn 138.47 52.63 185 239

Table 9. Low-visibility events statistics at Mondofiedo station for the years 2018 and 2019, and for
the 50 m threshold.

Fog Events Average Duration (Minutes) # of Fog Events
2018 2019 2018 2019
Winter 55.43 63.12 34 15
Spring 107.90 60.97 186 133
Summer 156.10 151.48 263 228
Autumn 119.39 16.25 97 3

We repeat here the analysis of the probability distributions for fog events duration,
considering low-visibility events defined by setting the thresholds to 600, 300 and 50 m.
We consider ten distributions including light and heavy tail distributions, using both the
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Maximum Likelihood and L-moments methods. In the case of Maximum Likelihood
estimation, Tables 10-12 show the obtained KS-distance for each distribution, divided
by seasons and years. We clearly distinguish two different statistic behaviors in the
results obtained. Low-visibility events defined by thresholds under 600 and 300 m have
a very similar behavior than that defined by a threshold at 2000 m, as can be seen in
Tables 10 and 11, respectively. Figure 7 shows the distributions estimated by the Maximum
Likelihood method for all seasons in 2018 and 2019 at the 300 m threshold which helps
us along the discussion. GEV, GPa and STA are still the distributions which best fit the
data, with KS-distances below 0.1 for both the 600 and 300 m thresholds. Their good
approximation to the data distribution is clearly presented in Figure 7 for the 300 m
threshold. The non-negligible probability of the extreme events is responsible of the good
results reported by these heavy-tail distribution, similar to those obtained with a 2000 m
threshold, see Table 5 and Figure 5. GEV obtains the best KS-distances in most of seasons
of the two years analyzed, closely followed by STA. Both distributions report KS-distances
around 0.08 in most seasons. Even for autumn 2019 at the 300 m threshold which is a
season with no extreme fog events, see Table 11 and Figure 7. However, STA fails to fit data
distribution in both summers, where most of the extremes take place. LLG and GPa obtain
larger KS-distances than the previous one between 0.09 and 0.11, but still with good results.
The results of the rest of the evaluated distributions are far from these ones discussed
previously, especially that provided by the light-tail distributions EXP, LOG, NRM and
EV, which are characterized by a quick decrease in probability. In Figure 7, we see that
EXP and LOG distributions are straight lines with different slopes, mainly far from the
origin, and EV and NRM have concave shape, which does not fit the data distribution
trend. The KS-distances obtained by these distributions are above 0.3 for both thresholds.
In the case of low-visibility events defined by the threshold of 50 m, the behavior changes
slightly with respect to the case of the threshold situated at 2000 m, see Table 12. Again,
the best KS-distances are obtained by the heavy-tail distributions GEV, and STA, but their
KS distances are now around 0.1 with more variations among the seasons. The light-tail
distributions still obtain the worst KS-distances, but they decrease respect to the previous
threshold. We cannot estimate distributions of autumn 2019 for a threshold of 50 m since
the number of low-visibility events in this season is only 3.

Table 10. KS-distances results for the Maximum likelihood, for the 600 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.279 0.383 0.381 0.334 0.251 0.262 0.388 0.195
LOG 0.313 0.345 0.327 0.338 0.293 0.298 0.333 0.269
NRM 0.310 0.355 0.318 0.355 0.313 0.295 0.326 0.271
GPa 0.117 0.113 0.088 0.120 0.097 0.089 0.088 0.123
GEV 0.073 0.072 0.057 0.091 0.105 0.073 0.081 0.083
LN 0.101 0.111 0.110 0.088 0.111 0.074 0.097 0.106
GAM 0.171 0.202 0.187 0.190 0.137 0.147 0.193 0.153
EV 0.401 0.465 0.415 0.476 0.448 0.400 0417 0.374
LLG 0.088 0.093 0.085 0.089 0.106 0.071 0.083 0.093
STA 0.071 0.068 0.436 0.086 0.106 0.072 0.495 0.087

Table 11. KS-distances results for the Maximum likelihood, for the 300 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.279 0.395 0.386 0.333 0.205 0.287 0.379 0.198
LOG 0.317 0.351 0.327 0.339 0.276 0.307 0.329 0.267
NRM 0.313 0.357 0.312 0.352 0.310 0.297 0.320 0.267
GPa 0.125 0.118 0.103 0.110 0.092 0.107 0.090 0.138
GEV 0.089 0.080 0.081 0.067 0.073 0.076 0.066 0.105
LN 0.115 0.124 0.118 0.107 0.070 0.098 0.100 0.104
GAM 0.158 0.200 0.186 0.196 0.139 0.166 0.175 0.159
EV 0.403 0.457 0.422 0.469 0.450 0.389 0.411 0.366
LLG 0.104 0.100 0.100 0.092 0.072 0.087 0.088 0.096

STA 0.083 0.078 0.311 0.070 0.078 0.072 0.181 0.101
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Figure 7. Probability density functions of fog events over time for the Maximum Likelihood approach

fixing the threshold to 300 m. The CDF is located in the insets. Each row corresponds to a season and

each column to a year.

Table 12.

KS-distances results for the Maximum likelihood approach, for the 50 m threshold.

Estimations of autumn 2019 are not possible since there are only three low-visibility events with a

threshold under 50 m in that period.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.232 0.322 0.347 0.305 0.355 0.243 0.332 ——
LOG 0.258 0.329 0.326 0.308 0.305 0.282 0.318 ——
NRM 0.299 0.342 0.317 0.303 0.358 0.262 0.301 ——
GPa 0.129 0135 0.117 0.102 0.243 0.144 0.117 ——
GEV 0.131 0.124 0.095 0.067 0.192 0.132 0.110 ——
LN 0.145 0.108 0.117 0.105 0.256 0.123 0.117 ——
GAM 0.193 0.177 0.177 0.190 0.316 0.176 0.172 ——
EV 0.409 0.462 0.420 0.390 0.356 0.342 0.388 ——
LLG 0.138 0.106 0.102 0.088 0.227 0.111 0.106 ——
STA 0.131 0.118 0.090 0.063 0.181 0.125 0.101 ——
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Tables 1315 present the KS-distances obtained in cases when the L-moments method
is used for estimating the distributions, with thresholds at 600, 300 and 50 m, respectively.
Figure 8 shows the distributions estimated by the L-moments method for all seasons in
both 2018 and 2019 at the 300 m threshold. The distributions that best fits to the fog events
for the 600 and 300 m thresholds is still the LN, and GPa but with higher values respect
to the 2000 m threshold, around 0.1, and 0.13, respectively, see Tables 13 and 14. GAM
obtains good KS-distances at the 300 m threshold but not in 600 m and varies along the
seasons. Furthermore, GAM struggles to fit data in spring and autumn 2018 due to the
used L-moments implementation code. The reason is that the duration of low-visibility
events in summer is higher than in other seasons, and GAM did fit such wide range of
durations with a good accuracy, since they are straight lines far from the origin in the
y-log-scaled Figure 8. GEV also fits were to the data distribution even better than fixing
a 2000 m threshold, around 0.13. The light-tail distributions do not fit the data; although,
they obtain better KS-distance than in the case of the 2000 m threshold. EXP, LOG, NRM or
EV do not fit the data distribution well as their tail decreases quickly, see Figure 8. Focusing
on the results obtained by fixing a threshold at 50 m, Table 12 shows similar results to
the previous thresholds for the L-moment estimation. Again, the distributions with best
KS-distances are GAM, LN and GPA, with values above 0.11, higher than in previous
thresholds. However, the KS-distances obtained by EXP, EV, NRM are lower than the
obtained by fixing 600 and 300 m thresholds. Note that distribution estimations for autumn
2019 do not appear in Table 12, since only three extreme low-visibility events occurred, not
enough for the parameter estimation.

Table 13. KS-test results for the L-moment estimation, for the 600 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.279 0.383 0.381 0.334 0.251 0.262 0.388 0.195
LOG 0.329 0.372 0.349 0.356 0.299 0.309 0.353 0.288
NRM 0.319 0.358 0.334 0.343 0.291 0.298 0.336 0.273
GPa 0.124 0.166 0.184 0.129 0.122 0.128 0.182 0.087
GEV 0.129 0.163 0.184 0.137 0.125 0.129 0.174 0.122
LN 0.094 0.099 0.316 0.069 0.161 0.162 0.279 0.082
GAM 0.241 —— 0.179 —— 0.261 0.192 0.214 0.092
GEV 0.504 0.529 0.518 0.522 0.495 0.495 0.523 0.471
LLG 0.132 0.164 0.186 0.138 0.129 0.133 0.176 0.127

Table 14. KS-test results for the L-moment estimation, for the 300 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.279 0.395 0.386 0.333 0.205 0.287 0.379 0.198
LOG 0.334 0.372 0.351 0.350 0.290 0.326 0.333 0.265
NRM 0.323 0.360 0.337 0.341 0.277 0.315 0.318 0.253
GPa 0.133 0.174 0.197 0.110 0.077 0.148 0.189 0.106
GEV 0.135 0.170 0.193 0.125 0.098 0.144 0.176 0.123
LN 0.104 0.108 0.411 0.052 0.057 0.193 0.341 0.093
GAM 0.121 - 0.106 - 0.199 0.104 0.211 0.146
EV 0.507 0.533 0.518 0.522 0.481 0.502 0.521 0.472
LLG 0.138 0.171 0.195 0.125 0.102 0.147 0.178 0.130

Table 15. KS-test results for the L-moment estimation, for the 50 m threshold.

2018 2019
Winter Spring Summer Autumn Winter Spring Summer Autumn
EXP 0.232 0.322 0.347 0.305 0.355 0.243 0.332 ——
LOG 0.267 0.359 0.337 0.327 0.398 0.299 0.328 ——
NRM 0.250 0.349 0.322 0.313 0.381 0.285 0.316 ——
GPa 0.113 0.153 0.177 0.120 0.242 0.156 0.183 ——
GEV 0.144 0.151 0.166 0.134 0.274 0.146 0.169 ——
LN 0.114 0.121 0.238 0.094 0.334 0.261 0.320 —=
GAM 0.088 0.161 0.125 0.175 0.176 0.173 0.140 ——
EV 0477 0.520 0.516 0.502 0.472 0.484 0.511 ——

LLG 0.160 0.153 0.169 0.142 0.304 0.154 0.172 ——
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Figure 8. Probability density functions of fog events over time for the L-moments approach establish-
ing the threshold at 300 m. The CDF is located in the insets. Each row corresponds to a season and

each column to a year.

3.2. Prediction of Fog Events at A-8 with ELMs

The results obtained with an ELM in the short-term prediction of low-visibility events
due to fog at the A-8 motor-road are presented in this section. For ensuring the inde-
pendence of the partition data in training and test sets, as well as the performance of the
regressors, a K-fold cross-validation procedure was carried out [10,59]. The folding was set
to K = 10, and each set consists of an 80% to train and 20% to test. Using the full dataset
spanning from 1 January 2018 to 30 November 2019, data are randomly selected, breaking
the sequence in the data, in order to bring heterogeneity to the values of the samples.

The ELM model considered in this paper has the following characteristics: neurons in
the hidden layer are designed with sigmoid activation function. The optimal number of
neurons is chosen from a large pool (50-150, in an increment of 1), which passes through
the hidden layer, one by one, during the validation phase. In addition to the atmospheric
features considered, we will also use the 4 time instants prior to the target we want to
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predict (t), as predictors, i.e., we will use the target valuesatt —1,¢ —2,t —3and t — 4. We
should note that in all experiments the input-output data pair, {(x;, y;)}}_, for both ELMs
has a time resolution of half an hour (where n stands for the total number of half-hour
intervals in the database); hence, the forecasting time-horizon was set to 30 min ahead
estimation (instant ¢) of the visibility. Finally, the experiments will consist of launching
10 executions of each algorithm for each proposed scenario, and average the results of them.
In order to better analyze the ELM performance, a wrapper feature selection process
was carried out. This procedure consists of launching as many ELMs as combinations of
characteristics we have in a reduced validation set, to find the set of predictors that provides
the least error at the output (best set of features). Note that we have 10 features (only the
atmospheric features are considered in this process) for this problem (see Table 1), which
means that we have to launch a total of 1024 (21°) ELM models (prediction problems) to
obtain the best set of characteristics (inputs). Note that we need an extremely fast-training
algorithm such as ELM to carry out this feature selection analysis, since otherwise the
computation time required would be extremely high. The results obtained in the feature
selection process provided two sets of features as best results: the first one included a
total of nine characteristics: Accumulated precipitation, Salinity, Relative humidity, Air
temperature, Floor temperature, Dew temperature, Global solar radiation, Wind speed and
Atmospheric pressure, with a Root Mean Square error (RMSE) of 378.54 m in the validation
set. A second best set with a total of three characteristics was also obtained: Accumulated
precipitation, Relative humidity and Global solar radiation; with a RMSE of 381.36 m in
the validation set. The rest of features combination produced worse results, so we have
kept these two best sets for carrying out the experiments. In order to compare the results,
we used the Persistence Prediction Operator (PPO,), a well known operator described by
the following equation:
x(t+1) = x(t). (6)

The generalized Persistence prediction operator (PPOy,) uses the M last time steps to
infer the prediction and can be also defined as:

M
x(t—i—l):%Zx(t—i). @)
i=1

In our experiments, we fix M = 4 referenced as (PPOy).

Prediction Results

Table 16 shows the average and standard deviation results (10 runs of the algorithms)
obtained by the ELM, when we use 9 or 3 characteristics as predictors (ELM-9, ELM-3),
and the obtained by the PPO, which uses the last (PPO;) and the four last time steps (PPOy)
for comparison. These results to evaluate the ELM performance are given in terms of the
Pearson’s correlation coefficient, #2, the RMSE and the computation times, both training
(Train-t) and test (Test-t). It can be observed that the ELM approach is able to obtain the
best results, with an RMSE of 393.56 m and an 80% of 2 when 3 features are used as
predictors. If we compare these results with the case of ELM-9, we can observe a slight
difference in terms of RMSE, with a value of 394.82 m, but a similar value for r2. Therefore,
the ELM model works slightly better with fewer features, achieving good results using less
computation time, in particular taking 16.06 and 0.03 s in Train-f and Test-t, respectively
in ELM-3, against the 18.99 and 0.05 s for Train-t and Test-f in the ELM-9 case. Based on
these results we can see that the selection of features has an effect on the prediction process
by using the ELM approach. The results obtained by the PPO are considerably worse.
If we analyze the PPO for both variants, PPO; and PPO,4, we can see the poor performance
in terms of RMSE and the worse one in 72. In this case, the best results are obtained for
PPO; with an RMSE of 418.09 m and 0.77 in 2, below the 0.80 of the ELM. The difference
with respect to the case of PPOy is larger than in the ELM at least in terms of RMSE which
obtains 477.65 m. In terms of r2, PPO, obtains 0.72, similar to the PPO;. We deduce that,
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in case of PPO, it is better to use the last time step than four time steps for obtaining the
prediction. This is because the visibility time series is quite volatile, and using PPO4 (7)
strongly smooths the time series. Note that the computation time required to train the ELM
is acceptable. PPO reaches real time as the predicted series is simply the mean given by
Equation (7).

Figure 9 shows a temporal representation of the predicted visibility variable (in red)
versus the measured values of this variable (in blue), by the ELM with nine features
and three features. It is possible to see that in both cases the performance of the ELM is
excellent in this prediction problem, showing good behaviour even in the deepest fog
events. Moreover, these good results are obtained regardless of the set of samples we test.
As can be seen, in the prediction graphs with nine and three features as predictors, different
test samples are used to quantify the performance of the model, which is very interesting
to corroborate the good performance of this type of learning machine.

Table 16. Prediction error results by the ELM and PPO approaches, and computational running time
(Train-t and Test-t) by ELM.

ELM-9 ELM-3 PPO; PPO,4
Avg Std Avg Std Avg Std Avg Std
72 0.80 0.01 0.80 0.01 0.77 — 0.72 —
RMSE (meters) 394.82 9.50 393.56 5.28 418.09 — 477.65 —
Train-t (seconds) 18.99 1.00 16.06 0.65 - - - -
Test-t (seconds) 0.05 0.01 0.03 0.004 - - - -
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Figure 9. Time-series of measured (blue) and predicted (red) visibility values by the ELM with 9 and

3 features (input variables).

4. Conclusions

In this paper we carried out a detailed study on low-visibility events due to fog at the
A-8 motor-road, Galicia, Spain. In this zone there are frequent episodes of low-visibility
events due to orographic fog from the Cantabrian sea, which deeply affect the traffic
in the road. First, we statistically characterized the fog events” duration with different
distributions, including light and heavy-tail distributions, in a seasonal analysis. Two
different approaches were considered to estimate the parameters associated with the
distributions, the Maximum Likelihood criterion and the L-moments approach. In both
cases we showed that the heavy-tail distributions (extreme distributions) are more suitable
to describe the duration of low-visibility events at the A-8 motor-road, independently of
the season considered. We can state that three of the heavy-tailed distributions are the best
fit in most cases. These are the GEV, the GPa and LN. These three distributions present the
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smallest KS-distances values in most cases, especially in those where this phenomenon of
dense and long-lasting fogs takes place: in summer. LLG also obtains consistently very
good results closed to the previous ones among all seasons of the studied years for both
estimation methods. Other distributions such as GAM or STA offer good results in some
cases, but this is not the majority. In some cases, GAM reports very good KS-distances
when is estimated by the L-moment method, not as good by the maximum likelihood
method, even as a light-tailed distribution. We carried out an analysis by considering
different visibility thresholds to define the low-visibility events, showing that the results
are very similar in light, moderate and severe low-visibility events situations (thresholds
of 2000 m, 600 m and 300 m), whereas for extreme severe low-visibility events (less than
50 m), their statistical characterization is different.

Second, we tackled the prediction of the visibility in the zone, by using an ELM
regressor. Atmospheric variables collected in-situ such as air and floor temperature, wind
speed and direction, pressure, etc. were used as inputs to carry out the prediction. We
showed an accurate performance of the ELM with average errors under 400 m in all
cases, improving by far the performance of the persistence prediction operator in the
problem. In all the experiments carried out, the variance of the prediction results as
very low, which indicates that the prediction is accurate, i.e., the ELM obtains a good
prediction, even for different low-visibility ranges (light, moderate, severe and extreme
severe low-visibility events).

The methods and algorithms presented in this paper have a direct application in
dealing with the issues caused by low-visibility events from orographic fog on the A-8
motor-road. The statistical description of the events allows an accurate modeling of low-
visibility event’s duration in traffic models simulations. This can be complimented with
and accurate prediction of low-visibility events, in order to implement actions to minimize
their impact in the traffic of the zone.

Note that some limitations are found in this work, mainly in the capacity of the
proposed methods to characterize and predict extreme low-visibility events. Future analysis
of low-visibility events in the zone can include numerical weather prediction approaches
combined with ML algorithms, to help deal with these cases. Numerical methods such as
meso-scale models can improve the accuracy of the prediction models, by including new
information as input variables. In turn, we can complete real data with numerical weather
models simulations, in order to produce larger datasets to improve the accuracy of the
statistical models for low-visibility events’ description.
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