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Abstract: Raman microspectroscopy and thermo-optical-transmittance (TOT) method were used to
study airborne ambient soot collected at the suburban air monitoring station in southern Poland
during the residential heating (January-February) and non-heating (June–July) seasons of 2017.
Carbonaceous material constituted on average 47.2 wt.% of PM2.5 during the heating season and
26.9 wt.% in the non-heating season. Average concentrations of OC (37.5 ± 11.0 µg/m3) and EC
(5.3 ± 1.1 µg/m3) during the heating season were significantly higher than those in the non-heating
season (OC = 2.65 ± 0.78 µg/m3, and EC = 0.39 ± 0.18 µg/m3). OC was a chief contributor to the
TC mass concentration regardless of the season. All Raman parameters indicated coal combustion
and biomass burning were the predominant sources of soot in the heating season. Diesel soot, which
is structurally less ordered than soot from other sources, was dominant during the non-heating
season. The D1 and G bands area ratio (D1A/GA) was the most sensitive Raman parameter that
discriminated between various soot sources, with D1A/GA > 1 for diesel soot, and less than 1 for soot
from coal and wood burning. Due to high daily variability of both TOT and Raman spectroscopy data,
single-day measurements can be inconclusive regarding the soot source apportionment. Long-time
measurement campaigns are recommended.

Keywords: ambient soot; Raman spectroscopy; thermo-optical-transmittance analysis

1. Introduction

Carbonaceous matter (CM) is a common and important component of atmospheric
aerosols, and accounts for 20–50% of the total aerosol mass [1]. CM consists of primary
carbon-rich particles and of both primary and secondary organic compounds [2]. The pri-
mary carbon-rich particles are interchangeably called soot, black carbon (BC), or elemental
carbon (EC). However, the term elemental carbon refers to thermally-refractory carbon and
should be used only in conjunction with chemical or thermo-optical analyses [3–5]. Black
carbon is a descriptive term of light-absorbing CM in atmospheric aerosol [6] that should
be used only in reference to optical properties of CM. BC is the strongest light absorber
per unit mass of all atmospheric aerosol species [7]. Due to the strong absorption of light
combined with its omnipresence in the atmosphere, ambient BC is an important climate
forcer [7]. BC should not be confused with carbon black, which is an industrial carbon
material widely used in numerous applications [8].

Soot is the solid, carbon-rich material originating from incomplete combustion of
fossil fuels and biomass burning. Soot is composed of fractal-like aggregates of spherical
particles, usually smaller than 100 nm, built of concentrically wrapped, graphene-like
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layers of carbon [3,5,9]. Upon atmospheric aging, the fractal-like aggregates of soot are
restructured into more compact aggregates due to cloud processing [10]. Individual soot
spherules within soot aggregates comprise turbostratic (wavy) graphitic layers with basal
(d001) spacings usually larger than 0.334 nm, typical of ordered graphite [11]. Nanospheres
of soot can be a major constituent of BC [3]. Hydrocarbons may occur in atmospheric soot
particles in the form of small-sized aromatic moieties [12].

Some authors extend the term soot to a mixture of highly ordered (graphitic), dis-
ordered, and amorphous carbon with the addition of graphenes, fullerenes, and various
hydrocarbons [13]. To avoid further confusion, the broad meaning of the term soot is used
for the carbon material in PM2.5 that was collected and analyzed in this study, which is
composed of soot particles and organic matter.

There are four major sources of soot emissions: transportation, industry, residential
cooking and heating, and open burning. The latter is by far the largest source of soot at
a global scale [3]. However, in developed countries about 70% of soot emission is due to
diesel fuel combustion; whereas, in Africa and Asia coal and biomass burning accounts for
60% to 80% of soot emission [3]. In this respect, Poland, unlike most European countries,
is exceptional because coal combustion for domestic purposes is a major soot source,
particularly in winter [14].

The short- and long-term detrimental health effects of inhaled soot particles, including
all-cause, cardiovascular, and cardiopulmonary mortality are well documented, e.g., [15,16]
and references therein. Moreover, soot particles may carry toxic substances adhered to
their large sorption surface area [15].

Although the most detailed structural characterization of soot is obtained using
high resolution transmission electron microscopy [12,17–21], Raman spectroscopy has
increasingly been used to characterize soot of different origins, e.g., [13,22–24]. Raman
spectroscopy has successfully been applied to study atmospheric CM [25–29]. Comparison
of the Raman spectra of ambient CM with reference carbonaceous materials was a common
approach in those studies.

One of the challenges in air quality study is to distinguish between different source
categories of airborne soot and related CM. Raman spectroscopy appears to be well suited
for this purpose. For instance, Catelani et al. [29] were able to distinguish between urban
soot from soot collected at a rural-suburban site based on the differences in the full-width
at half maximum (FWHM) and intensity ratio of the Raman bands.

Based on the structural characterization of anthropogenic (diesel engine soot, soot
from coal and wood combustion) and atmospheric (PM2.5-related soot) samples using
Raman spectroscopy, we attempted to identify the season-depending predominant soot
source category in an urbanized region of Silesia, southern Poland, which is known to
have one of the greatest concentrations of air pollution in Europe. The thermo-optical-
transmittance method was used to check its consistency with Raman spectroscopy. The
relationship between the quantitative determination of individual carbon fractions (organic
and elemental) and the ID/IG parameter suggests the usefulness of Raman spectroscopy in
determining the quantitative content of soot.

2. Sampling Site

Ambient soot associated with PM2.5 was sampled at the suburban air monitoring sta-
tion of the Institute of Meteorology and Water Management—National Research Institute,
located at the outskirts of Racibórz, approximately 2.5 km from the city center (50.06◦ N,
18.19◦ E), in the south-western part of the Silesia province (voivodship), southern Poland
(Figure 1). Racibórz is populated by about 55,000 inhabitants and is situated in the proxim-
ity of the large urban and industrial centers of Ostrava in the Czech Republic (ca. 30 km to
the South), Upper Silesian Conurbation (approx. 70 km to the NE), and Rybnik industrial
area (approx. 30 km to the E). Racibórz is an industrial city famous for its carbon electrode
manufacturing. The sampling site is surrounded by arable fields and residential areas.
Approximately 100 m to the east there is a high-traffic road.
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map of Poland).

The mean annual concentrations of airborne PM2.5 range from 20 to 35 µg/m3 within
about 90% of the Racibórz city limits; whereas, in the remaining part of the city, these
concentrations are higher, up to 45 µg/m3 [30]. Diurnal concentrations of PM10 and PM2.5
in the winter heating season can be as high as 184 and 161 µg/m3, respectively, due to
coal combustion for domestic purposes [30]. Little difference exists in poor air quality
in winter between the Racibórz city center and the air monitoring station at the city’s
outskirts, as suggested by the number of days, 54 and 43, respectively, with exceedances
of the recommended value for the average daily PM2.5 concentration (25 µg/m3) [31].
The average PM2.5 concentrations in the heating season (late October–late April) and
non-heating season of 2019 measured at suburban stations were 35 (5–136) µg/m3 and
17 (4–65) µg/m3, respectively [31]. The mean seasonal concentrations of PM2.5 recorded at
the station located in the city center were comparable and amounted to 36 (6–134) µg/m3

(heating season) and 16 (6–43) µg/m3 (non-heating season).
There is a distinct seasonality of air pollution in Silesia caused by large-scale coal

burning in winter [32]. Soot is the principal constituent of PM in winter, with maximum
concentrations exceeding 90% vol.; whereas, in summer, the soot content is in the 5–10%
vol. range [14].

3. Materials and Methods

3.1. Sample Description

Four reference soot samples were collected from an exhaust pipe of a diesel-fueled
car (sample E), two different wood-burning fireplaces (samples W1 and W2), and a coal-
burning home furnace (sample C). These are typical soot sources in the Silesia province
and soot emitted from these sources is expected to predominate in ambient air. Ambient
soot together with PM2.5 were collected on quartz filters (Whatman QMA) using a Low
Volume Sampler (LVS) with the volumetric flow rate set to 2.3 m3/h. Eight samples were
collected during the heating season (January and February) and another 8 samples during
the non-heating season (June–July) of 2017. The adopted division into these two specific
periods, commonly used in the literature, was dictated primarily by differences in air
temperatures and the resulting difference in heat demand and its consumption [31,32].
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3.2. Raman Spectroscopy

Raman spectra were collected in the 100–4500 cm−1 range using a WITec alpha 300R
confocal Raman microspectrometer equipped with an air-cooled solid-state laser and a
CCD camera. The best quality spectra were obtained using the 488 nm excitation line. The
excitation laser radiation was introduced into the microscope through a single-mode optical
fiber with a diameter of 3.5 µm. Microscope objectives LD EC Epiplan-Neofluan DIC—
100/0.75NA; LD EC Epiplan-Neofluan DIC—50/0.55NA, and EC Epiplan—1/0.25NA
were used. Raman scattered light was focused onto a single-mode optical fiber (30 µm
in diameter) and onto a monochromator with a 600 mm−1 diffraction grating. Raman
spectra were accumulated by 10 scans with a single spectrum acquisition time of 10 s and
a resolution of 3 cm−1. All Raman spectra were recorded during a single session under
the same operating conditions because the laser beam power on the sample could not
be measured.

Baseline correction and cosmic ray removal were performed using WITec Project
software (version 4,1,12). Peak fitting was performed using the IFORS (Iterative Fitting of
Raman Spectra) software [33]. Only the first order spectra in the range of 400 to 2200 cm−1

were used for the fitting procedure.
The automatic modeling of the background in IFORS is based on the fifth-order poly-

nomial and the pseudo-Voigt (PV) functions. The sum of the functions and the polynomial
is adjusted to the spectrum by randomly changing a single parameter (center, height,
HWHM). When the parameters are optimized, the model adds more PV functions until
the maximum number of PV functions is reached. Based on the sum of optimized PV
functions, an accurate, corrected, and smoothed spectrum baseline is obtained. In subse-
quent mathematical processes, the scaled total area of the D (DSTA) and G (GSTA) bands
is calculated [33]. IFORS is a software package dedicated to the study of carbonaceous
substances and has been successfully used in earlier studies [34,35]. Statistical analyses
were performed using the Stat Soft software package, Statistica 12.0.

3.3. Thermal-Optical Transmittance (TOT) Analysis

Organic carbon (OC) and elemental carbon (EC) in PM2.5 were determined using a
Sunset Laboratory Inc. thermal-optical analyzer (Model 4L Main Oven Assembly) with
flame ionization detector (FID). In TOT analysis, the carbonaceous component of PM
collected on quartz-fiber filters evolves thermally during combustion at stepwise increases
in temperature in accordance with the EUSAAR-2 temperature protocol (Table S1). The
protocol was recommended as a standard method for European monitoring stations under
the European Supersites for Atmospheric Aerosol Research (EUSAAR) project [4]. The
procedure applied in this study is described in detail in [31]. The 1.0 cm2 section of each
quartz filter with deposited PM2.5 was gradually heated in the inert atmosphere of He
to release four temperature-resolved organic carbon fractions (OC1-4). Then, the filter
sections were heated in an oxidizing helium-oxygen mixture to release four elemental
carbon fractions (EC1-4). The carbon-bearing compounds released from the filter during
the stepwise heating were converted to CO2 in an oxidizer oven in the presence of MnO2
catalyst. The CO2 was then reduced to methane in the methanator and its amount was
measured by FID. During the inert mode of the analysis (heating in He) some organic
compounds easily pyrolize into a refractory material called pyrolitic carbon (PC), which
resembles EC [4]. During TOT analysis, the pyrolytic conversion of OC into PC is contin-
uously monitored by measuring the transmission of a laser beam through the filter and
the results are automatically corrected. After the correction for PC, the OC is obtained as:
OC = OC1 + OC2 + OC3 + OC4 + PC; whereas EC = EC1 + EC2 + EC3 + EC4 − PC [31].
The total carbon (TC) content is the sum of OC and EC.

The measurement performance was controlled by regular split point determination
for the pyrolytic carbon, in addition to systematic analysis of blank filters and calibration
of the apparatus—periodic analysis of a calibration (control) sample of glucose solution
of known concentration. In addition, the auto-calibration of the analyzer was conducted
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through the inclusion of a fixed volume loop used to inject an external standard (Air
Liquide) at the end of each analysis. The total uncertainties in EC and OC measurements
were of the order of 5% (at a 95% confidence interval). The limits of detection (LOD) were
0.17 and 0.80 µg/cm2, respectively, for EC and OC. Moreover, certified reference materials
(CRMs; RM 8785 and RM 8786; National Institute of Standards and Technology (NIST))
were periodically analyzed—recovery of 90–102% and 98–124% was obtained, respectively,
for OC and EC.

4. Results and Discussion

4.1. Mass Concentrations of PM2.5, OC and EC

The mass concentration of PM2.5 collected during the heating season ranged from
65.29 to 119.08 µg/m3 (mean value 90.65 ± 20 µg/m3) and was much higher than that in
non-heating season samples (7.5–14.5 µg/m3; mean value 11.025 ± 2.44 µg/m3) (Table S2).
The high variability of PM2.5 concentrations, particularly in the heating season, most
probably reflects changes in daily meteorological conditions. Nevertheless, PM2.5 mass
concentrations throughout the sampling campaign in winter exceeded the daily limit value
of 25 µg/m3.

CM on average constituted 47.17 wt.% of PM2.5 during the heating season and
26.93 wt.% in the non-heating season. Average concentrations of TC (42.8 ± 12.0 µg/m3),
OC (37.5 ± 11.0 µg/m3), and EC (5.3 ± 1.1 µg/m3) during the heating season were
14 to 16 times higher than the values in the non-heating season (TC = 3.03 ± 0.90 µg/m3,
OC = 2.65 ± 0.78 µg/m3, and EC = 0.39 ± 0.17 µg/m3) (Table S2). A significant increase
in the concentration of CM in cold months is a common phenomenon in Poland due to
widespread use of coal for household heating and cooking [36–38]. Poland, however, is not
exceptional in this respect. Seasonal variability of carbonaceous aerosols with a peak mass
concentrations in winter caused by human activities is commonly observed in countries
with residential heating based on biomass burning and/or coal combustion, e.g., [39–46].

There is a strong positive correlation between OC and EC for the entire measurement
periods and for the heating season (R2 = 0.94); whereas, in the non-heating season the
correlation is weak (R2 = 0.51) (Figure 2). A strong relationship between OC and EC
suggests a dominant primary source of carbonaceous matter [39].

Atmosphere 2021, 12, x FOR PEER REVIEW 5 of 14 
 

 

The measurement performance was controlled by regular split point determination 
for the pyrolytic carbon, in addition to systematic analysis of blank filters and calibration 
of the apparatus—periodic analysis of a calibration (control) sample of glucose solution 
of known concentration. In addition, the auto-calibration of the analyzer was conducted 
through the inclusion of a fixed volume loop used to inject an external standard (Air 
Liquide) at the end of each analysis. The total uncertainties in EC and OC measurements 
were of the order of 5% (at a 95% confidence interval). The limits of detection (LOD) were 
0.17 and 0.80 μg/cm2, respectively, for EC and OC. Moreover, certified reference materials 
(CRMs; RM 8785 and RM 8786; National Institute of Standards and Technology (NIST)) 
were periodically analyzed—recovery of 90–102% and 98–124% was obtained, respec-
tively, for OC and EC. 

4. Results and Discussion 
4.1. Mass Concentrations of PM2.5, OC and EC 

The mass concentration of PM2.5 collected during the heating season ranged from 
65.29 to 119.08 μg/m3 (mean value 90.65 ± 20 μg/m3) and was much higher than that in 
non-heating season samples (7.5–14.5 μg/m3; mean value 11.025 ± 2.44 μg/m3) (Table S2). 
The high variability of PM2.5 concentrations, particularly in the heating season, most proba-
bly reflects changes in daily meteorological conditions. Nevertheless, PM2.5 mass concentra-
tions throughout the sampling campaign in winter exceeded the daily limit value of 25 
μg/m3. 

CM on average constituted 47.17 wt.% of PM2.5 during the heating season and 26.93 
wt.% in the non-heating season. Average concentrations of TC (42.8 ± 12.0 μg/m3), OC 
(37.5 ± 11.0 μg/m3), and EC (5.3 ± 1.1 μg/m3) during the heating season were 14 to 16 times 
higher than the values in the non-heating season (TC = 3.03 ± 0.90 μg/m3, OC = 2.65 ± 0.78 
μg/m3, and EC = 0.39 ± 0.17 μg/m3) (Table S2). A significant increase in the concentration 
of CM in cold months is a common phenomenon in Poland due to widespread use of coal 
for household heating and cooking [36–38]. Poland, however, is not exceptional in this 
respect. Seasonal variability of carbonaceous aerosols with a peak mass concentrations in 
winter caused by human activities is commonly observed in countries with residential 
heating based on biomass burning and/or coal combustion, e.g., [39–46]. 

There is a strong positive correlation between OC and EC for the entire measurement 
periods and for the heating season (R2 = 0.94); whereas, in the non-heating season the cor-
relation is weak (R2 = 0.51) (Figure 2). A strong relationship between OC and EC suggests 
a dominant primary source of carbonaceous matter [39]. 

 
Figure 2. Relationship between OC and EC mass concentrations (μg/m3) during heating (H) and 
non-heating (NH; see also enlarged view in the inset) seasons in Racibórz in 2017. 
Figure 2. Relationship between OC and EC mass concentrations (µg/m3) during heating (H) and
non-heating (NH; see also enlarged view in the inset) seasons in Racibórz in 2017.

OC was a chief contributor to the TC regardless of the season (Table S2) and on
average constituted 87.63 wt.% of TC during the heating season and 87.53 wt.% in summer
samples. The average OC/EC ratio for samples from the heating season (7.02 ± 1.30) was
slightly lower than that for the non-heating season (7.44 ± 2.05). However, individual
OC/EC values varied significantly daily during both sampling periods (Table S2). The
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high OC/EC values in the heating season suggest an increased role of residential biomass
burning in addition to coal combustion because fossil fuel burning is characterized by
lower OC/EC values, which are often below unity [40]. The predominance of OC over EC
in PM regardless of the season has been observed in several sites of southern Poland and
was attributed to biomass burning throughout the year [31,32].

4.2. Raman Spectroscopy

4.2.1. Generalities

The unprocessed Raman spectra of soot and related carbonaceous materials consist
of two intense first-order bands designated G and D bands. The G (“graphitic”) band at
around 1600 cm−1 corresponds to stretching vibrations of carbon-carbon sp2 bonds within
graphene layers [13,47]. The D (“disorder” or “defect”) band at around 1350 cm−1 results
from structural and chemical defects in the graphitic structure [13]. The Raman spectrum
of soot and related carbonaceous materials can be deconvoluted into two (D1 and D3) [48],
three (D1, D3, D4) [49], four (D1–D4) [13], and five (D1–D5) [50] disordered bands. There
may be additional bands in the Raman spectra of carbonaceous matter [50].

In addition to the band positions, the following Raman parameters were applied in the
present study: the D and G bands scaled total area (DSTA and GSTA) as defined in [33]; the D
and G bands scaled total area ratio (DSTA/GSTA); the D1 and G bands area ratio (D1A/GA);
the Raman area ratio (RAR) [33]; Raman band separation (RBS = G − D); the D and G
bands height intensity ratio (ID/IG); the D1 and G bands height intensity ratio (ID1/IG);
and the G-band full width at half maximum (FWHMG). The D-band FWHM for all samples
was 120 cm−1; hence, it was not useful for discriminating soot from different seasons.

4.2.2. Reference Samples

Unprocessed Raman spectra of all reference samples consist of two broad and over-
lapping G and D bands that are typical of disordered carbon (Figure 3). The D band
centers in the 1340–1380 cm−1 range and the G band in the 1580–1600 cm−1 range. Both
bands in the spectrum of diesel soot (Figure 3d) are of almost equal maximum intensity,
unlike in the other spectra, in which the G band is stronger than the D band (Figure 3a–c).
The increase in the D-band intensity is considered to be a sign of increased disorder in
the graphitic-type structure [13]. The diesel soot spectrum was deconvoluted into four
broad band components (D1, D3, D4, and G). The spectra of soot from wood burning are
more complex and were deconvoluted into five band components (D1, D3, D4, D5, and G)
(Table 1; Figure 3a,b). The D5 band observed in the spectra of soot from both wood and
coal combustion were probably caused by vibrations of aliphatic hydrocarbons [51,52]. In
the spectrum of soot originated from coal combustion, there is an additional weak and
very broad band centered at 1303 cm−1, designated D6 (Figure 3d). The D6 band can be
attributed to hydrocarbons trapped in micropores of carbonaceous material [53].

The D2 component commonly observed as the shoulder on the G band at around
1620 cm−1 and attributed to structural disorder [13] was not resolved during the curve
fitting in this study. It is possible that the low crystallinity of the investigated samples,
and the resulting low G-band intensity, did not allow the relatively weak D2 band to be
distinguished from the G band, as suggested by Beyssac et al. [54].

The Raman shift of D and G bands and the band separation are not specific for any
type of the reference soot (Table 1). They are therefore not useful as indicators of the source
of soot in the atmospheric air. Other parameters are considerably more sensitive in this
respect (Table 2).
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Figure 3. Deconvoluted Raman spectra of soot from wood combustion (samples W1 (a) and W2 (b)), coal-fired furnace (c),
and diesel engine exhaust (d).

Table 1. Curve-fitting results of Raman spectra (cm−1) of the reference soot from wood burning (W1
and W2), coal-fired furnace (C), and tail-pipe diesel exhaust (E).

Sample D * G * D1 D2 D3 D4 D5 D6 G

W1 1356 1589 1380 - 1494 1196 1294 - 1586
W2 1367 1595 1364 - 1499 1192 1278 - 1594
C 1337 1598 1382 - 1502 1238 1303 1174 1594
E 1353 1595 1353 - 1472 1218 - - 1589

* Band shifts measured in the unprocessed spectra.

Table 2. Raman parameters of the reference soot from wood burning (W1 and W2), coal-fired furnace (C), and tail-pipe
diesel exhaust (E). RBS and FWHMG are in cm−1.

Sample DSTA Std GSTA Std DSTA/GSTA D1A/GA RAR RBS FWHMG ID/IG

W1 286.128 0.535 199.476 0.070 1.43 0.51 4.04 233 106 0.69
W2 275.838 0.036 195.904 0.172 1.41 0.59 3.57 228 88 0.70
C 286.043 0.254 195.294 0.033 1.46 0.56 4.31 261 86 0.67
E 218.924 0.052 205.596 0.015 1.06 1.57 1.10 242 96 0.97

DSTA and GSTA—scaled total area of D and G bands, respectively; Std—standard deviation; DSTA/GSTA—D and G bands area ratio,
D1A/GA—D1 and G bands area ratio; RAR—Raman area ratio; RBS—Raman band separation, FWHMG—Full width at half maximum.

The height intensity ratio of D and G bands (ID/IG) is a sensitive measure of soot
crystallinity, i.e., the size of graphitic domains [7,13]. The ID/IG ratio depends on numerous
factors, including aromatic layer size, soot oxidation reactivity, maturation of coals, aging
of diesel soot at various temperature, and fuel to oxygen ratio ([24] and references therein).
The ID/IG ratio is close to unity (0.97) for the reference diesel soot; whereas, soot from
other sources show significantly lower ID/IG ratios (0.67–0.70) (Table 2). The diesel soot
spectrum is characterized by a similar height intensity of the D and G bands (Figure 3d),
which was not observed for the other spectra, in which the height intensity of the D band
is significantly lower than that of the G band. This observation is consistent with previous
investigation that showed a high amorphous to graphitic carbon ratio in diesel soot [24,55].
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Diesel engine soot may have a higher degree of disorder (high amorphous to graphitic
carbon ratio) compared to gasoline soot [24]. The four component bands observed in
the spectrum of the reference diesel soot (Figure 3d) have been also reported in other
studies [55–59]. Therefore, it can be considered that this is a characteristic feature of diesel
soot. Some authors, however, distinguished three component bands in Raman spectra of
both diesel and gasoline soot [24,49].

The ID/IG ratio of soot from coal combustion (0.67) is only slightly lower than that of
soot originating during wood burning (0.69–0.70) (Table 2).

The FWHMG of diesel soot (96 cm−1) is significantly higher than that of soot from
other sources, except for sample W1 (Table 2). There is an inverse relation between the
FWHM of the Raman bands and the degree of crystallinity of CM [13,25,27,29]. There is
a noticeable difference in FWHMG of soot originating from burning of different types of
wood. Apparently, the crystallinity of the W1 soot is lower than that of W2.

The most distinct differences in Raman spectra of diesel soot and soot from other
sources are revealed by the D1A/GA, DSTA/GSTA, and RAR parameters (Table 2). The
DSTA/GSTA ratio is higher in the spectra of soot from wood and coal-burning than diesel
soot. The DSTA/GSTA ratio increases with increasing order in the structure of CM [60].
The D1A/GA value (1.57) of diesel soot is between 2.7 and 3 times higher than that for
wood- and coal-derived soot (Table 2). The D1A/GA ratio decreases with the increase in
the degree of order in the carbonaceous material [61]. The D1A/GA ratio most distinctly
differentiates between poorly ordered diesel soot (D1A/GA > 1) and soot form other sources
(D1A/GA << 1).

All of the Raman parameters are indicative of low crystallinity of the reference diesel
soot compared to coal and wood soot, most probably as a result of higher content of
amorphous carbon in the former.

4.2.3. Ambient Soot

Raman spectra of ambient soot collected during the heating season (Figure 4a and
Figure S1) are similar in shape to those of the reference soot originating from coal and
biomass burning (Figure 3a–c); whereas, Raman spectra of soot collected during the
non-heating season (Figure 4b and Figure S1) match the reference spectrum of poorly
ordered diesel soot (Figure 3d). These similarities are further confirmed by all of the
Raman parameters (Table S3). The D1A/GA and RAR parameters show the most distinct
differences between samples from both seasons despite high variability of the daily data
(Figure 5).
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of soot from Racibórz in 2017. H—heating season and NH non-heating season.

The RAR parameter for samples from the heating season was in the range of 2.10–4.02,
and the D1A/GA ratio ranged from 0.57 to 0.96 (on average 0.77 ± 0.18). The comparison
of these values with data for the reference material (Table 2) unequivocally points to
soot derived from coal and wood (biomass) as being a predominant component of the
investigated samples. The RAR for samples from the non-heating season was in the range
of 0.74–1.97 (average 1.02 ± 0.42), whereas the D1A/GA ranged from 1.06 to 1.96 (average
1.53 ± 0.30). These values are very close to those of diesel soot (Table 2).

Raman spectra of samples from the heating season are characterized by significantly
weaker and broader D band than G band (Figure 4). The D band has a much larger area,
ranging from 267 to 295, compared to the G band (170–199) (Table S3). The opposite
relations between the D and G bands were observed in the Raman spectra of samples from
the non-heating season (Figure 4 and Table S3). The D band is less pronounced and its area
is in the range of 192–257 comparable to the G band (174–226) making the two main bands
similar in size and shape. Average values of G-band area are similar for soot from heating
(186) and non-heating (183) seasons (Table S3).

The DSTA/GSTA ratio is distinctly higher for samples from the heating season (1.41–1.68,
on average 1.53 ± 09) than for the non-heating season (1.09–1.24, on average 1.13 ± 04) and
is similar to the DSTA/GSTA ratio for soot originating from coal combustion (1.47) and wood
burning (1.44–1.47); whereas, values for the non-heating samples are close to the DSTA/GSTA
ratio of diesel soot (1.06).

The mean ID/IG ratio of soot collected during heating season (0.66) is close to the
reference soot from both coal combustion (ID/IG = 0.67) and wood burning (ID/IG = 0.69);
whereas the mean ID/IG of soot collected during the non-heating season (0.86) suggests the
prevalence of diesel engine exhaust (ID/IG = 0.97 in Table 2) with a probable contribution
from gasoline engine exhaust. Gasoline soot has a lower D/G intensity ratio compared to
diesel soot [24].

The average value of FWHMG for the heating season soot (87 ± 6 cm−1; median
83 cm−1) is significantly lower than for the summer samples (97 ± 12 cm−1; median
99 cm−1). Individual values of FWHMG deviate much more significantly from the average
than those of ID/IG (Table S3).
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In the heating season, the ID/IG ratio follows the changes in FWHMG, whereas
during the non-heating season, both parameters behave differently. This observation is
confirmed by Spearman’s rank correlation (α = 0.05). The correlation between ID/IG and
FWHMG was positive (r = 0.50) during the entire measurement period and was particularly
strong (r = 0.85) during the heating season. In the non-heating season the correlation was
lower and statistically insignificant (r = 0.43). The correlation analysis shows that, as the
degree of disorder in the soot structure increases, the correlation between the ID/IG and
FWHMG weakens.

4.3. Relations between Raman ID/IG Parameter and TOT Data

A correlation matrix between ID/IG and PM2.5, OC, EC, and TC was computed for the
entire measurement period and separately for heating and non-heating seasons (Table S4).
In the entire measurement period, the highest negative correlation occurred between
ID/IG and PM2.5 (r = −0.92). Strong negative correlations were also recorded between
ID/IG and OC, EC, and TC (r = −0.91). Considering the OC and EC thermally evolved
fractions, high correlations between ID/IG and EC3, OC3, and OC4 were observed (r = 0.92,
0.91 and 0.90, respectively).

Correlations between ID/IG and OC, EC, TC, and PM2.5 in the heating season were
statistically significant (r = −0.78, r = −0.76, r = −0.78 and r = 0.71, respectively) but weaker
than correlations for the entire sampling period. For the thermally evolved fractions of the
OC and EC components, the highest correlation was between ID/IG and EC3 (r = −0.81). A
high correlation (r from −0.71 to −0.78) was also observed for EC2, EC1, and OC3. For other
components, the correlations were statistically insignificant. In the non-heating season, a
statistically significant correlation occurred only between ID/IG and EC4 (r = −0.71).

Statistical analyses showed that there is a high correlation between the degree of order
in the soot structure and the content of individual carbon fractions, which is particularly
noticeable throughout the entire measurement period. In this case, very high ID/IG corre-
lations were observed for both OC and EC. The highest correlations were between ID/IG
and EC3 and between ID/IG and OC3, whereas the lowest was between ID/IG and EC4.
The distribution of correlations suggests that the soot throughout the entire measurement
period originated from sources with the temperature range of 450–700 ◦C. During the
heating season, the correlations between ID/IG and OC and EC were lower.

In the non-heating season, a statistically significant correlation occurred only between
ID/IG (0.77–0.98) and EC4 (r = −0.74), which suggests the influence of vehicular transport
as a major soot source.

Raman spectroscopy cannot distinguish between coal-combustion soot and soot origi-
nating from wood burning in ambient air samples; alternatively, other methods, namely
determination of biomass burning tracers, i.e., levoglucosan, OC, OC/EC, and K, should
be used.

Results obtained during this study are not entirely unexpected. The soot emission from
coal combustion for domestic purposes in Silesia is extremally high in winter compared
to vehicular soot emission, e.g., [37]. Moreover, vehicular traffic in Poland is about 20%
lower in winter than in summer [62]. Apparently, the occurrence of diesel soot in winter
samples is masked by the abundant soot that originates during incomplete coal combustion
and biomass burning. The decline in coal combustion for domestic purposes in summer
results in a relative increase in the amount of airborne diesel soot. However, there is still
some contribution from biomass and coal burning, as reflected in the lower ID/IG ratio
than expected for diesel soot. There may also be some contribution of the gasoline soot to
Raman spectra of CM. Although this option was not explored during this study, it requires
further consideration.

5. Conclusions

Raman parameters can reliably be used for distinguishing between diesel soot and
soot from coal and wood combustion in ambient air samples. The D1A/GA ratio is the
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most sensitive parameter, with values higher than 1 for diesel soot and much lower than
1 for soot from both coal and wood burning. However, other Raman parameters also
consistently indicated that coal combustion and biomass burning were the predominant
sources of soot in the heating season. Diesel soot, which is structurally less ordered than
soot from other sources, was dominant during the non-heating season. The strongest
negative correlation occurred between ID/IG and the highest temperature (850 ◦C) fraction
EC4 for soot from the non-heating season, which confirms results of Raman spectroscopy
that indicate vehicular transport is a major soot source.

Strong correlations between the coefficients obtained from both methods confirm the
high efficiency of Raman spectroscopy as a method compatible with the TOT method,
which is commonly used in air quality research.

Due to the high daily variability of both TOT and Raman spectroscopy data, single-day
measurements can be inconclusive regarding the soot source apportionment. Long-time
measurements are recommended for this purpose.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12060768/s1, Figure S1: Raman spectra of soot in PM2.5 collected in Racibórz during
heating (H) and non-heating (NH) seasons. Table S1. EUSAAR-2 temperature protocol used in
thermal-optical-transmittance analysis; Table S2. Mass concentrations (µg m−3) of PM2.5; Table S3.
Raman parameters obtained from the deconvolution of D and G bands in the spectra of soot collected
during heating and non-heating seasons in Racibórz; Table S4. Nonparametric (Spearman) correla-
tion matrix (α = 0.05) for ID/IG and concentrations of OC, EC (including their thermally evolved
components), TC, pyrolitic product (Pyr), and PM2.5 (µg·m−3) calculated for the entire sampling
period, and separately for the heating and non-heating seasons.
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62. Opoczyński, K. Summary of GPR2015 Results Obtained for the Domestic Road Network outside Urban Areas (In Polish: Synteza
Wyników GPR15 na Zamiejskiej Sieci Dróg Krajowych). Available online: www.gddkia.gov.pl/userfiles/articles/g/generalny-
pomiar-ruchu-w-2015_15598//SYNTEZA/Synteza_GPR2015.pdf (accessed on 29 January 2021).

http://doi.org/10.1016/j.orggeochem.2014.03.008
http://doi.org/10.1016/S1386-1425(03)00070-2
http://doi.org/10.1038/s41598-019-44920-x
http://www.ncbi.nlm.nih.gov/pubmed/31186511
http://doi.org/10.1016/j.carbon.2016.03.024
http://doi.org/10.1021/acs.energyfuels.6b03011
http://doi.org/10.1016/j.carbon.2018.06.050
http://doi.org/10.3390/en13164206
http://doi.org/10.1016/j.orggeochem.2016.12.006
http://doi.org/10.1111/iar.12057
www.gddkia.gov.pl/userfiles/articles/g/generalny-pomiar-ruchu-w-2015_15598//SYNTEZA/Synteza_GPR2015.pdf
www.gddkia.gov.pl/userfiles/articles/g/generalny-pomiar-ruchu-w-2015_15598//SYNTEZA/Synteza_GPR2015.pdf

	Introduction 
	Sampling Site 
	Materials and Methods 
	Sample Description 
	Raman Spectroscopy 
	Thermal-Optical Transmittance (TOT) Analysis 

	Results and Discussion 
	Mass Concentrations of PM2.5, OC and EC 
	Raman Spectroscopy 
	Generalities 
	Reference Samples 
	Ambient Soot 

	Relations between Raman ID/IG Parameter and TOT Data 

	Conclusions 
	References

