Does Increasing Model Resolution Improve the Real-Time Forecasts of Western North Pacific Tropical Cyclones?
Abstract
:1. Introduction
2. Model Configuration and Experiments
3. Results
3.1. Impact on TC Intensity Forecast
3.2. Impact on TC Track Forecast
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pielke, R.A., Jr.; Gratz, J.; Landsea, C.W.; Collins, D.; Saunders, M.A.; Musulin, R. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 2008, 9, 29–42. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhang, X.; Bai, L.; Wan, R. Verification of tropical cyclone operational forecast in 2018. In Proceedings of the ESCAP/WMO Typhoon Committee, Guangzhou, China, 26 February 2019. [Google Scholar]
- Chen, S.S.; Price, J.F.; Zhao, W.; Donelan, M.A.; Walsh, E.J. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Am. Meteorol. Soc. 2007, 88, 311–318. [Google Scholar] [CrossRef]
- Davis, C.; Wang, W.; Chen, S.S.; Chen, Y.; Corbosiero, K.; DeMaria, M.; Dudhia, J.; Holland, G.; Klemp, J.; Michalakes, J.; et al. Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model. Mon. Weather Rev. 2008, 136, 1990–2005. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.O.; Rogers, R.F.; Marks, F.D.; Nolan, D.S. The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Weather Rev. 2009, 137, 3717–3743. [Google Scholar] [CrossRef]
- Gentry, M.S.; Lackmann, G.M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 2010, 138, 688–704. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, S.G.; Marks, F., Jr.; Zhang, X.; Bao, J.-W.; Yeh, K.-S.; Atlas, R. The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Weather Rev. 2011, 139, 1762–1784. [Google Scholar] [CrossRef]
- Jin, H.; Peng, M.S.; Jin, Y.; Doyle, J.D. An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Weather Forecast. 2014, 29, 252–270. [Google Scholar] [CrossRef]
- Moon, J.; Cha, D.H.; Lee, M.; Kim, J. Impact of Spectral Nudging on Real-Time Tropical Cyclone Forecast. J. Geophys. Res. Atmos. 2018, 123, 12647–12660. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advaned Research WRF Version 3. NCAR Technical Note-475+ STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Cha, D.-H.; Wang, Y. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Weather Rev. 2013, 141, 964–986. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.; Cheon, W.; Hong, S.; Raasch, S. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteorol. 2003, 107, 401–427. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Feser, F.; von Storch, H. A dynamical downscaling case study for typhoons in Southeast Asia using a regional climate model. Mon. Weather Rev. 2008, 136, 1806–1815. [Google Scholar] [CrossRef]
- Neumann, C.J.; Pelissier, J.M. Models for the prediction of tropical cyclone motion over the North Atlantic: An operational evaluation. Mon. Weather Rev. 1981, 109, 522–538. [Google Scholar]
- Powell, M.D.; Aberson, S.D. Accuracy of United States tropical cyclone landfall forecasts in the Atlantic basin (1976–2000). Bull. Am. Meteorol. Soc. 2001, 82, 2749–2768. [Google Scholar] [CrossRef]
- Chan, J.C.; Williams, R. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci. 1987, 44, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.M. Tropical Cyclone Propagation; Colorado State University Fort Collins Department of Atmospheric Science: Fort collins, CO, USA, 1994; p. 38. [Google Scholar]
- Park, J.; Cha, D.H.; Lee, M.K.; Moon, J.; Hahm, S.J.; Noh, K.; Chan, J.C.; Bell, M. Impact of cloud microphysics schemes on tropical cyclone forecast over the western North Pacific. J. Geophys. Res. Atmos. 2020, 125, e2019JD032288. [Google Scholar] [CrossRef]
- Yamada, H.; Nasuno, T.; Yanase, W.; Satoh, M. Role of the vertical structure of a simulated tropical cyclone in its motion: A case study of Typhoon Fengshen (2008). SOLA 2016, 12, 203–208. [Google Scholar] [CrossRef] [Green Version]
TC Number | TC Name | Forecast Initial Time (Interval of 24 h) | Number of Cases |
---|---|---|---|
1307 | SOULIK | 0000 UTC 8 Jul 2013 | 1 |
1311 | UTOR | 0000 UTC 10 Aug 2013 | 1 |
1324 | NARI | 0000 UTC 10 Oct 2013 | 1 |
1326 | FRANCISCO | 0000 UTC 17 Oct 2013–0000 UTC 19 Oct 2013 | 3 |
1328 | LEKIMA | 0000 UTC 21 Oct 2013 | 1 |
1331 | HAIYAN | 0000 UTC 4 Nov 2013–0000 UTC 6 Nov 2013 | 3 |
1408 | NEOGURI | 0000 UTC 4 Jul 2014–0000 UTC 5 Jul 2014 | 2 |
1409 | RAMMASUN | 0000 UTC 13 Jul 2014–0000 UTC 14 Jul 2014 | 2 |
1411 | HALONG | 0000 UTC 29 Jul 2014–0000 UTC 5 Aug 2014 | 8 |
1418 | PHANFONE | 0000 UTC 29 Sep 2014–0000 UTC 1 Oct 2014 | 3 |
1419 | VONGFONG | 0000 UTC 3 Oct 2014–0000 UTC 8 Oct 2014 | 6 |
1420 | NURI | 0000 UTC 1 Nov 2014 | 1 |
1422 | HAGUPIT | 0000 UTC 2 Dec 2014–0000 UTC 5 Dec 2014 | 4 |
1504 | MAYSAK | 0000 UTC 28 Mar 2015–0000 UTC 30 Mar 2015 | 3 |
1506 | NOUL | 0000 UTC 5 May 2015–0000 UTC 6 May 2015 | 2 |
1507 | DOLPHIN | 0000 UTC 9 May 2015–0000 UTC 11 May 2015 | 3 |
1509 | CHAN-HOM | 0000 UTC 1 Jul 2015–0000 UTC 7 Jul 2015 | 7 |
1511 | NANGKA | 0000 UTC 5 Jul 2015–0000 UTC 12 Jul 2015 | 8 |
1513 | SOUDELOR | 0000 UTC 31 Jul 2015–0000 UTC 4 Aug 2015 | 5 |
1516 | GONI | 0000 UTC 15 Aug 2015–0000 UTC 20 Aug 2015 | 6 |
1517 | ATSANI | 0000 UTC 15 Aug 2015–0000 UTC 19 Aug 2015 | 5 |
1520 | KROVANH | 0000 UTC 16 Sep 2015 | 1 |
1521 | DUJUAN | 0000 UTC 24 Sep 2015 | 1 |
1524 | KOPPU | 0000 UTC 14 Oct 2015 | 1 |
1525 | CHAMPI | 0000 UTC 16 Oct 2015–0000 UTC 19 Oct 2015 | 4 |
1527 | IN-FA | 0000 UTC 18 Nov 2015–0000 UTC 21 Nov 2015 | 4 |
1602 | NEPARTAK | 0000 UTC 4 Jul 2016 | 1 |
1608 | CONSON | 0000 UTC 9 Aug 2016 | 1 |
1616 | MERANTI | 0000 UTC 10 Sep 2016 | 1 |
1618 | MALAKAS | 0000 UTC 12 Sep 2016–0000 UTC 15 Sep 2016 | 4 |
1707 | NORU | 0000 UTC 25 Jul 2017–0000 UTC 2 Aug 2017 | 9 |
1720 | TALIM | 0000 UTC 10 Sep 2017–0000 UTC 12 Sep 2017 | 3 |
1725 | LAN | 0000 UTC 16 Oct 2017–0000 UTC 17 Oct 2017 | 2 |
Total | 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, J.; Park, J.; Cha, D.-H. Does Increasing Model Resolution Improve the Real-Time Forecasts of Western North Pacific Tropical Cyclones? Atmosphere 2021, 12, 776. https://doi.org/10.3390/atmos12060776
Moon J, Park J, Cha D-H. Does Increasing Model Resolution Improve the Real-Time Forecasts of Western North Pacific Tropical Cyclones? Atmosphere. 2021; 12(6):776. https://doi.org/10.3390/atmos12060776
Chicago/Turabian StyleMoon, Jihong, Jinyoung Park, and Dong-Hyun Cha. 2021. "Does Increasing Model Resolution Improve the Real-Time Forecasts of Western North Pacific Tropical Cyclones?" Atmosphere 12, no. 6: 776. https://doi.org/10.3390/atmos12060776
APA StyleMoon, J., Park, J., & Cha, D. -H. (2021). Does Increasing Model Resolution Improve the Real-Time Forecasts of Western North Pacific Tropical Cyclones? Atmosphere, 12(6), 776. https://doi.org/10.3390/atmos12060776