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Abstract: In this paper, we study, in theoretical terms, the structure of the spectrum of acoustic-gravity
waves (AGWs) in the nonisothermal atmosphere having asymptotically constant temperature at
high altitudes. A mathematical problem of wave propagation from arbitrary initial perturbations in
the half-infinite nonisothermal atmosphere is formulated and analyzed for a system of linearized
hydrodynamic equations for small-amplitude waves. Besides initial and lower boundary conditions
at the ground, wave energy conservation requirements are applied. In this paper, we show that this
mathematical problem belongs to the class of wave problems having self-adjoint evolution operators,
which ensures the correctness and existence of solutions for a wide range of atmospheric temperature
stratifications. A general solution of the problem can be built in the form of basic eigenfunction
expansions of the evolution operator. The paper shows that wave frequencies considered as eigenval-
ues of the self-adjoint evolution operator are real and form two global branches corresponding to
high- and low-frequency AGW modes. These two branches are separated since the Brunt–Vaisala
frequency is smaller than the acoustic cutoff frequency at the upper boundary of the model. Wave
modes belonging to the low-frequency global spectral branch have properties of internal gravity
waves (IGWs) at all altitudes. Wave modes of the high-frequency spectral branch at different altitudes
may have properties of IGWs or acoustic waves depending on local stratification. The results of
simulations using a high-resolution nonlinear numerical model confirm possible changes of AGW
properties at different altitudes in the nonisothermal atmosphere.

Keywords: acoustic-gravity waves; internal gravity waves; acoustic waves; upper atmosphere; wave
frequency spectrum

1. Introduction

Studies of spacetime variations in the upper atmosphere and ionosphere have reliably
revealed connections between disturbances in the upper atmosphere and ionosphere and
the processes occurring in the troposphere near the Earth’s surface [1–4]. One of the mech-
anisms ensuring such connections could be the upward propagation of acoustic waves
(AWs) and internal gravity waves (IGWs). These waves generated by various sources
can propagate into the middle and upper atmosphere, break, and produce different kinds
of perturbations [5,6]. Dissipating waves may generate jet streams and change the heat
balance in the upper atmosphere [7–9]. Atmospheric waves reaching the ionosphere can
affect plasma motions and, consequently, the radio wave propagation [10,11]. Active devel-
opments of the theory of waves in the atmosphere began in the twentieth century [11–14].
Physical mechanisms of the propagation of infrasound and IGWs in the atmosphere are
determined by the pressure gradient and gravity forces acting on the atmospheric gas
under the conditions of a stratified medium. Currently, many experimental and theoretical
results have showed substantial impact of waves on the atmospheric dynamics [7,15,16].
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Often, AWs and IGWs are combined into a class of atmospheric acoustic-gravity waves
(AGWs) [11,16–19]. Some current terminology problems in the theory and experimental
studies of atmospheric waves are discussed in [14]. The terms AW and IGW appeared in
the scientific literature in the context of theoretical analysis of hydrodynamic equations for
waves in the isothermal atmosphere, when the background temperature does not depend
on altitude [11–14]. Two different wave branches with significantly different properties
were found in the solutions of these wave equations [20]. One branch contains AWs with
frequencies always greater than the acoustic cutoff frequency ΩA [14]. The second wave
branch contains IGWs (or buoyancy waves) with frequencies always lower than the Brunt–
Vaisala frequency N [20,21]. In the isothermal model, always ΩA > N and, in the lower
atmosphere, AWs as well have periods less than 2π

ΩA
∼ 4.9 min, while IGW periods are

greater than 2π
N ∼ 5.2 min.

However, isothermal approximation for waves could only be valid in a relatively
small vicinity of the altitude under consideration [11,13,20,22]. Various attempts were
made to take realistic atmospheric temperature profiles into account and to modify the
dispersion equation for better identification of AW and IGW branches in the nonisothermal
atmosphere. The most common WKB method considers waves that are sufficiently short
at an altitude in order to introduce local corrections to ΩA and N, taking the temperature
gradients into account [14]. Estimates show that such corrections may reach up to 10% [23],
and layers may appear in the nonisothermal atmosphere, where ΩA(z) < N(z) and the
frequencies of the acoustic and gravity wave branches may overlap. If one considers wave
propagation at altitudes from the ground up to thermosphere, then the background tem-
perature gradients change by several times, and the atmosphere with realistic stratification
should be considered as fundamentally nonisothermal. Therefore, a rigorous analysis of
the behavior of different branches of eigenfunctions of the wave equations in the realistic
nonisothermal atmosphere is required for better understanding of wave properties.

A classification of wave types in the spherical rotating atmosphere was studied, for
example, by Dikij [12]. He suggested that the atmospheric scale height is infinitely rising at
heights z→ ∞. However, observations and atmospheric models show that the background
atmospheric state tends to be quasi-isothermal in the nondisturbed upper thermosphere
due to high diffusion and thermal conductivity (see Figure 1 below). Therefore, the analysis
of atmospheric wave eigenvalues and eigenfunctions must take these upper boundary
conditions into consideration.

In this paper, we mathematically study the linearized hydrodynamic equations for
small-amplitude waves in the realistic nonisothermal atmosphere at altitudes from the
ground to infinity. We consider a wide class of realistic stratifications, for which the
atmosphere’s scale height H(z) reaches an absolute finite maximum value of H∞ at z→ ∞.
In mathematical terms, the issue of wave branches is equivalent to studying the structure of
a continuous spectrum of the wave operator that depends on the eigenvalues (frequencies)
of eigenfunctions (wave modes) in the nonisothermal model.

It is shown below that, in the realistic nonisothermal atmosphere, the wave operator
is self-adjoint and its spectrum contains two “global” wave branches of acoustic-gravity
waves with frequencies lower and higher than N∞ and Ω∞, respectively (see Equation (20)
below), which are the Brunt–Vaisala and acoustic cutoff frequencies for the upper quasi-
isothermal layer of the atmosphere. Similar to the theory of waves in the isothermal
atmosphere, in which there is a gap between the threshold frequencies Ω∞ > N∞, there
is a gap between the high- and low-frequency global branches. However, the values of
Ω∞ and N∞ depend on the atmospheric parameters near the upper boundary (at infinity)
and may differ from local values of ΩA(z) and N(z) in the lower and middle atmosphere.
Therefore, wave modes corresponding to both global wave branches of acoustic-gravity
waves may have properties of IGWs at some altitudes and properties of AWs at other
altitudes depending on local values of ΩA(z) and N(z) in the nonisothermal atmosphere,
as discussed in Section 5.
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2. Mathematical Problem of Atmospheric Wave Propagation

In this section, the problem of propagation of waves generated by initial disturbances
in the nonisothermal atmosphere is formulated mathematically.

2.1. Hydrodynamic Equations and Boundary Conditions

Let us consider a system of nondissipative linear equations for small-amplitude
acoustic-gravity waves in the plane nonrotating atmosphere [11,13,14,20,24]:

∂ρ0η
∂t + ∂ρ0u

∂x + ∂ρ0w
∂z = 0,

∂ρ0u
∂t + ∂ρ0gHψ

∂x = 0;
∂ρ0w

∂t + ∂ρ0gHψ
∂z + ρ0gη = 0;

∂ρ0θ
∂t + (γ− 1)

(
∂ρ0u

∂x + ∂ρ0w
∂z

)
+ αρ0w

H = 0;

ψ = η + θ; α(z) = γ− 1 + γ
dH(z)

dz ,

(1)

where g is gravitational acceleration; γ = cp/cv is the ratio of heat capacities at con-
stant pressure and volume; H(z) is the atmosphere’s scale height; stratification parameter
α(z) > 0 at all altitudes z; ρ is atmospheric density; zero indices refer to the stationary back-
ground values; u and w are the horizontal and vertical velocity components; and functions

η =
ρ− ρ0

ρ0
, θ =

T − T0

T0
, ψ = (η + θ) =

p− p0

p0
. (2)

are relative perturbations of pressure, density, and temperature. The equation system (1)
does not take the viscosity and thermal conductivity, which are insignificant for relatively
long waves, into account. The system (1) for the nonrotating plane atmosphere is applicable
for AGWs with periods and horizontal wavelengths substantially smaller than a day and
the Earth’s radius, respectively. With the x-axis directed along the horizontal wave vector,
the 2D model (1) can adequately describe the propagation of small-amplitude acoustic-
gravity waves in the stratified atmosphere. The lower boundary condition at the ground
has the following form in our model:

w(x, z = 0, t) = 0. (3)

In this paper, we consider the atmosphere extending to infinity in altitude, and the
upper boundary conditions depend on the stratification. Many experiments and theoret-
ical studies [2–4,25–27] show that AGWs in the upper atmosphere frequently propagate
upwards from wave sources located at lower altitudes. Therefore, the upper boundary
conditions should avoid wave reflections at high atmospheric altitudes. From the equation
system (1), using standard transformations [12,14], one can get the following equation for
the wave energy:

∂e
∂t + div~j = 0;

e = 1
2 ρ0(z)

[(
u2 + w2)+ gH

γ ψ2 + gH
γα (θ − (γ− 1)η)2

]
;

jx = ρ0gHψu, jz = ρ0gHψw,

(4)

where e and~j are the densitiy of the wave energy and its flux, respectively. The three terms
in the expression for e in (4) are sometimes called densities of kinetic, elastic, and thermo-
baric energy [12], which are respectively connected with wave motions, compressions, and
buoyancy forces acting on atmospheric parcels vertically shifted from the equilibrium state.
Equation (4) determines local changes of wave energy [25].

One can integrate (4) over entire regions x ∈ (−∞, ∞) and z ∈ (0, ∞). Wave energy
fluxes crossing the upper and lower boundaries are equal to zero, because waves cannot
reach infinite distance at any finite time and due to the condition (3) at the Earth’s surface.
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Therefore, the divergence theorem leads to the conservation law of the total (integral) wave
energy E:

dE
dt

= 0; E =
∫ ∞

−∞

∫ ∞

0
e dxdz. (5)

The conservation of total wave energy (5) is used for the selection of physically justified
solutions in this model.

2.2. Initial Conditions

The traditional mathematical problem of wave propagation from an initial pertur-
bation in the semi-infinite atmosphere assumes the following initial conditions for the
equation system (1):

u(t = 0) = ui(x, z); w(t = 0) = wi(x, z);
η(t = 0) = ηi(x, z); θ(t = 0) = θi(x, z);

(6)

Here, functions ui(x, z), wi(x, z), ηi(x, z), θi(x, z) are components of the initial velocity
vector, initial relative density, and relative temperature, respectively. The lower boundary
condition at the ground has the form of (3). An addition condition corresponding to the
conservation of total wave energy (5) is applied:

E(t) = E(0) < ∞. (7)

We use this requirement instead the horizontal and upper boundary conditions. The
existence of integral (4) assumes that functions u, w, η, and θ should decrease at |x| → ∞
and may grow at z → ∞, but no faster than ρ−1/2

0 . The local form of the wave energy
Equation (4) is obtained from the main equation system(1), taking physical reasons for zero
wave energy fluxes at the upper boundary (infinity) into account. Therefore, Equation (7) is
not the direct consequence of Equation (1), but rather, an additional requirement reflecting
the upper boundary conditions.

2.3. Atmospheric Stratification

Figure 1 shows an example of typical vertical profile of the background temperature
for July at middle northern latitudes at high solar activity, corresponding to the solar radio
flux F107=250, which is calculated using the NRLMSISE-00 model [28]. Figure 1 of the [25]
shows the behavior of temperature profiles at high altitudes for low and moderate solar
activity similar to Figure 1a. The dependence H(z) is similar to Figure 1a since g and
atmospheric molecule mass vary at different altitudes more slowly than the background
temperature. Therefore, in this study, we assume that in the undisturbed high atmosphere,
the height scale H(z) is monotonically increasing at high altitudes and it reaches an absolute
finite maximum H∞ at z→ ∞. Therefore, we use the following boundary condition:

dH
dz
→ 0 at z→ ∞; H(z) < H∞; (8)

These assumptions are consistent with temperature behavior in Figure 1a. Equation (8)
is different from the assumptions of [12], where H(z)→ ∞ at z→ ∞. The differences could
be noticeable at high altitudes only; however, they can substantially influence mathematical
properties of eigenvalues and eigenfunctions of the analyzed wave operator considered in
the following section.
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Figure 1. An example of vertical profile of the background temperature [28] in July at latitude 50◦ N
(a) and respective profiles of the Brunt–Vaisala N and acoustic cutoff ΩA frequencies (b) given by
Equation (25).

3. Operator Wave Equations

In this section, we consider the atmospheric wave problem in terms of self-adjoint
matrix operators in Hilbert spaces. Such operators are frequently used, for example,
in quantum mechanics and many mathematical results are known for them. Such operator
approaches were almost never applied before for the analysis of atmospheric waves.

3.1. Matrix Wave Equations

The system of the first four wave equations in (1) may be written in the form of a
single matrix operator equation having the following form:

i
∂χ

∂t
+ L̂χ = 0, χ(x, z, t) =


η
u
w
θ

, (9)

where the vector function χ contains all independent functions of Equation (1) and L̂ is
a 4× 4 matrix differential operator containing the terms of the left part of (1) depending
on spatial derivatives and taking the lower boundary condition (3) into account. For the
completeness of the mathematical problem of atmospheric wave propagation, the initial
conditions (6) and the requirement of the total wave energy conservation (7) must be added.

The matrix operator L̂ does not depend on time t. Therefore, it can be assumed that
the solution to (9), χ(x, z, t), should depend on t parametrically, and one can exclude time
from the considerations of the properties of the operator L̂. One can introduce a set of
vector functions µ(x, z) = (u, w, ψ, θ − (γ− 1)η) and use the polarization theorem [29] to
determine the scalar product of a pair of functions µ1(x, z) and µ2(x, z) as follows:

〈µ1, µ2〉 =
∫ ∞
−∞

∫ ∞
0 ρ0(z)

(
µ∗1µ2

)
dxdz =∫ ∞

−∞

∫ ∞
0 dxdz

[(
u∗1u2 + w∗1w2

)
+ gH

γ ψ∗1 ψ2 +
gH
γα (θ1 − (γ− 1)η1)

∗(θ2 − (γ− 1)η2)
]
,

(10)

which is similar to the expression for the local wave energy (4); * denotes complex conjuga-
tion. In the Hilbert space Ξ of vector functions µ, in which scalar products of any vector
functions µ1 and µ2 are determined by Equation (10), the expression for total wave energy
has the following form:

E =
1
2
〈µ, µ〉 < ∞ (11)

After these general definitions, the wave problem can be formulated as the search
parameterized by t element χ(x, z, t) of the Hilbert space Ξ, which satisfies the matrix
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Equation (9) and the initial conditions (6). The requirement (7) is unnecessary, because
for the elements of the Hilbert space Ξ the condition of finite total wave energy (11) is
satisfied automatically.

3.2. Self-Adjointness of the Wave Operator

An important property can be expressed in the theorem that operator L̂ acting from
Hilbert space Ξ into Ξ and having the definition range of

D
(

L̂
)
= {µ ∈ Ξ, L̂µ ∈ Ξ, w(x, z = 0) = 0} (12)

is a self-adjoint operator. The proof of the theorem is standard but bulky. Therefore, we
make only some comments here. First, one can verify the expression〈

µ1(x, z), L̂µ2(x, z)
〉
=
〈

L̂µ1(x, z), µ2(x, z)
〉
, (13)

using standard integration by parts for a class of continuously differentiated functions
with a compact support. Then, one can treat the operator L̂ in terms of the Schwartz
distribution [29] using (12) for determining L̂, where µ1 is a function with compact basis
and µ2 ∈ Ξ. Due to the L̂ definition range (12), w and ∂w

∂z should be quadratically integrable
within the entire semi-infinite space. Therefore, the lower boundary condition (3) is
equivalent to the relation

∫ ∞
−∞ ρ0(0)w2(x, z = 0)dx = 0.

The self-adjoint operators have some important properties described in the mathemati-
cal literature. First, in 1955, Ladyzhenskaya [30,31] studied operator equations similar to (8)
and proved the existence of solutions to this problem. Dikij [12] considered propagation of
atmospheric waves in a model of spherical rotating Earth’s atmosphere and proved twofold
completeness of eigenfunctions in his model, which means the existence of solutions to
the wave problem. However, the author [12] used the “rigid cover” type of the upper
boundary condition at an altitude of 200 km, which can cause downward reflections of
waves propagating from below. In this respect, setting the upper boundary conditions at
infinity helps avoiding reflections of waves propagating from the lower atmosphere in our
model. In addition, such conditions allows for these comparison of our results with the
traditional theory of acoustic-gravity waves in the semi-infinite atmosphere [14].

The second property of self-adjoint wave operators is the real values of their eigenval-
ues σ [29], which satisfy the equation

L̂µ = σµ (14)

This equation can be obtained from (9) assuming χ = exp(iσt)µ; therefore, eigenvalues
σ have the meaning of frequencies of native wave modes (NWMs), which can exist in the
entire atmosphere, and their real values show that the amplitudes of these NWMs should
be unchanged in time.

The third property of the self-adjoint operators is that eigenfunctions µ(x, z) satisfying
the Equation (14) form a basis for a function space [29]. This means that any solution of
the wave problem (9) with initial conditions (6) can be represented as series expansions in
terms of the eigenfunctions corresponding to different NWMs.

The above discussed properties of the self-adjoint operators show that solutions to
the wave problem (9) can be obtained without usaging imaginary frequencies. This is a
common property of the wave problems involving the law of total energy conservation (7).

4. Eigenfunction Structure

To obtain the general solutions to the wave problem (9), one should study eigenval-
ues (frequencies) and eigenfunctions (NWMs) corresponding to (14). In the considered
stationary plane model, the background atmosphere is homogeneous along the horizontal



Atmosphere 2021, 12, 818 7 of 13

x-axis. The spatial structure of eigenfunctions for such model (9) may have the following
form [12]:

χ(x, z, t) =
1√
2π

exp(i(σt− kx))ζ(z), (15)

where k is real horizontal wavenumber and ζ(z) is a function describing the vertical
structure. Substitution of (15) to (9) leads to the equation for ζ(z) with the operator
depending on z only. The scalar product of any pair of functions ζ1(z) and ζ2(z) has
the form similar to (10) with integration over z only. After the substitution of(15), one
can transform (9) into a set of two ordinary differential equations for ρ0w and ρ0gHψ
and algebraic formulae relating these quantities with other wave hydrodynamic fields of
Equation (1). One can search for the vertical structure of the wave field in the form of

ρ0w = eS(z)W(z)
ρ0gHψ = eS(z)P(z)

(16)

where S(z) is an arbitrary function and the equations for the amplitudes of functions W(z)
and P(z) have the following form:

dW
dz = P i

gH

(
σ

γgH + k2

σ

)
−W

(
α

γH + dS(z)
dz

)
;

dP
dz = −P

(
g

γH + dS(z)
dz

)
+ iW

(
σ− αg

γσH

)
.

(17)

At high altitudes, in the quasi-isothermal layer (8), one can neglect the left-hand
terms of (17) and consider the coefficients in the right-hand side of (17) to be constant.
The function S(z) in (16) can be set arbitrarily, and in line with the traditional AGW
theory [12,14], it can be taken in the following form::

dS
dz

=

(
im− 1

2H∞

)
, (18)

where m is the parameter of this relation, which has the meaning of a vertical wavenumber
at high altitudes. In this case, (17) turns into an algebraic equation system

P∞
i

gH

(
σ

γgH∞
+ k2

σ

)
−W∞

(
γ−1
γH + im− 1

2H∞

)
= 0;

P∞

(
g

γH∞
+ im− 1

2H∞

)
+ iW∞

(
σ− (γ−1)g

γσH∞

)
= 0.

(19)

This system has nonzero solutions when its determinant is equal to zero, which gives the
following relation valid at z→ ∞:

σ2 =
1
2

γgH∞

(
k2 + m2 +

1
4H∞

2

)1±
√√√√1− 4(γ− 1)k2

γ2g2H∞
2
(

k2 + m2 + 1
4H∞

2

)2

 (20)

This formula is similar to the dispersion equation of the traditional AGW theory for the
isothermal plane model [14]. However, in the nonisothermal atmosphere, Equation (20)
could be valid only at high altitudes, where atmospheric parameters are slowly varying in z.
At other altitudes, the equation system (17) can be written in the form of integral equations

W = W∞ +
∫ z

∞

[
P i

gH

(
σ

γgH + k2

σ

)
−W

(
α

γH + dS(z)
dz

)]
dz

P = P∞ +
∫ z

∞

[
P
(

g
γH + dS(z)

dz

)
+ iW

(
σ− αg

γσH

)]
dz

(21)

where the upper boundary values W∞ and P∞ are related by the Equation (19), and for dS(z)
dz ,

one can use the relation (18). For the realistic nonisothermal atmosphere, the expressions
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under the integrals in (21) are not equal to zero, but all coefficients are limited and these ex-
pressions tend to zero at z→ ∞. Therefore, solutions to the integral equations (21) exist and
are limited. Taking a linear combination of two solutions having form of (16) and (18) and
corresponding to m = |m| and m = −|m|, one can satisfy the lower boundary condition (3).
The analysis of Equation (20) similar to [14] reveals for the quasi-isothermal upper layer (8)
the existence of two branches of continuous spectrum with real eigenvalues σ:

|σ| ≥ Ω∞ =

√
γg

4H∞
and |σ| ≤ N∞ =

√
(γ− 1)g

γH∞
, (22)

where Ω∞ and N∞ are respectively the acoustic cutoff and the Brunt–Vaisala frequencies
at z → ∞. Since Ω∞ > N∞, these two spectral branches are separated. Equation (22) is
similar to the definition of two AGW branches in the traditional isothermal model [14].
In addition, (22) shows that in the nonisothermal atmosphere with conditions (8) at high
altitudes, the boundaries of these two “global” AGW frequency branches are determined
by the value of N∞ and Ω∞ at z → ∞. However, as discussed in the next section, local
properties of wave modes depend on local atmospheric characteristics for all frequencies
belonging to both global branches (22).

Linear combinations of wave modes (15) belonging to the continuous spectrum of the
wave operator (9) can describe vertical wave propagation.

It is known that the spectrum of a self-adjoint operator, in addition to the continuous
part, can contain discrete sets of eigenvalues. Respective wave modes can correspond to
the trapped and surface atmospheric waves. The trapped waves can be formed by barriers,
which impede the vertical wave propagation, primarily, due to changes in H(z), leading to
the formation of waveguides. Near-surface waves, if any are, can propagate along and near
the boundary surface.We do not have rigorous proof, but many studies of realistic strati-
fications and equations for wave modes by WKB approximation show that trapped and
near-surface waves are absent for realistic stratifications satisfying Equation (8). As known,
in the isothermal atmosphere model, there is a near-surface wave—the Lamb wave [12].

5. Discussion

The above model does not account for dissipation, background wind, and atmospheric
rotation. However, analyses by [26] of the dispersion equation for AGWs dissipating due
to molecular and turbulent viscosity and heat conduction with total kinematic coefficient
showed that, at a first approximation, the dissipation may influence wave amplitudes,
keeping frequencies and wavenumbers unchanged. The background horizontal wind can
be taken into account by replacing the observable frequency σ in the above formulae with
the intrinsic frequency ω [14]:

ω = σ− u0k, (23)

where u0 is the projection of the background wind on the horizontal wave vector. Earth
rotation bound the AGW frequency spectrum to the limit [14]

|ω| ≥ f = 2Ω sin φ, (24)

where f is the Coriolis parameter, Ω is the angular frequency of the Earth rotation, and φ is
latitude. An analytical solution (21) is not possible for arbitrary background profiles and
wave parameters.

However, when vertical scales of changes in the background parameters are substan-
tially larger than vertical wavelengths, one can apply the simplified WKB method [14].
The application of this method to Equation (9) shows that the local values of the vertical
wavenumbers m are real when

|ω| ≤ N =

√
αg
γH

; or |ω| ≥ ΩA =

√
(α + 1)2g

aγH
(25)
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where N(z) and ΩA(z) are local Brunt–Vaisala and acoustic cutoff frequencies, respec-
tively; α(z) is the stratification parameter in (1). These expressions are in line with previous
estimations by [12,14] and show influence of the stratification of the nonisothermal atmo-
sphere on the threshold frequencies. Two main kinds of mesoscalel waves are usually
considered in the atmosphere, which are produced by different mechanisms. They are AWs
produced by compression pressure forces and IGWs produced by buoyancy forces acting
on the vertically moving air parcels. These kinds of forces are purified for short waves
(m2 � 2H−2) at high frequencies (ω2 � Ω2

A) for AWs and f 2 � ω2 � N2 [14]. The main
differences between these kinds of waves are in the directions of phase and group speed.
For AWs, both speeds are the same and directed perpendicular to wave fronts. IGWs have
perpendicular directions of phase and group speeds. The latter is directed along the wave
fronts inclined to the horizon and vertical phase velocity has directions opposite to those for
group velocity [32]. At other frequencies and wavenumbers, both pressure and buoyancy
forces producing acoustic-gravity waves are important. It is significant that the local AGW
properties depend on local parameters of waves and stratification.

According to (1) and (25) values of α(z), N(z) and ΩA(z) become smaller in the
atmospheric layers with dH(z)

dz < 0 and larger at dH(z)
dz > 0. Therefore, one can find

minimum Nmin and maximum ΩAmax of respective quantities:

Nmin = min[N(z), N∞]; ΩAmax = max[ΩA(z), Ω∞]. (26)

Wave modes corresponding to both branches (22) of the global spectrum of eigenvalues
of the wave operator (9) can have different properties at different altitudes. Waves with
f ≤ |ω| ≤ Nmin have properties of IGWs at all altitudes. In the atmosphere without
substantial instabilities, usually Nmin = N∞, therefore, this is valid for the entire low-
frequency global branch (22) of the wave operator. The high-frequency branch of (22) can
be subdivided into two subranges. At frequencies |ω| ≥ ΩAmax, wave modes everywhere
have properties of AWs. In the subrange Ω∞ ≤ |ω| ≤ ΩAmax, wave modes may have
properties of IGWs in some layers and properties of AWs in other layers depending on
local values of N(z) and ΩAmax.

Figure 1a and Figure 1 of the paper [25] corresponds to temperatures of 1500 K,
900 K, and 700 K at altitudes 500–600 km for high, moderate, and low solar activity at
F10.7 = 250, 120, 70 sfu, respectively. According to (22), this corresponds to values of
N∞ ∗ 103 ≈ 6.26, 8.08, 9.90 s−1 and Ω∞ ∗ 103 ≈ 6.31, 8.14, 9.98 s−1. One can see that the
global IGW spectral branch becomes more narrow at high solar activity than that at low
solar activity.

During active sun events, temperature in the upper thermosphere may dramatically
increase and even may have tendencies to quasi-linear increases in height (e.g., [33]).
One can anticipate that in this case the IGW global spectral branch may disappear at all
and practically wave modes having IGW properties at lower atmospheric layers would
have AW properties at high altitudes.

Since usually Ω∞ ≤ Ω(z), some wave modes with Ω∞ ≤ |ω| ≤ ΩAmax of high-
frequency branch (22) may have IGW characteristics in the lower and middle atmosphere,
but may turn into AW characteristics when frequency becomes when frequency becomes
|ω| > Ω∞ in the quasi-isothermal layer (8) at high altitudes. Such behavior was fre-
quently found during simulations of atmospheric AGWs with nonlinear 3D high-resolution
numerical model “AtmoSym” [34]. Figure 2 shows examples of plane waves (15) with
different periods τ = 2π

σ and horizontal wavelengths λx = 2π
k , which were simulated with

the AtmoSym high-resolution model for the background temperature profile shown in
Figure 1a. It was shown that the wave fields corresponding to the eigenfunctions of the
wave operator (15) can be obtained by specifying plane wave perturbations of vertical
velocity at the ground at model times t� τ after triggering the surface wave source [35].
Upper boundary conditions in the model were specified at altitude h = 600 km; at the
boundaries of the horizontal atmospheric regions having dimensions of 4λ, the periodical
conditions described by [27] were specified. The model grid is not equidistant and con-



Atmosphere 2021, 12, 818 10 of 13

tains 1536 nodes in altitude and 512 horizontal nodes. All other details of simulations are
identical to those described in [25,27].

Figure 2a corresponds to the wave mode with τ = 15 min, which belongs to the
low-frequency branch of the global AGW spectrum (22), because σ < N∞. The wave fronts
in Figure 2a are inclined to the horizon, the wave energy propagates upwards along the
wave fronts, and vertical phase speed is directed downward. This corresponds to the
properties of IGWs at all altitudes. Figure 2d corresponds to infrasound wave with period
τ = 0.5 min. In this case, the wave fronts in Figure 2d are also inclined, but in the directions
opposite to Figure 2a. The group and phase speeds have the same upward direction
perpendicular to the wave fronts. This behavior is characteristic to high-frequency AWs
with σ� ΩAmax in (26). In the upper atmosphere, the speed of sound becomes high due
to high temperature in Figure 1a, and the wave fronts in Figure 2d become quasihorizontal
with vertical wavelengths growing in altitude.

Figure 2. Simulated vertical velocity w for plane waves with period τ = 15 min, horizontal wavelength
λx = 90 km at time t = 40τ (a); τ = 7.5 min, λx = 45 km, t = 40τ (b); τ = 5 min, λx = 30 km, t = 50τ (c);
τ = 0.5 min, λx = 6 km, t = 90τ (d) for the background temperature profile shown in Figure 1.

Figure 2b,c represent intermediate wave periods. In Figure 2b for τ = 7.5 min, one
can see IGW structures similar to Figure 2a, but only up to altitudes 200–250 km, where
σ > ΩA(z) and the wave mode should belong to the local AW type. The vertical wave-
length of the corresponding AW in the upper atmosphere exceeds 270 km and respective
wave structures are not seen in Figure 2b above the 250 km altitude. Figure 2c is for smaller
τ = 5 min, and one can see complicated wave fronts directions at altitudes below 200 km,
which are inclined to the right (similar to Figure 2a) in the regions where σ < N(z) and
are inclined to the left (similar to Figure 2d) at layers with σ > ΩA(z). At altitudes above
200 km, the vertical wavelength of AWs is larger than 180 km and the distances between
quasihorizontal wave fronts in Figure 2c are high. The linear IGW theory predicts total
reflection of the wave energy at altitudes, where σ→ N(z). However, simulations with the
high-resolution model show that wave energy can tunnel through the boundaries between
the interfaces between IGWs and AWs and can reach high altitudes.

Examples in Figure 2 show that the analysis of the global spectrum of eigenvalues
and eigenfunctions of the wave operator (9) in the atmosphere having a quasi-isothermal
layer at high altitudes may help in interpreting numerical experiments and observations of
AGWs at all altitudes. Possible changes of the AGW properties at different altitudes should
be taken into account in parameterizations of AGW dynamical and thermal impacts in
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the numerical models of atmospheric circulation, dynamics and thermal regime. Further
simulations and observations are required for better understanding of AGW spectrum and
properties of wave modes in the realistic nonisothermal atmosphere.

6. Conclusions

A system of linearized hydrodynamic equations (1) describing small-amplitude wave
propagation in a nonisothermal plane atmosphere is mathematically analyzed for realistic
temperature stratifications (Figure 1). A mathematical problem of AGW propagation
from arbitrary initial perturbations (6) having limited energy (7) in the nonisothermal
atmosphere having a quasi-isothermal layer near the upper boundary of the model (8) is
considered. It is shown that this problem belongs to the group of mathematically well-
studied wave problems having self-adjoint evolution operators (9), which proves the
correctness (existence) of mathematical solutions for a wide range of possible atmospheric
temperature stratifications. Solutions of the problem can be considered as parameterized
by time eigenfunctions in an introduced Hilbert space.

A structure of continuous spectrum of eigenvalues of the wave problem of AGW
propagation from arbitrary initial perturbations (6) is analyzed. It is shown that wave fre-
quencies considered as eigenvalues of self-adjoint operator (14) are real and form two global
branches corresponding to high- and low-frequency AGW modes. These two branches are
separated, because in the upper quasi-isothermal layer, the Brunt–Vaisala frequency N∞ is
smaller than the acoustic cutoff frequency Ω∞. Usually, N∞ is smaller than any local value
of N(z) given by (25) at lower atmospheric altitudes. Therefore, all wave modes belonging
to the low-frequency global branch (22) have properties of IGWs in the entire altitude region.
The high-frequency global spectrum branch (22) can be subdivided into two subranges
depending on the local values of ΩAmax in (26). At frequencies |ω| ≥ ΩAmax, the wave
modes should have properties of AWs at all altitudes. In the subrange Ω∞ ≤ |ω| ≤ ΩAmax,
wave modes may have properties of IGWs at some altitudes and properties of AWs at other
altitudes depending on the local values of N(z) and ΩA(z). Results of simulations with the
high-resolution nonlinear 3D numerical model “AtmoSym” in Figure 2 confirm possible
changes of AGW properties at different altitudes in the nonisothermal atmosphere.

Possible changes of AGW properties at different altitudes should be taken into account
in parameterizations of AGW dynamical and thermal impacts in the numerical models of
atmospheric circulation, dynamics, and thermal regime. Further simulations and obser-
vations are required for better understanding of AGW spectrum and properties of wave
modes in the realistic nonisothermal atmosphere.
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