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Abstract: Estimation of Meteorological visibility from image characteristics is a challenging problem
in the research of meteorological parameters estimation. Meteorological visibility can be used to
indicate the weather transparency and this indicator is important for transport safety. This paper
summarizes the outcomes of the experimental evaluation of a Particle Swarm Optimization (PSO)
based transfer learning method for meteorological visibility estimation method. This paper proposes
a modified approach of the transfer learning method for visibility estimation by using PSO feature
selection. Image data are collected at fixed location with fixed viewing angle. The database images
were gone through a pre-processing step of gray-averaging so as to provide information of static
landmark objects for automatic extraction of effective regions from images. Effective regions are then
extracted from image database and the image features are then extracted from the Neural Network.
Subset of Image features are selected based on the Particle Swarming Optimization (PSO) methods to
obtain the image feature vectors for each effective sub-region. The image feature vectors are then
used to estimate the visibilities of the images by using the Multiple Support Vector Regression (SVR)
models. Experimental results show that the proposed method can give an accuracy more than 90%
for visibility estimation and the proposed method is effective and robust.

Keywords: visibility evaluation; feature extraction; particle swarm optimization; transfer learning

1. Introduction

Meteorological visibility can be used to indicate the transparency of air and quality
of atmosphere and this parameter is an important indicator for sea and air transport [1].
The accuracy of the visibility measurement is affected by a number of external factors such
as air lights, object available, light scatter and absorption and suspended particles in the
air [2,3]. The classical approach for Meteorological Optical Range (MOR) [4] measurement
includes the manual evaluation method in which visual observation of largest visible
distance by well-trained meteorological observer. The accuracy of manual evaluation
method is subjected the number of reference targets available in the environment [5] and
the judgement of observer [6]. Another popular visibility measurement method is the
visibility meter method in which the meter estimates the visible distance by measurement
of atmospheric transmittance or extinction coefficient [5]. The forward scattering and
back-scattering method [7] are among the most popular metering methods while most
visibility meter employs the forward scattering method as it can give reasonable accuracy
and performance with lower cost. However, forward scattering visibility meter with
high accuracy is very expensive and requires specialized installation and calibration skills
and usually this type of meter could give good accuracy with relatively short range only.
Therefore, there are many past research work for the visibility estimation based on digital
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image analysis methods. With the advancement of image processing and machine learning
methods, this approach can give reasonable accuracy with relatively lower cost.

Huang [8] proposed a new approach to restore visibility of outdoor digital images in
presence of haze, fog and sandstorms. Farhan [9] proposed a novel deep neural networks
method for enhancing visibility under foggy conditions. Ling [10] presented a deep
network for dehazing and to enhance the image quality. Ju [11] proposed a fast single
image defogging technique and an Atmospheric Scattering Model (ASM) to overcome
the problems of non-uniform illumination and multiple scattering. Zhu [12] proposed
a regression model to forecast the visibility in the Urumqi International Airport. Li [13]
proposed an intelligent digital method to estimate the visibility by Generalized Regression
Neural Network (GRNN).

Chen [14] proposed a novel Radial Basis Function (RBF) neural network method to
eliminate the haze and retain the visible structure’s edges and the image brightness. Hazar
Chaabani [15] proposed a deep learning method with feature extraction and Support Vector
Machine (SVM) to enhance safer driving under foggy weather. Palvanov [16] proposed a
Deep Hybrid Convolutional Neural Network (DHCNN) to estimate visibility under heavy
fog. Yang [17] propose a deep learning method to estimate the relative atmospheric visibility
from digital images. Choi [18] proposed a new method to estimate the visibilities from
digital images of Closed-circuit television (CCTV) under sea fog. Wenqi Ren [19] proposed
a Multi-scale Convolutional Neural Networks to remove the haze of the image. Lu [20]
proposed a hierarchical sparse representation method to estimate the image visibility.

Li [21] proposed a Deep Convolutional Neural Networks (DCNN) method to estimate
the visibility with insufficient visibility labeled data. Fatma [22] proposed a use AlexNet
Deep Convolution Neural Networks (DCNN) and Support Vector Machine (SVM) classifier
to estimate visibility under foggy weather. Chuang Zhang [23] proposed a visibility
prediction method by using multimodal fusion. Palvanov [24] reviewed the latest research
results on visibility estimation. Lo [25] proposed to use Multiple Support Vector Regression
(MSVR) model and deep learning method to estimate visibility.

Malm [26] has proposed to use cameras to monitoring visibility impairment. Bru-
ine [27] studied the impact of precipitation evaporation on the atmospheric aerosol distri-
bution. Hautiere [28] proposed a method for automatic fog detection of visibility distance
through use of an onboard camera. Yang [29] proposed a method for single image derain-
ing via visibility-enhanced recurrent wavelet learning. Cheng [30] proposed a variational
approach to atmospheric visibility estimation in the weather of fog and haze. Chaabani [31]
proposed to use neural network approach to visibility range estimation under foggy
weather conditions.

2. Methodology
2.1. Related Work

Some of the past research on deep neutral network methods for the visibility estima-
tion study on the network optimization, network performances improvement, shortening
the computation time [12,13] and accuracy improvement. However, accuracy improvement
may also increase the computation load [17]. Fusion methods for increasing the adaptabil-
ity of the extracted features has been proposed [21] but reductant features would affect
the training efficiency and estimation accuracy. This paper proposes a visibility estima-
tion algorithm for effective features extraction and minimizing reductant information for
meteorological visibility estimation.

For the transfer learning approach, Li [13] proposed to use a Convolutional Neural
Networks (CNN) network (AlexNet) to extract image features from low resolution Web-
cam images and the visibilities are estimated by using a Generalized Regression Neural
Network (GRNN). However, the estimation is relatively narrow, and the estimation accu-
racy is about 61.8% only. In order to improve the estimation accuracy, past research has
been accomplished for selecting image subregions based on prerequisite landmark target
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information and human judgement [25]. A single subregion is used in this the method and
the overall accuracy is about 87%.

In [13], the paper attempted to identify relevant feature from large number of ex-
tracted features from pre-trained Convolutional Neural Networks (CNN) model (AlexNet).
However, test accuracy was very low (61.8%) and it gave high prediction error and refer-
ence objects were required for classification. The case using the whole image as reference
has been considered in [13]. It has been found that subregions which focus on selected
landmark objects could give better accuracy as compared to the prediction results obtained
by the whole image.

In [25], subregions images were divided into different classes according to visibility
range. Features are imported into different SVM for visibility estimation [25]. However,
the subregions are selected based on human judgement of landmark objects and some
important image information or area may be ignored. The feature values at the output
layer of the VGG16 network were used for SVM parameters estimation. The case of using
the whole image without estimates’ fusion as reference has also been considered in [25] in
which the estimation accuracy was also about 87% but the method proposed in [32] could
give accuracy up to 90%.

In [17], model could be adapted for a small practical dataset with sparsely distributed
visibilities, but it costed high computation load and consumed long time for training. The
method employed manual annotations instead of sensors and the visibility assessment
range is relatively narrow.

In [24], Palvanov has proposed to use a deep integrated convolutional neural networks
(VisNet) method to estimate images visibility by using webcam weather images. The ANN
training is quite time-consuming as it has a preprocessing stage and several integrated
Convolutional Neural Networks CNN layers and the calculation time is relatively long.

In order solve the problem of automatic subregion selection, a novel deep learning
neural network method for the meteorological visibility estimation based on image fea-
ture fusion method has been proposed in [32], which can find the most effective image
subregions through image pre-processing and gray-level averaging process. In [32], the
pre-processing gray-weighed averaging was performed in the first step. The coordinates of
the effective subregions were located. The subregions’ image features are then extracted by
the deep learning neural network (VGG-16 network [33], VGG-19 network [33], DenseNet
network [34] and ResNet_50 network [35]). The subregions’ regression models and visibil-
ity estimates were obtained by the Support Vector Machine (SVM) methods. The overall
visibility estimates of the whole digital image was then obtained by the fusion method.

However, in [32], all the image feature generated by the pre-trained Artificial Neural
Network (VGG-16, VGG-19, DenseNet and ResNet_50 network) are used for the next stage
of SVM modelling. Large feature vector’s dimension will increase the computation load
significantly, especially in matrix calculations. The training time will also increase. It is
expected that not all the image features at the output layer of the ANN could provide
effective information for the estimation of visibilities. Therefore, this paper proposed a
modification of the algorithms in [32] which could reduce the dimension of the feature
vector. The evaluation in [32] was based on a dataset provided by the Hong Kong Observa-
tory (HKO) which measured the visibilities by the sensors and camera installed at fixed
locations selected by the HKO. In this paper, we attempt to evaluate the effectiveness of the
proposed method by using a self-built visibility monitoring system setup at the selected
campus site.

The procedures of the proposed method were summarized in Figures 1 and 2. For
the evaluation process shown in Figure 2, image pre-processing is first performed for all
the images in the database and a comprehensive gray-average image G[I] is obtained.
After applying the adaptive threshold algorithm on the gray-average image, locations of
the effective subregions (Rjk) were determined. Image features are then extracted from
the effective subregions by the pre-trained deep learning neural network. In Figure 2,
Rjk represents kth subregion of jth image, Fjk is feature vector generated from the kth
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subregion of jth image. Subset of image features at last output convolution layer of ANN
are selected according to the PSO particle Xi and the feature vectors (Fjk) of the sub-regions
are generated. According to the feature vectors of each sub-regions, the Support Vector
Regression models of the subregions and are then derived by the support vector machine
(SVM) and the visibility estimates of subregions (vjk) can be estimated. The visibility
weighted fusion method was then used to derive the final overall visibility estimates (vj) of
the whole image.
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Figure 2. Particle Xi Evaluation process.

2.2. Particle Swarm Optimization (PSO) Approach

For the feature extraction process, feature vectors are extracted by using the VGG-
16 [33], VGG-19 [33], DenseNet [34] and ResNet_50 [35] networks. However, we could
expect that not all the feature values at the output layers of the above networks are useful
for the visibility estimation. Therefore, we propose to use particle swarm optimization
(PSO) [36–38] method to select a subset of the output layers’ feature values to form the
feature vectors. For the i× particle of the PSO method, Xi = [Xi1, Xi2, . . . Xik . . . Xin],
represents a subset of the whole set of the feature values generated at the last convolution
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output layer of the ANN. The mean absolute error (MAE) is used as a PSO fitness function
(objective value) for the feature values’ selection process:

Φxi =
1
N

N

∑
j=1

∣∣ej
∣∣ = 1

N

N

∑
j=1

∣∣vj − v̂j
∣∣ (1)

where N is the total number of testing data sample, ej is the absolute error for the jth image,
v̂j and vj are the estimated and the actual visibility of the jth image, respectively. For the
ith PSO particle Xi, the feature vectors of each subregion (Fjk) are then generated for the
images. The overall visibility v̂j of the jth image is estimated based on the method in
Figure 2. The fitness value of Xi is then determined by Equation (1) and the binary PSO
method [39] is used to select the best candidate of Xi. The position (Xi) and velocity (Vi) of
ith particle are updated by:

Xi = [Xi1, Xi2, . . . Xik . . . Xin], Xik ∈ {0,1} (2)

Vi = [Vi1,Vi2, . . . Xik . . . Vin] (3)

Vik(t + 1) = ωVik(t) + C1 r1k (Pik − Xik) + C2 r2k (Pgk − Xik) (4)

Xik(t + 1) = Xik(t) + Vik(t + 1), i = 1 . . . Np (5)

where:

• Pi and Φibest are its own best experience, position and objective value.
• Pg and Φgbest are best experience of the whole swarm, position and objective value.
• ω is the inertia weight, C1 and C2 are cognitive and social acceleration coefficients.
• r1d and r2d are random numbers in [0,1]. Np is the population size.
• Xik ∈ {0,1}, Xik = 1 ⇒ the kth feature value is selected in the ith particle, the total

number of “1” in Xi vector is kept constant at 80% of maximum feature dimension (n).

It is expected that the set of feature vectors maps to the visibility value of vj. The
step-by-step procedures for the PSO method are summarized as follows.

1. Initialize the particles’ velocities Vi and positions Xi.
2. Updated particles’ Vi velocities and positions Xi by Equations (4) and (5).
3. Compare the estimated visibility (v̂j) with the actual visibility (vj) for all the database

images (j = 1 . . . N). Compute the objective values ΦXi for each particle Xi by
Equation (1).

4. Update the best position Pi and the best objective value Φibest for each particle Xi.
5. Update the global best position Pg and the global best objective value Φgbest.

6. Go back to step 2 to 5 for updating cycle until maximum generation is reached.

The fitness function of the PSO process is designed to select an optimal subset of the
feature values at the last convolution output layer of the ANN. The selected feature values
will be used to form the feature vectors for the visibility estimation.

2.3. Database Construction

This paper uses the image database provided by the self-built visibility monitoring
system and the images were collected at the campus site of Chu Hai College of Higher
Education. The image database composes of 6048 images collected by the automatic digital
camera with fixed viewing angle at the visibility measurement station of the campus site.
The visibility monitoring system operated from 9 a.m. to 6 p.m., July 2020 to November
2020 and the visibilities at campus site are measured by the computer-controlled visibility
meter. The block diagram and the equipment setup for the visibility monitoring system is
shown in Figure 3. Samples of database images are shown in Figure 4.
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2.4. Method Overview

In this paper, 6048 images with fixed viewing angle were used as the experimental
database. Due to the interference from the moving objects (e.g., hull and clouds in the
sky) in the image, the images need to be pre-processed before extraction of the image
features from the effective regions. After extracting the features from the effective subre-
gions, features values are then selected by PSO method and the resulting feature vectors
were imported into the Support Vector Regression (SVR) models for training and eval-
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uation. Compared with the general approach, the proposed method in this paper can
give more efficient and accurate visibility estimation by using the information from the
effective subregions.

2.4.1. Image Preprocessing

Due to the interference from the moving objects such as hull and the clouds in the
sky during the process of image collection, the moving objects will change their shapes
and positions in the images. Therefore, these images need to be preprocessed to identify
the locations of the effective subregions before feature extraction. First, gray weighted
averaging is applied to all the images in the database and a comprehensive gray average
image G[I] is obtained. After designing the threshold value, the images in the database
were adaptively segmented to obtain the subregion images. Samples of database images
with interference from moving objects were shown in Figure 5. As the viewing angle of the
camera was fixed while the background objects in the image (e.g., hull and clouds) changed
with time, the background moving objects will interfere the visibility evaluation and it
will cause error in visibility estimation. In order to obtain accurate visibility estimation, it
was necessary to eliminate these interferences and background objects from the images.
Therefore, it was preferable to extract the effective subregions with removal of redundant
background moving objects from the images.
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In Figure 5, the main components of the images were the sky, buildings and the hulls
in the water area. However, only buildings and stationary objects were relevant for the
visibility estimation while the water area and sky cannot provide useful information for
the visibility estimation. Buildings and fixed landmark objects could be considered as
static objects in the image while moving hull or clouds in the sky are dynamics objects
in the image. Visibility measurement can be considered as the largest distance that could
be observed from the viewing point. As the moving objects (e.g., sky, water and hull) are
changing in positions or shape with time, they should not be used as reference for accurate
visibility assessment. Therefore, we should filter out or remove the dynamic objects so as
to extract the effective area with static objects that can provide useful image features for
visibility estimation. The effective subregions cover the buildings or stationary structure
(e.g., island) at different landmark distances from the viewing point. In this paper, we have
used the gray average weighted image to locate the effective subregions of the images.

The gray-level average weighted image of the image database was obtained by ap-
plying the gray-level weighted average to each data point of the images in the database.
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Image with 1920 × 1080 pixels were used in this paper. The average gray level of the pixels
at coordinate (xn, ym) (n = 1 . . . nmax, m = 1 . . . mmax) given by Equation (6).

g(xn, ym) =
1
N

N

∑
j=1

gj(xn, ym) (6)

where gj(xn, ym) is the gray level of the jth image at coordinate (xn, ym) (j = 1 . . . N). An
example of the comprehensive gray average image was shown in Figure 6. The images
in the database are sorted according to their collecting time. These sequences of image
can provide the moving trajectories of the moving objects. After extensive simulations,
it has been found that moving objects could be filtered out if we perform the gray-level
averaging for these sequences of images. Fixed or static objects will be remained in the
comprehensive gray weighted average image. Image features in the effective subregions
with static objects could be extracted for visibility estimation. By performing gray-level
average processing on the images in the entire database, the overall gray-level average
image could be obtained.
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2.4.2. Effective Subregions’ Extraction

After obtaining the comprehensive gray average image G[I] of the image database, it
is necessary to extract the effective area in the images Ij. Image segmentation is a popular
method that can extract feature regions of an image. The adaptive threshold segmentation
method is used to extract effective subregions regions [32]. For different subregions of the
image, it can calculate different thresholds adaptively. Figure 7 showed the histogram of
the gray-level averaged image [37]. We used the gray-level distribution of the histogram to
determine the threshold value.
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After applying the adaptive threshold algorithm, we have found the best threshold
value (185) as shown in Figure 8. According to the selected threshold value, the coordinates
of the highest and lowest points of the effective area were located. As shown in Figure 6,
parallel lines were used to divide the effective area into subregions. The image feature will
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then be extracted as described in the next session. In summary, the step-by-step procedures
for the effective area extraction are described as follows.

1. Apply gray-level averaging to all the images in the database, derive the comprehen-
sive image G[I].

2. Generate the grayscale distribution of G[I], search the gray level distribution curve
from 0 to find the local maximum pk (or peak) of the distribution curve. The local
minimum between the first highest maximum p1 and the second highest maximum
p2 (or peak) is selected as the threshold gray level (δ).

3. Apply the adaptive threshold segmentation algorithm to G[I] to obtain an output
image. Scan the output image from the top to bottom to search the y level (ymin) for
which the pixel’s gray level start to exceed the threshold. Scan the output image from
bottom to top to search the y level (ymax) for which the gray level exceeds the threshold.

4. The image area S of gray level higher δ is then equally subdivided into subregions Si
(e.g., Nr = 5). Effective subregions are then extracted from the results of step 3.
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In step 4, the image area S is divided into Nr subregions. Selection of Nr should ensure
the subregion to match with (or greater than) the ANN’s input requirement so that neural
network function could be fully utilized and the estimation accuracy could be achieved by
effective fusion process. A small value of Nr (Nr ≤ 3) will reduce the level of fusions and
the estimation accuracy, and the proposed method will be similar to a non-fusion method
single image approach. Too high value of Nr will cause the subregion images’ size smaller
than the input requirement (224× 224) for the ANN’s feature extraction and the pre-trained
ANN network function may not be fully utilized. With an image width of 1920 as described
in the Section 3, Nr can be chosen between 5 to 8. In this paper, Nr is selected as 5 to ensure
that the subregion images’ size is greater than the ANNs’ input requirements, the ANNs’
function could be fully utilized and the accurate estimation results could be achieved.

2.4.3. Region Feature Extraction and Visibility Evaluation

After segmenting the sub-regions, the features of the sub-regions need to be extracted
to provide input variables for subsequent visibility estimation. The image of the sub-region
contains lots of information and features, including features related to visibility estimation
and other redundant information due to interference. If all the information of the sub-
region image was directly mapped with the visibility value, the amount of data calculation
for training was too large and the redundant information may cause errors in the final
results. Therefore, feature extraction was an indispensable and important step for the
image of the sub-region. Feature extraction was one of the most basic operations in image
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processing. It considered the image as a data set and pixels’ features as elements. The
process aims at finding the elements in the data set that could give the best representation of
the data characteristics. According to different needs of image classification and parameter
evaluation, the method and dimension for feature extraction could be greatly different. In
this paper, four common deep learning feature extraction methods based on the Keras-
platform were used. These methods were (VGG)-16 network, (VGG)-19 network, DenseNet
network and ResNet_50 network. The extracted features were used as the input variables
for the visibility evaluation model, and the variables were used as input for the Support
Vector Regression model, and then visibility evaluation was performed on the effective
subregions. However, as the number of feature values at the output layer of the above
ANN is still large, the computation load for the visibility estimation algorithm is quite high.
Therefore, we proposed to use PSO method to find the optimal subset of the feature values
at output convolution layer of ANN for visibility estimation.

3. Experiment Results and Analysis
3.1. Data and Equipment

In order to evaluate the method in this paper, the experiments were conducted on
servers using 2.6 GHz Intel CPU i7-8700 and 32 GB memory. Here, the image resolution is
1920 × 1080 pixels. The true value of visibility for each image to be trained comes from
the visibility meter. The visibility monitoring system has collected 6696 images during
the data collection period. Images with too low light intensity (e.g., during the dawn and
evening), out of focus images and images taken at the instant that the visibility meter
feedback with error messages are removed from the database. The final database consists
of a total number of 6048 images. We have selected 4536 images randomly as training set
and the remaining 1512 images are selected as test set. The distribution of visibility of the
database is shown in Table 1 and Figure 9.

Table 1. Distribution of Visibilities for the image samples.

Visibility Range (km)

10–14 15–20 21–24 25–30 31–34 35–40

No. of training set sample images 270 527 700 884 915 735
No. of test set sample images 135 264 350 442 458 368

405 791 1050 1326 1373 1103
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3.2. Result and Analysis

In the experiments, the estimated visibility values of the test set images were counted
and analyzed for performance evaluation and the training set images are used for model
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training. In order to evaluate the performances of the four neural networks, image features
were extracted from different neural networks and selection of feature values is optimized
by the PSO algorithm. Feature vectors are then formed and imported into the support
vector machine for regression analysis. The results of different network for different
visibility ranges were shown in Section 3.2.1.

3.2.1. Comparison of Different Feature Extraction Networks

Figure 10 showed the test results of the visibility evaluation of these four networks.
As shown in Table 2, the accuracies (goodness of fit) of the four network models were
shown, respectively. The PSO method can reduce the dimension of the feature vectors and
the accuracy can be kept at about 90%.
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Table 2. Experimental results of the proposed method by using different networks. (* refence data
without PSO selection).

Network Overall Accuracy (%)

VGG-16 (%) 90.26→ (* 90.78)
VGG-19 (%) 90.32→ (* 90.85)

DenseNet (%) 91.46→ (* 91.86)
ResNet_50 (%) 92.72→ (* 92.23)

From Figure 10, we could see that the test results of each network were quite good,
and the accuracy of their respective visibility numerical estimates were all above 90%.
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Even though the test results of the four networks were above 90%, it could be seen from
the figure that the numerical points of DenseNet network and ResNet_50 network were
more concentrated near to the region around the datum line, which showed that the use
of DenseNet network and ResNet_50 network to extract image features was more robust
and stable.

3.2.2. Performance Comparison of Different Feature Extraction Networks

Table 3 showed the experimental results of different networks for different visibility
ranges. For the reason that ResNet_50 and DenseNet networks were more sensitive to
image attenuation and could extract valid features from images at different levels, it could
increase the network’s extraction rate of valid features and thus could be more sensitive
to acquiring valid features for visibility estimation regression. ResNet_50 network was
recommended for image feature extraction, especially in the low visibility range, as it was
more stable. ResNet_50 network had greater stability and robustness in other ranges. This
was due to the fact that more low-visibility image samples were included in the image
database, and low-visibility images contain more sensitive image structure and detail.

Table 3. Experimental results of different networks for different visibility ranges.

Visibility Range (km)

Network 11–20 21–30 31–40

VGG-16 (%) 91.42 90.89 89.66
VGG-19 (%) 91.67 90.93 89.21

DenseNet (%) 94.34 93.41 91.23
ResNet_50 (%) 94.71 93.91 91.32

Static objects observed in different visibility ranges can be located by performing the
gray level averaging for images with different visibility ranges. While gray averaging can
filter out the moving objects and objects outside the visibility range will not be appeared
on image photo. We can detect observable objects for different visibility ranges by using
the grey averaging and the threshold segmentation method [32]. In order to facilitates
the grey-averaging preprocessing steps, images could be sorted for different visibility
ranges and subregions are extracted for the training of SVR models. Estimated visibilities
obtained by multiple SVR models are fused together to provide more accurate piecewise
approximation for the mapping surface between image features’ values and visibilities.
PSO method can reduce the computation load of the algorithm by optimizing the dimension
of feature vectors.

4. Conclusions

There are many past research on the estimation of Meteorological visibility from
image characteristics is a challenging problem in the research of meteorological parameters
estimation. Meteorological visibility can be used to indicate the weather transparency
and this indicator is important for transport safety. Most of the past research has not
focused effective feature and subregion extraction. This paper proposes a modified PSO
method for effective feature extraction and visibilities estimation. Effective subregions are
determined by grey averaging and adaptive threshold segmentation method. The selection
of feature values at the output layer of ANN is optimized by PSO. The feature vectors
are then imported to the SVR models and the overall visibilities is found by apply fusion
method on the visibilities estimates of each sub-regions. Furthermore, the grey weighted
averaging can remove the interference of moving objects. Feature vectors are formed by
the selecting subset of the output feature values of the ANN (Densest, ResNet_50, Vgg16
and Vgg19). Overall visibilities estimate is found by applying the fusion methods to the
estimated visibilities from the subregions.

The accuracy of visibility estimation depended on the number of landmark object
available for the overall process. Such external factor is depended on the environment of
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the images collection site. This paper proposed a modification of the algorithms in [32]
which could reduce the dimension of the feature states vector. Furthermore, we attempt to
evaluate the effectiveness of the proposed algorithm by using a self-built visibility meter
and digital camera setup at the selected campus site. This paper summarizes the outcomes
of the experimental evaluation of a PSO based transfer learning method for meteorological
visibility estimation method. Image data are collected at fixed location with fixed viewing
angle. The database images were gone through a pre-processing step of gray-averaging
so as to provide the information for automatic extraction of effective regions from images.
Effective subregions are extracted from image database and the image features are then
extracted from the pre-trained Neural Network. Subset of Image features at output layer of
ANN are selected based on the Particle Swarming Optimization (PSO) methods and the
image feature vectors for each effective sub-region are generated. The image feature vectors
are then used to estimate the visibilities of the images by using the Multiple Support Vector
Regression (SVR) models. Experimental results show that the proposed method can give
an accuracy more than 90% for visibility estimation and the proposed method is effective
and accurate.
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