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Abstract: Spring frosts damage crops that have weakened freezing resistance after germination. We
developed a machine learning (ML)-based frost-classification model and optimized it for orchard
farming environments. First, logistic regression, decision tree, random forest, and support vector
machine models were trained using balanced Korea Meteorological Administration (KMA) Auto-
mated Synoptic Observing System (ASOS) frost observation data for March from the last 10 years
(2008–2017). Random forest and support vector machine models showed good classification perfor-
mance and were selected as the main techniques, which were optimized for orchard fields based on
initial frost occurrence times. The training period was then extended to March–April for 20 years
(2000–2019). Finally, the model was applied to the KMA ASOS frost observation data from March
to April 2020, which were not used in the previous steps, and RGB data were extracted by digital
cameras installed in an orchard in Gyeonggi-do. The developed model successfully classified 117 of
139 frost observation cases from the domestic ASOS data and 35 of 37 orchard camera observations.
The assumption of the initial frost occurrence time for training helped the most in improving the
frost-classification model. These results clearly indicate that the frost-classification model using ML
has applicable accuracy in orchard farming.

Keywords: classification model; frost prediction; image processing; machine learning; orchard

1. Introduction

Frost is a phenomenon in which water vapor in the atmosphere crystallizes when the
temperature falls below zero. It occurs at a small scale near the surface and is difficult to
predict, owing to its complicated growth process and nonlinear interaction between the
contact surface and atmosphere. Late frost occurs in spring and considerably damages
crops that have weakened freezing resistance after germination. As the risk of late-spring
frosts increases, it is important to predict spring frost and share the information with
farmers. To this end, Mosedale et al. [1] expected the risk of late-spring frosts to increase
because of the earlier timing of grapevine bud break in the UK under future climate
scenarios. A temperature-based frost index was then developed for frost warnings [2–4].

Chevalier et al. [5] developed a frost-alarm system using a fuzzy expert model. Along-
side the development of artificial intelligence (AI), studies have been conducted to predict
frost days by applying weather information to machine learning (ML) techniques [6–8]. In
recent years, there have been attempts to mitigate frost risk with hybrid AI methods that
combine various internet-of-things (IoT) sensors [9–12]. Most ML models using the IoT
showed good accuracy and precision, but IoT devices were mainly used in greenhouses,
owing to the availability of internet and power.

Radiation frost is caused by radiative cooling on the surface of the ground at night, and
advection frost is caused by the advection of cold air [13,14]. South Korea comprises small
and complex agricultural lands, and many corresponding studies on frost mechanisms and
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trends have been conducted. Kwon et al. [15] analyzed the meteorological characteristics
of frost occurrence over the past 30 years and concluded that frost is predominantly caused
by radiative cooling in South Korea. The frost predominantly occurs from October to
April, with the first and last frost days occurring late. Notably, the number of late-frost
phenomena tends to increase; thus, it is difficult to predict crop damage caused by late
frost [16]. Bae et al. [17] analyzed the temporal and spatial variations in the number of
frost days using a climate-change scenario. As in previous studies that used observational
data, the first frost days were delayed, and the late-frost days arrived sooner than expected.
Kim et al. [18] expected that the flowering period for the growth of pears, apples, and
peaches would occur earlier if it were calculated based on the climate-change scenario.
This increases the frost risk for flowers that have very weak freezing resistance compared
with the dormant period, as deviations in low temperature increase after flowering.

Using frost observation data in South Korea for learning, Lee et al. [19] attempted
to use logistic regression (LR) and decision tree (DT) techniques to predict frost, and
Kim et al. [20] estimated the occurrence of frost using artificial neural networks, random
forests (RFs), and support vector machines (SVMs). However, these studies did not verify
the proposed models using field observations and had a low temporal resolution in terms
of daily frost prediction. One of the most common anti-frost techniques, sprinkler irrigation,
requires approximately 2.5–5.1 mm/h of water. Additionally, for the wind–machine tech-
nique, a 65–75-kW power source is needed for each 4.0–4.5 ha [21]. Therefore, predictions
were insufficient to mitigate frost risks for orchards from the viewpoint of management.

In this study, we employ four ML methods (i.e., LR, DT, RF, and SVM) to develop
frost-classification models based on meteorological data uniformly observed at the 24 h-
manned synoptic weather observation stations of the Korea Meteorological Administration
(KMA) Automated Synoptic Observing System (ASOS). Subsequently, the model with the
highest classification accuracy is ultimately selected and optimized for application in actual
farming environments. Then, the performance of the developed model is verified using the
KMA ASOS frost observation information from March to April 2020 and the frost image
information obtained from an orchard in Gyeonggi-do, Korea.

2. Data and Frost-Classification Model
2.1. Input Data

Currently, frost observations in South Korea are performed twice daily (a.m. and
p.m.) at 22 stations of the 24 h-manned synoptic weather observation stations of the KMA
ASOS. Data were collected from a total of 19 inland stations (Figure 1). Nighttime was set
as 17:00–06:00 LST instead of 18:00–06:00 LST for the link up with the 17:00 LST weather
forecast of KMA. Focusing on the late frosts in spring, which directly cause significant
damage to crops, nighttime (17:00–06:00 LST) temperature, subzero duration, precipitation,
wind speed, humidity, snowfall, three-hourly fresh snowfall, and ground temperature over
10 years (2008–2017) were used for model training. A value of “1” was assigned collectively
if frost was observed in the morning from 17:00 LST on the previous day to 06:00 LST
on the present day, and a value of “0” was assigned otherwise. The subzero duration is
a secondary variable that uses temperature. It is a value obtained by accumulating the
duration of the subzero temperature from 17:00 LST on the previous day to 06:00 LST on
the present day in 1 h increments. When the observed temperature is restored to above
zero, it is initialized to “0”. The idea was devised considering that, for frost crystals to
develop into a frost layer, they must be cooled for a critical time [22,23] based on the frost
index [2–4] using a subzero duration.
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Figure 1. KMA 24 h-manned synoptic weather observation stations ((left), red dots) and field verification sites ((right), 
blue dots). 

For onsite verification, orchards in Buk-myeon (point A in Figure 1; located in 
Gapyeong-gun, Gyeonggi-do) and Wabu-eup (point B in Figure 1; located in Namyang-
si, Gyeonggi-do), each installed with an automatic weather station (AWS), were selected 
as verification target sites. To observe the frost phenomenon, the fruit’s growth stage, and 
farming activities that can affect weather observation, a camera was installed on the AWS 
to obtain 2560 × 1440-pixel images 10 times daily (05:00, 06:00, 07:00, 08:00, 09:00, 10:00, 
12:00, 14:00, 16:00, and 18:00 LST) (Figure 2). Meteorological observation data for the pe-
riod March–April 2020 from the verification target sites, the Buk-myeon station in 
Gapyeong-gun and Wabu-eup station in Namyang-si, were provided by the Gyeonggi-
do Agricultural Research and Extension Services (GARES) (http://nongup.gg.go.kr (ac-
cessed on 29 June 2021)) and were used for verification. 

 
Figure 2. AWS and digital camera (red circle) at the Gapyeong (A) and Namyangju (B) sites. 

2.2. Preprocessing of Input Data 
Data quality is the most important factor in classification algorithm training. As an 

input data preprocessing step to increase the frost occurrence classification accuracy of 
the model, errors and missing values were processed, and data were categorized. By re-
ferring to the quality-control (QC) flag (0: normal, 1: error, 9: missing), time data, includ-
ing missing and error values of precipitation, wind speed, humidity, and ground temper-
ature, were deleted. Snowfall and three-hourly fresh snowfall data with no observations 
(null) were replaced with “0.” According to Eltahir [24], wet soil moisture conditions tend 

Figure 1. KMA 24 h-manned synoptic weather observation stations ((left), red dots) and field verification sites ((right),
blue dots).

For onsite verification, orchards in Buk-myeon (point A in Figure 1; located in
Gapyeong-gun, Gyeonggi-do) and Wabu-eup (point B in Figure 1; located in Namyang-si,
Gyeonggi-do), each installed with an automatic weather station (AWS), were selected as
verification target sites. To observe the frost phenomenon, the fruit’s growth stage, and
farming activities that can affect weather observation, a camera was installed on the AWS
to obtain 2560 × 1440-pixel images 10 times daily (05:00, 06:00, 07:00, 08:00, 09:00, 10:00,
12:00, 14:00, 16:00, and 18:00 LST) (Figure 2). Meteorological observation data for the period
March–April 2020 from the verification target sites, the Buk-myeon station in Gapyeong-
gun and Wabu-eup station in Namyang-si, were provided by the Gyeonggi-do Agricultural
Research and Extension Services (GARES) (http://nongup.gg.go.kr (accessed on 29 June
2021)) and were used for verification.
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Figure 2. AWS and digital camera (red circle) at the Gapyeong (A) and Namyangju (B) sites.

2.2. Preprocessing of Input Data

Data quality is the most important factor in classification algorithm training. As an
input data preprocessing step to increase the frost occurrence classification accuracy of the
model, errors and missing values were processed, and data were categorized. By referring
to the quality-control (QC) flag (0: normal, 1: error, 9: missing), time data, including missing
and error values of precipitation, wind speed, humidity, and ground temperature, were
deleted. Snowfall and three-hourly fresh snowfall data with no observations (null) were
replaced with “0.” According to Eltahir [24], wet soil moisture conditions tend to enhance
the net terrestrial radiation at the surface via cooling, and the precipitation increases the

http://nongup.gg.go.kr
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water content in the soil. KMA’s observation policy distinguishes rain days and no-rain
days. Precipitation data have a null value for a no-rain day, whereas 0 mm signifies
light rainfall that cannot be measured by the sensor. Precipitation is classified into three
categories to consider ground conditions that classify precipitation and non-precipitation
time, and to use these as measures to represent sky conditions. Among the observations
with a normal QC flag (0), when there was no observed precipitation value (null), it was
classified as “no rain”, whereas observations of 0 mm or more, and less than 1 mm, were
classified as “light rain”. Those 1 mm or more were classified as “rain” (Table 1). The
heat loss on the land surface is caused by evaporation of water on the wet surface caused
by light rain. Therefore, light rain can contribute to nighttime cooling compared to a
dry surface. On days with continuous precipitation, there are overcast clouds and high
relative humidity; such days were classified as “rain” because they were distinguished
from weather conditions prone to radiation frost.

Table 1. Categorization of precipitation observations.

Observations Definition Variable
NA No rain 0

0 ≤ x < 1 mm Light rain 1

1 mm ≤ x Rain 2

The criteria for “balanced” and “unbalanced” data depend on the amount of frost
observation data. All data for the past 10 years to be used for model development were
unbalanced data because they had approximately 5.5-times more days of non-frost occur-
rence than frost events (Figure 3A). When the frost and non-frost data sets are 50:50, the
data are balanced. The training data set in the classification model using ML techniques
considerably affects model accuracy, especially in the case of classification models, in which
the importance of balanced data is very high. Unbalanced data can degrade model accuracy
because more data are trained on days when frost does not occur during classification
model training [25,26]. As general methods of resolving data imbalance, more weight was
given to the side with less data, and techniques, such as up-sampling, down-sampling, and
the synthetic minority over-sampling, were applied to adjust and balance data [27]. To
resolve imbalanced input data, the ratio of frost events was adjusted to 50:50 by applying
the down-sampling method, which completely preserved the observed values of frost
days (Figure 3B). The balanced data were again divided into training and testing at a ratio
of 70:30 by applying a randomization method. They were then used to quantitatively
diagnose performance by calculating the evaluation indicators of model training and those
of the trained model. Furthermore, verification with unbalanced data that had not been
sampled was performed to verify the performance of the model, as frost phenomena occur
disproportionately in the real world.

1 

 

 

 
Figure 3. The number of events in unbalanced data set (A) and balanced data set (B).
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2.3. Variable Setting and ML Technique

The complex model proposed in this study includes eight variables of input data
(i.e., temperature, subzero temperature duration, precipitation, wind speed, humidity, snowfall,
three-hourly fresh snowfall, and ground temperature) based on the observation factors of the
KMA ASOS. The simple model includes five variables of input data (i.e., temperature, subzero
temperature duration, precipitation, wind speed, and humidity), which are major observation
factors of AWS. Originally, a model in which dew-point temperature was included as a
variable was selected; however, the variance inflation factor was the highest at the dew-
point temperature in the multicollinearity test. Therefore, models with the corresponding
factor removed were selected. The frost-classification model was built in the R language;
the packages used according to the ML technique are summarized in Table 2 [28–33].

Frostcomplex = temperature + subzero duration + precipitation
+wind speed + humidity + snow f all+

three-hourly fresh snowfall + ground temperature
(1)

Frostsimple = temperature + subzero duration + precipitation
+wind speed + humidity

(2)

Table 2. Package names and source codes for each classification method.

Classification Method Package Name in R Source Code

Logistic regression caret https://CRAN.R-project.org/package=caret
(accessed on 29 June 2021)

Decision tree
tree https://CRAN.R-project.org/package=tree

(accessed on 29 June 2021)

rpart https://CRAN.R-project.org/package=rpart
(accessed on 29 June 2021)

party https://CRAN.R-project.org/package=party
(accessed on 29 June 2021)

Random forest rndomForest https://CRAN.R-project.org/package=rndomForest
(accessed on 29 June 2021)

Support vector machine e1071 https://CRAN.R-project.org/package=e1071
(accessed on 29 June 2021)

Frost-classification models classify the presence or absence of frost phenomena. DT [34],
RF [35,36], and SVM [37] methods are known to perform well with binary classification
problems. LR models have lower predictability and accuracy than other ML classification
methods; however, the prediction result is a probability value rather than a zero or a one.
Therefore, it has the advantage of allowing the threshold to be adjusted by verification to
improve the prediction accuracy of frost occurrence.

We employed the tree, rpart, and party packages in the R language for DT. Each
package differs in terms of its pruning method. The tree package uses the binary recursive
partitioning method, and the rpart package uses the CART methodology to determine
the pruning variables based on entropy and Gini coefficients. The party package uses the
methodology of unbiased recursive partitioning based on permutation tests to determine
the variables to be pruned based on the importance that passed the P test. The Gaussian
radial basis function kernel is used for SVM.

2.4. Model Evaluation
2.4.1. Performance Evaluation Indicators

In this study, a confusion matrix (Table 3) was prepared to evaluate the performance of
the frost-classification model. The matrix comprises data of unclassified frost (true negative
(TN)), classified frost (false positive (FP)) when frost is not observed, unclassified frost (false

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=party
https://CRAN.R-project.org/package=rndomForest
https://CRAN.R-project.org/package=e1071
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negative (FN)), and classified frost (true positive (TP)) when frost is observed. As frost is
classified as the presence or absence of the phenomenon, accuracy (ACC), false-alarm ratio
(FAR), probability of detection (POD), and critical success index (CSI) are selected as the
verification indicators. Their respective equations are as follows:

ACC =
TP + TN

TP + TN + FN + FP
, (3)

FAR =
FP

TP + FP
, (4)

POD =
TP

TP + FN
, (5)

CSI =
TP

TP + FP + FN
. (6)

Table 3. Confusion matrix.

Observation
No Frost Frost

Classification
No Frost TN FN

Frost FP TP

The ACC is the ratio of the correct classification in the total classification, and the FAR
is the number of false alarms. The POD is the ratio of the classified frost by the model
to the observed number of the actual frost occurrence. The CSI is the hit rate of frost
occurrence classifications excluding TN. In natural conditions, there are far fewer cases of
frost phenomena than cases of nonoccurrence and, because predicting frost occurrence is
more important than predicting nonoccurrence, the CSI is considered the most important
indicator. The area under the curve (AUC) of the receiver operating characteristic curve
was calculated. The AUC had a value between 0.5 and 1; the closer it is to 1, the better the
model performance is [38].

2.4.2. Performance Result

The confusion matrix (Table 4) and verification index (Table 5) for the test data for
each classification model were calculated. The results of the DT technique were denoted
Tree 1, Tree 2, and Tree 3 in the order of tree, rpart, and party packages. In the case of the
tree package (Tree 1), the same confusion matrix was obtained for the complex model and
the simple model.

The ACC of each derived classification model was particularly high in the SVM
complex model, and that of the RF complex model was the second highest. The FAR was
the highest for the RF complex model, and the POD was the highest for the SVM complex
model. The CSI was in the following order: SVM (0.637), RF (0.62), LR (0.605), and DT
series (Tree 3: 0.596, Tree 2: 0.575, Tree 1: 0.568). The AUC was in the order of RF (0.853),
tree 3 (0.836), LR (0.816), SVM (0.771), Tree 2 (0.753), and Tree 1 (0.708).

For all techniques, the complex model had a higher verification index value than
the simple model; however, if the input data of the frost-classification model were to be
replaced with the numerical weather prediction output value in the future to account
for the numerical model error, the reliability would not necessarily increase with the
input variables.

When the performance indicators were synthesized according to the test data, the
RF and SVM techniques were determined to be the most appropriate for frost classifica-
tion, They were selected as the final classification techniques for the frost-classification
model (v1.0).
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Table 4. Confusion matrix of original version for each classification model.

Observation
Model Type Classification No Frost Frost

Logistic
Complex No frost 2176 652

Frost 1043 2591

Simple No frost 2248 794

Frost 971 2449

Tree 1
Complex No frost 2100 764

Frost 1119 2479

Simple No frost 2100 764

Frost 1119 2479

Tree 2
Complex No frost 2485 957

Frost 734 2286

Simple No frost 2295 842

Frost 924 2401

Tree 3
Complex No frost 2463 860

Frost 756 2383

Simple No frost 2509 990

Frost 710 2253

RF
Complex No frost 2467 767

Frost 752 2476

Simple No frost 2455 903

Frost 764 2340

SVM
Complex No frost 2382 645

Frost 837 2598

Simple No frost 2396 820

Frost 823 2423

Table 5. Performance evaluation indicators of the original version for each classification model.

Model Type ACC FAR POD CSI AUC

Logistic Complex 0.738 0.713 0.799 0.605 0.816

Simple 0.727 0.716 0.755 0.581 0.798

Tree 1
Complex 0.709 0.689 0.764 0.568 0.708

Simple 0.709 0.689 0.764 0.568 0.708

Tree 2
Complex 0.738 0.757 0.705 0.575 0.753

Simple 0.727 0.722 0.740 0.576 0.750

Tree 3
Complex 0.750 0.759 0.735 0.596 0.836

Simple 0.737 0.760 0.695 0.570 0.826

RF
Complex 0.765 0.767 0.764 0.620 0.854

Simple 0.742 0.754 0.722 0.584 0.834

SVM
Complex 0.771 0.756 0.801 0.637 0.771

Simple 0.746 0.747 0.747 0.596 0.746
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3. Application and Optimization

Frost is a meteorological phenomenon that is significantly affected by topography
and the environment on a small spatial scale. The frost-classification model developed in
this study aims to predict frost in the natural environment of an orchard, not a weather
station, which minimizes the topography and environment. To produce frost information
at a level that can be used on farms, the frost-classification model (v1.0) based on the two
ML techniques selected in Section 2.4 (RF and SVM) was optimized and applied to the
orchard in the pilot service target site (Gyeonggi-do) to verify the model performance.

3.1. Model Optimization Method

To optimize the ML-based frost-classification model and improve its classification
performance, first, an assumption was introduced regarding the initial frost occurrence
time of the frost occurrence date, which was used as the learning data. Second, the
night minimum temperature variable was added to the learning data. Third, the period of
observation data used for learning was expanded from March for the previous 10 years
(2008–2017) to March–April for 20 years (2000–2019). Sections 3.1.1–3.1.3 provide detailed
descriptions of each method.

3.1.1. Assuming the Initial Time of Frost Occurrence

Frost observations data in South Korea show that frost occurs in the morning and
afternoon. As the time when the frost will occur cannot be known from the observation
information, the pre-optimization model (v1.0) had the same value as the frost observation
information for all night times when constructing the hourly training data. The result
classified by the model trained in this way can be viewed as information regarding the
occurrence of frost the next morning, not as a classification of the occurrence of frost over
time. Considering that several previous studies assumed frost days to be days when the
minimum temperature was below 0 °C [5,7,14–17], the time at which the temperature
reached 0 °C at night was assumed as the initial frost occurrence time when frost was
observed in the morning (Figure 4). It was also assumed that frost only existed at 06:00
LST, the last time of the input data for the day, when the temperature remained higher than
0 °C.
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3.1.2. Minimum Temperature at Night

When analyzing the verification results of the frost-classification model in real cases,
a factor that affected the classification accuracy of the model was the occurrence of frost
when the daily minimum temperature was higher than 0 °C. Such cases often occurred,
and the cause is surmised to be errors arising from the difference between the height
of the observation station thermometer and the location at which the frost is observed;
the observation data consist of each hourly air temperature, and the lower temperatures
that could occur between observation times were not considered. To compensate for
this, the minimum night temperature was added as an input variable to the training
data. The lowest value among the minimum daily temperature and the value of the hourly
temperature at nighttime (17:00–06:00 LST) observed at the observatory was used as the
minimum nighttime temperature. The minimum daily temperature occurred primarily
in the morning; however, to reflect cases where the temperature was rather high in the
morning, the lower value among the values compared with the hourly temperature during
the nighttime was used.

3.1.3. Extension of Training Period

Increasing the number of training data is a simple method to improve the performance
of the ML model. However, increasing the training too much can lead to overfitting
and could deteriorate the model’s performance. For this reason, the training data, which
consisted of weather observation data for March for 10 years, were gradually extended to
weather observation data for March and April for 20 years (2000–2019). Although there
are a few days when frost occurs in April, the training period was extended because April
is the flowering period of fruit trees in South Korea, and the frost causes considerable
damage. Initially, the goal of the training-period expansion plan was to include data for
30 years (1990–2019), but observations before 1999 had a number of missing temperature
values for more than 2 h in a row. As the missing temperature would significantly affect the
calculation results of the subzero duration and the assumption of the initial frost occurrence,
weather observation data since 2000 were used.

3.2. Optimization Results: Case Period March–April 2020

Table 6 summarizes the contents of the phased optimization of the frost-classification
model. The performance evaluation index values for each version, which were calcu-
lated using the test data reconstructed as balanced data, are shown in Table 7. In the
pre-optimization version (v1.0), when the initial frost occurrence time assumption was
added (v2.0), all indicators were significantly improved. Furthermore, the difference in
performance between the complex model requiring eight input variables, and the simple
model requiring five input variables, for the same ML technique, was also considerably
reduced. The performances of the ML techniques were almost identical. In Version 2.1,
in which the training period was extended to March–April 2008–2019, all verification
indicators of both ML techniques were improved. Version 2.2, in which the minimum
temperature at night was added to the training to increase the classification accuracy for
cases in which frost was observed when the daily minimum temperature was higher than
0 ◦C, provided a slight improvement in accuracy compared with Version 2.1. In Version 2.3,
in which the learning period was extended from 2008–2019 to 2000–2019, the verification
index decreased compared with the previous version.
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Table 6. Update note of frost-classification models.

Version Update Note
1.0 Original version

2.0 Assumption of initial frost occurrence time

2.1 Extension of training period
(March 2008–2017→March and April 2008–2019)

2.2 Addition of nighttime minimum temperature

2.3 Extension of training period
(March and April 2008–2019→March and April 2000–2019)

Table 7. Performance evaluation indicators of the original and optimized models.

Version Model Type ACC FAR POD CSI

1.0
RF

Complex 0.7649 0.7670 0.7635 0.6198

Simple 0.7420 0.7539 0.7216 0.5835

SVM
Complex 0.7707 0.7563 0.8011 0.6368

Simple 0.7457 0.7465 0.7471 0.5959

2.0
RF

Complex 0.9152 0.9105 0.9237 0.8468

Simple 0.9191 0.9175 0.9237 0.8528

SVM
Complex 0.9215 0.9195 0.9266 0.8570

Simple 0.9186 0.9182 0.9217 0.8518

2.1
RF

Complex 0.9430 0.9504 0.9374 0.8937

Simple 0.9422 0.9488 0.9374 0.8922

SVM
Complex 0.9458 0.9461 0.9477 0.8991

Simple 0.9422 0.9488 0.9374 0.8922

2.2
RF

Complex 0.9435 0.9474 0.9417 0.8949

Simple 0.9426 0.9503 0.9365 0.8929

SVM
Complex 0.9470 0.9470 0.9494 0.9015

Simple 0.9426 0.945 0.9425 0.8935

2.3
RF

Complex 0.9416 0.9457 0.9392 0.8912

Simple 0.9408 0.9463 0.9369 0.8896

SVM
Complex 0.9361 0.9349 0.9400 0.8822

Simple 0.9353 0.9382 0.9346 0.8803

Figure 5 presents the performance evaluation indicators for ASOS by version. The
station-by-station confusion matrix is calculated based on frost observations and classified
frost occurrence data by model. The data classified as frost occurrence were determined
when the classification output of both ML techniques signified frost occurrence. As in
Table 7, most stations have noticeable performance improvements in Version 2.0. Pohang,
Changwon, Busan, and Yeosu showed lower indicators compared to the total. These regions
have a common topographical characteristic: the southern coast of the Korean peninsula
(Figure 1). Kwon et al. [15] determined that the average daily minimum temperature for
the spring frost occurrence days of 1973–2007 in this southern coastal region was 1.0 ◦C. As
mentioned in Section 3.1.2., the limitations of the current model have been prominently
shown in these areas where there are many cases (e.g., frost was observed when the daily
minimum temperature was higher than 0 °C) that the models did not classify well.
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3.2.1. Case Verification Using KMA ASOS Data

The classification results for each version were compared with the actual frost observa-
tion data using the weather observation values from 17:00–06:00 at 18 locations of the KMA
ASOS from March to April 2020 as input data. For the classification result of the model,
frost occurrence was classified as true only when both ML techniques classified frost as
occurring. As the morning frost observation data were obtained daily, hourly verification
was conducted assuming the first frost occurrence time. Furthermore, daily verification
was conducted for only 06:00 LST classification results. Table 8 shows the classification
results of each version using the confusion matrix and verification index. Unlike the test
data of the learning DB, which are balanced data, the ACC was high for all versions in the
actual case because there are less data of frost days than there are of non-frost days. The
FAR, which was a limitation of the pre-optimization model (Version 1.0), was considerably
improved in the version after Version 2.0, which reflected the assumption of the initial frost
occurrence time. If the training data of the pre-optimization model (Version 1.0) had data
showing frost occurring the next day, even when it was difficult to accurately predict frost
occurrence, the existing frost occurrence data likely contributed excessively to frost classifi-
cation. However, the version after Version 2.0 that reflected the initial frost occurrence time
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assumption classified less frost occurrence as a whole, indicating a decrease in TP and an
increase in FN, resulting in a lower POD.

Table 8. Confusion matrix and performance evaluation indicators for the real case (KMA ASOS).

Version Type Period TN FN FP TP ACC FAR POD CSI

1.0
Complex Hourly 12,538 11 2441 382 0.8405 0.1353 0.9720 0.1348

Daily 710 4 249 135 0.7696 0.3516 0.9712 0.3479

Simple Hourly 12,752 14 2227 379 0.8542 0.1454 0.9644 0.1447

Daily 689 6 270 133 0.7486 0.3300 0.9568 0.3252

2.0
Complex Hourly 14,704 49 275 344 0.9789 0.5557 0.8753 0.5150

Daily 912 41 47 98 0.9199 0.6759 0.7050 0.5269

Simple Hourly 14,701 55 278 338 0.9783 0.5487 0.8601 0.5037

Daily 911 46 48 93 0.9144 0.6596 0.6691 0.4973

2.1
Complex Hourly 14,547 37 432 356 0.9695 0.4518 0.9059 0.4315

Daily 899 30 60 109 0.9180 0.6450 0.7842 0.5477

Simple Hourly 14,541 43 438 350 0.9687 0.4442 0.8906 0.4212

Daily 895 37 64 102 0.9080 0.6145 0.7338 0.5025

2.2
Complex Hourly 14,589 30 390 363 0.9727 0.4821 0.9237 0.4636

Daily 889 22 70 117 0.9162 0.6257 0.8417 0.5598

Simple Hourly 14,608 35 371 358 0.9736 0.4911 0.9109 0.4686

Daily 888 27 71 112 0.9107 0.6120 0.8058 0.5333

2.3
Complex Hourly 14,640 33 339 360 0.9758 0.5150 0.9160 0.4918

Daily 893 26 66 113 0.9162 0.6313 0.8129 0.5512

Simple Hourly 14,653 46 326 347 0.9758 0.5156 0.8830 0.4826

Daily 894 39 65 100 0.9053 0.6061 0.7194 0.4902

Among the versions (after Version 2.0) that reflected the initial frost occurrence time
assumptions, the POD was the highest for Version 2.2, and TP, which indicated that frost
was classified to occur on days when frost was observed, was also the highest. However,
because there is still a tendency to overestimate frost occurrence, both the frost event itself
and its duration were classified as being longer on the day when the occurrence of said
frost was classified. Version 2.3, which learned from the meteorological observation data
for 20 years, classified fewer frost occurrence days than Version 2.2, which learned from
meteorological observation data for 10 years. The FN of Version 2.3, which indicated failure
to classify the actual observed frost, was higher for the simple model than for Version 2.2.
The overestimate that appeared in Versions 2.1 and 2.2 was reduced in Version 2.3 (the
decline in FP). Thus, we improved the ACC and FAR in Version 2.3.

3.2.2. Verification of Orchard Cases in March–April 2020 Using Digital Cameras and
AWS Observations

The frost-classification model was verified by meteorological observation data of
GARES AWS and digital camera image data from March–April 2020 of the orchard selected
as the verification target. The verification period was from March 1 to April 19 in Buk-
myeon, Gapyeong-gun, and March 1 to April 22 in Wabu-eup, Namyang-si. Five days
that could not be identified owing to strong fog (Buk-myeon, Gapyeong-gun: March 1,
March 22; Wabu-eup, Namyangju-si: March 22, April 18, April 20) were excluded from
the verification. In the case of orchard AWS, rainfall of 0.1 mm or more, and less than 1
mm, was categorized as “light rain” because rainfall of 0 mm was not used to distinguish
between precipitation days and non-precipitation days, unlike the KMA observation.
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While estimating the frost occurrence date in the orchard using digital camera images,
the days when frost heave occurred and the days when a thick frost layer occurred were
first classified (Figure 6). The normalized difference snow index (RGB-NDSI), which uses
RGB values to analyze snow cover [39,40], was calculated and used to determine frost on
other days (Figure 7). The method of calculating RGB-NDSI presented in Hinkler et al. [39]
is given as follows:

RGB-NDSI =
RGB−MIRReplacement

RGB + MIRReplacement
, (7)

RGB =
R + G + B

3
, (8)

RGBHigh =
B3

R3 G, (9)

τ = 200{a(RGBHigh)Mean + b}, (10)

MIRReplacement =
τ4·RGBMax

RGB4 . (11)
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RGB is the average of each RGB element value of a pixel, and RGBMax is the high-
est RGB value among pixels. In the equation that calculates τ, a and b are empirical
constants that are specific for each camera, which are replaced by τ = (RGBHigh)Mean by Fe-
dorov et al. [40]. In this study, the average of the RGBHigh values was used as τ because the
empirical constants, a and b, of the camera could not be obtained. The mid-infrared spectral
band (MIR) value of the calculation formula for NDSI was replaced with MIRReplacement,
which was calculated using the RGB value in the RGB-NDSI calculation formula and was
analyzed using the Python language and the opencv-python library [41]. In the AWS in
the orchard, not all input data of the complex model were observed; therefore, only the
simple model was used for verification.
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Table 9 shows the classification results of the simple model for each version using
the confusion matrix and verification index. As with the verification using the KMA
ASOS, the pre-optimization version (1.0) showed a high POD and a low FAR, and the
ACC and FAR were improved in the version after optimization (after Version 2.0). After
optimization, all versions classified 35 of 37 cases equally in daily verification. As in the
case of verification using the KMA ASOS, the overestimate was the smallest for Version 2.3,
which was determined to be a stable version compared to the other versions.

Table 9. Confusion matrix and performance evaluation indicators for real case (orchard).

Version Type Period TN FN FP TP ACC FAR POD CSI

1.0 Simple Hourly 723 2 445 188 0.6708 0.2970 0.9895 0.2961

Daily 14 0 46 37 0.5258 0.4458 1.0000 0.4458

2.0 Simple Hourly 956 3 212 187 0.8417 0.4687 0.9842 0.4652

Daily 20 2 40 35 0.5670 0.4667 0.9459 0.4545

2.1 Simple Hourly 907 2 261 188 0.8063 0.4187 0.9895 0.4169

Daily 21 2 39 35 0.5773 0.4730 0.9459 0.4605

2.2 Simple Hourly 956 2 212 188 0.8424 0.4700 0.9895 0.4677

Daily 20 2 40 35 0.5670 0.4667 0.9459 0.4545

2.3 Simple Hourly 975 2 193 188 0.8564 0.4934 0.9895 0.4909

Daily 22 2 38 35 0.5876 0.4795 0.9459 0.4667

4. Summary and Future Works

We developed an hourly frost-classification model using four types of ML method
(i.e., LR, DT, RF, and SVM) based on the frost observation information of the KMA ASOS
for the past 20 years. Among them, the frost-classification model based on RF and SVM
was selected. The basic assumptions of the model were altered, and the training data
were increased to optimize the model for farming environments that are considerably
affected by topography and environment. In addition, the frost-classification model was
verified using the frost observation information of KMA’s 24 h-manned synoptic weather
observation stations and the frost observation information of the GARES AWS-installed
orchard using a camera from March–April 2020; the data represented unbalanced data.
During verification using the KMA ASOS observation information and orchard data, more
frost occurrence days were classified in the pre-optimization version (1.0); however, it was
difficult to apply the pre-optimization model to farms because it exhibited a limitation
of excessive classification of the frost phenomenon itself. In the optimized version, these
vulnerabilities were reduced, and the ACC, POD, and CSI were improved. Regarding frost
events, a maximum of 117 cases were classified out of 139 domestic frost observations in
the spring of 2020, and 35 of 37 cases were classified in the orchard verification scheme
using a camera.

The assumption of the initial frost occurrence time greatly improved the performance
of the frost-classification model using the ML method. If initial frost occurrence time-
observation data or hourly frost observation data are used for training, the performance
of the frost-classification model can be improved. However, frost observation using a
digital camera, as in this study, has a limitation in terms of hourly frost observations. It is
impossible to capture pictures at night, and it is difficult to distinguish between reflected
sunlight and frost crystals after sunrise. For this reason, frost observation using a thermal
imaging camera may be a good alternative.

In this study, hourly observation data and their secondary variables were used as
input data. As hourly observation data were used as input, the training reflected the
characteristics of variables with diurnal variation and were discontinuous for wind speed
and precipitation. The secondary variables, subzero temperature duration and categorized
precipitation, were used as input data. Categorized precipitation can be considered a
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variable that focuses more on sky conditions than on the amount of precipitation. However,
the criteria for light rain and rain were determined empirically. Therefore, it was necessary
to discuss the contribution to radiative cooling and frost occurrence of wet surfaces.

RF and SVM techniques have also evolved to perform nonlinear classification. How-
ever, the frost-classification model shows low performance for the frost case when the
daily minimum temperature is higher than 0 °C. Generally, frost phenomena are heavily
influenced by temperature, but the data for these cases have nonlinearities. For the next
step, we will classify these cases using a deep neural network-based algorithm that allows
more diverse attempts at nonlinear classification via the adjustment of hidden layers and
activation functions. Furthermore, the current frost-classification model has been used
to predict frost based on the 17:00 LST KMA weather forecast as input data. The frost-
prediction system can be further improved by considering frost-retaining conditions, which
were not considered in the present study but will be in the near future.
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