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Abstract: The Model for Prediction Across Scales (MPAS) is used to simulate the East Asian winter
monsoon (EAWM) over the 2011–2020 winter. The 45 day hindcasts are made with 30 km horizontal
resolution and constructed to a time-lagged ensemble system. The climatology, the major modes
of EAWM variability, and the blocking activities are examined. The evaluation results reveal that
MPAS can simulate the climatologic characteristics of EAWM reasonably, with a surface cold bias of
4% and a positive rainfall bias of 9% over East Asia. MPAS can perform skillfully in the forecasts
of surface temperature probability of East Asia and is more reliable in detecting below normal and
above normal events. The features that influence the EAWM variability are also analyzed. MPAS
simulates reasonably in the occurrence frequency of blocking high in both locations and duration
time. The empirical orthogonal function analysis also shows that MPAS can capture the two major
modes of the surface temperature of EAWM. On the other hand, it is also found that a biased sea
surface temperature may modify the circulations over the Western Pacific and affect the simulated
occurrence frequency of cold events near Taiwan during winter.

Keywords: East Asian winter monsoon; cold surge; subseasonal; MPAS

1. Introduction

The East Asian winter monsoon (EAWM) is the dominant circulation system spanning
from the tropics to subpolar regions and deeply influences the weather and climate of the
Eurasian continent and the Pacific Ocean in winter. The surface features include the cold
Siberian High and the associated anticyclonic circulation of the Eurasian continent. Coupled
with the mid and upper tropospheric systems are the East Asian trough and the East Asian
westerly jet [1–7]. The movement of Siberian High is associated with cold air outbreaks
and can affect entire East Asia. While EAWM activities are strong, the deepening of the
East Asian trough and enhanced northeasterly winds can cause significant weather-related
disasters in winter, such as cold surges, snowstorms, and torrential rainfall events [8–13].

The EAWM is mainly a baroclinic system driven by the thermal contrast between
the cold Eurasian continent and the warm equatorial ocean. The interannual variations
of EAWM are related to the quasi-stationary planetary waves [14–16]. The amplitude of
Siberian High can be influenced by the interaction between upper-level quasi-stationary
Rossby wave train and surface cold temperature anomalies [17]. This interaction may
enhance the blockings and strengthen the cold anomalies over European regions [18,19].
On the other hand, the blockings over the Pacific region are driven by the vorticity feedback
forcing of transient eddies and will affect East Asia’s surface temperature [20]. Two major
modes of surface temperature are found to contribute to the interannual variability of
EAWM. These two modes represent the Siberian cold air intruding into East Asia with
a northern pathway or a southern pathway [4]. For the northern mode, the cold surface
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temperature anomalies appear at the north of 40◦ N in East Asia. For the southern mode,
the cold air can move southward and affect East Asia’s subtropical region. The precursor
to the northern mode is autumn snow cover over southern Siberia, while the precursors
to the southern mode are the development of La Niña and reducing snow cover over
northeastern Siberia. The model performance of these two modes is suggested as an
indicator of understanding the predictability and dynamics of EAWM.

Variations of EAWM can also be modulated by systems in different time scales, such
as Arctic Oscillation (AO), El Niño-Southern Oscillation (ENSO), and the Madden-Julian
Oscillation (MJO) [21–28]. The AO could affect the EAWM by modulating the propagation
of planetary waves. During the negative AO phase, the larger perturbation in the polar
vortex would help to propagate stronger cold advection from high latitude and strengthen
the Siberian High and northeasterlies in East Asia [14,21–24]. The influence of ENSO
and MJO is associated with the coupled climate system and causes the interannual and
intraseasonal variations of EAWM. Several studies have shown the relationship between
ENSO and EAWM, with weak EAWM during warm El niño winters and strong EAWM
during La niña winters [25,26]. MJO could provide a suitable condition for amplifying
extreme cold surges in MJO phases 2–3 and modulate the distribution of precipitation over
the coastal region of East Asia [27]. The vertical motion and precipitation are enhanced by
increasing synoptic eddy activity in MJO phase 2–3 [28]. The above cross-scale interactions
bring about the difficulty of forecasting the EAWM.

The demands of predictions to high-impact weather events on subseasonal to seasonal
(S2S) timescales have been emphasized in recent days. For example, cold and heatwaves
could lead to agriculture loss and also relate to public health. The early warning weather
information has important influences on decision making [29–32]. The Subseasonal to
Seasonal prediction project [33,34] which set up by the World Meteorological Organization
points out the challenges of predictions on the S2S timescale (forecast range more than
2 weeks but less than a season). One of the goals of this project is to improve the forecast
skills and understanding of the high-impact weather events on the S2S timescale. Cold
surge is one of the notable high-impact weather states that relates to the EAWM over East
Asia during winter. Many studies discussed the bias of surface temperatures, the East
Asian trough, and the East Asian westerly jet in climate models [35]. To reduce the impact
of these extreme events, climate models may play an important role in providing valuable
information on S2S prediction. Presently, the seamless global model, such as the Model
for Prediction Across Scales (MPAS) from the National center for atmospheric research
(NCAR) has become one of the widely used tools in studying weather and climate systems.

This study aims to understand the MPAS capability for simulating the climatology
and the variations of EAWM on the S2S timescale. Two indicators, surface temperature
modes obtained by empirical orthogonal function (EOF) analysis and atmospheric blocking
frequencies, are examined in our experiments. The possible mechanism that influences
the model simulated cold events in Taiwan is also discussed through a case study. Model
settings, hindcast experiment design, and evaluation methods are described in Section 2.
Section 3 will show the results. Section 4 is the conclusion.

2. Experiments, Data and Methods
2.1. Model Settings and Experiment Design

A series of hindcast experiments are made for simulating EAWM from 2011 to 2020.
A non-hydrostatic global atmospheric model, Model for Prediction Across Scales (MPAS)
version 7 [36], is used in this study. MPAS uses C-grid staggering method for state variables,
and the entire globe is covered with unstructured centroidal Voronoi mesh. The hybrid
terrain-following method is used for the height coordinate [37]. MPAS has been widely
used to study synoptic and mesoscale weather systems [38,39], as well as typhoons [40,41],
tropical disturbances [42], MJO [43] and also climate change [44]. Many studies have
shown that MPAS is capable of predicting synoptic or mesoscale events through day 7 and
may capture the mean state for extended weather forecasts.
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This study simulates and analyzes the synoptic weather systems in winter from the
perspective of the S2S timescale. The 30 km uniform horizontal resolution mesh is used,
and the model top is set at 30 km with 55 model levels. The model physics include the
New Tiedtke convective cumulus scheme [45], the Weather Research and Forecasting
Model single-moment 6-class microphysics (WSM6) scheme [46], Yonsei University (YSU)
planetary boundary layer parameterization [47], Monin–Obukhov surface layer parameter-
ization, the Noah land surface model, and the Rapid Radiative Transfer Model for GCM
applications (RRTMG) longwave and shortwave radiation parameterizations [48].

Figure 1 is the schematic diagram of the hindcast experiments. Totally 315 45 day
hindcasts are made for December, January, and February (DJF) from 2011 to 2020. Each
hindcast is initialized with the analysis data of the National Centers for Environmental
Prediction (NCEP) Global Forecast System (GFS) on 0.25◦ × 0.25◦ grids [49]. The 45 day
hindcasts start at 00 UTC from 20 to 30 (31) in November, December and January. The
NCEP Climate Forecast System Version 2 [50] forecast sea surface temperature (SST) and
sea-ice data are used as lower boundary conditions at 00 UTC for every simulation day.
There are 11 ensemble members for December and 12 ensemble members for January and
February that construct time-lagged ensembles. The strategy of time-lagged ensembles
has been studied and applied in different ranges of forecasts from 1–3 h up to 6–15 days.
The time-lagged ensemble method can improve the forecast skill of deterministic forecast
and provide probabilistic forecasts [51–61]. There are several methods of selecting different
weights to generate the ensemble mean [53,62]. However, the equally weighted ensemble
method is used as a first approach to analyze the performance of target months. In this
study, monthly will be referred to the target month, and week 1–week 4 will be referred to
the first to the fourth week in the target month.
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Figure 1. Schematic diagram of the hindcast experiments. A series of 45 day hindcasts are made
for December, January, and February from 2011 to 2020. Each hindcast is initialized with NCEP
GFS analysis at 00 UTC from 20th to 30th (31st) in November, December and January. Totally
11 (12) ensemble members’ simulations that can cover the next month. During simulations, the
NCEP CFSv2 forecast sea surface temperature and sea-ice data are used as model lower boundary
conditions at 00 UTC every forecast day.

2.2. Verification Data and Methods

The evaluating domain is defined from 5◦ S–55◦ N, 60◦ E–180◦ which covers Taiwan
and most of East Asia. The 0.5-degree resolution CFSv2 analysis data (hereafter, CFSR) [50]
are used to verify the MPAS hindcast results at specific pressure levels. The output
frequency is four times a day (00, 06, 12, 18 UTC) for analysis and MPAS data. The model
rainfall is verified with 0.1-degree resolution daily precipitation data retrieved from Global
Precipitation Measurement (GPM) products [63,64]. The MPAS and GPM data were first
remapped to the same grid as CFSR (0.5◦ × 0.5◦ grids) and averaged to obtain the monthly
or weekly data according to the target evaluation time.

For long-range forecasts, it is common to use three-category climate outlook products
in operational institutes [65]. The model grid data can be classified as “below normal”,
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“near normal” and “above normal” terciles. The three-category contingency table (Table 1)
is usually used to verify the probability forecast performance. The Gerrity skill score
(GSS) [66] is an equitable skill score which in a similar form to the Peirce skill score [67] and
Heidke skill score [68]. The GSS can be defined as Equations (1)–(3). Here Pij is the sample
probabilities of nine situations in the contingency table, N is the total sample size, Sij is the
scoring matrix based on the equiprobable climatological categories. GSS is the probabilities
multiplied by the scoring matrix, which ranged from −1 to 1. The perfect score is 1, and 0
represents no skill.

GSS = ∑3
i=1 ∑3

j=1 PijSij, (1)

Pij = nij/N, (2)

Sij =

 1.25 −0.25 −1
−0.25 0.5 −0.25
−1 −0.25 1.25

, (3)

Table 1. Three-category contingency table. Pij is the sample probability, in which i, j are ranged from
1 to 3 and denotes the categories of forecast and observed, respectively.

Categories Observed
Below Normal Near Normal Above Normal

Forecast
Below normal P11 P12 P13
Near normal P21 P22 P23

Above normal P31 P32 P33

The probability forecasts of three-category monthly outlooks are evaluated using the
relative operating characteristic curves (ROC) [69–75], and the reliability diagrams [75–77]
with the Brier score (BS) [78–80] and the Brier skill score (BSS) [75,80]. ROC curve is a
plot of hit rate (true positive rate) and false alarm rate (false positive rate) for all given
cut-off thresholds. The area under the ROC curve (AUC) is also calculated to measure the
predictive ability. The cut-off thresholds are defined from 0.1 to 0.9 every 0.1 in this study.
It measures the ability of our probability forecasts for detecting the occurrence probability
of below normal, near normal, and above normal events in our ensembles. In this study,
the total sample size is 262,449, including all horizontal grids over 9 years.

The reliability diagrams show the observed frequency against the forecast probability.
The BS is the mean square error of probability forecasts for binary events. The BSS is the
forecast skill form of BS which references climatology:

BS =
1
N ∑N

i=1(pi − oi)
2, (4)

BSS =
BS − BSclim
0 − BSclim

= 1 − BS
BSclim

, (5)

BSclim = oclim(1 − oclim), (6)

here N is the sample size, pi is the forecast probability, oi is the observed frequency, and
BSclim is the BS of climatological frequency. A BSS of 1.0 represents a perfect score, 0.0
for the reference state, and less and equal 0.0 indicates no skill. Curves close to the
diagonal representing the predicted probabilities are more reliable corresponding to the
observed frequencies.

3. Results
3.1. Climatology and Anomalies Verification

The climatology over 2011–2020 demonstrates consistent characteristics with typical
EAWM patterns. The East Asian trough near the coast of East Asia and a strong East
Asian westerly jet located in southern Japan are the most prominent features in the mid
and upper troposphere (Figure 2a). The Siberian High and Aleutian Low dominate in the
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surface (Figure 2c). The mean daily rainfall is most significant in the South China Sea and
the western Pacific in the tropics (Figure 2e). The second significant rainfall area locates at
30–40◦ N, 120◦ E–180 in mid-latitudes.
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Figure 2. Climatological DJF mean over 2011–2020 for (a,b) 200-hPa zonal wind (shaded) and 500-hPa geopotential height
(contours), (c,d) 2-m temperature (shaded), sea-level pressure (contours), and 850-hPa winds (vectors), (e,f) daily rainfall
(shaded). CFS reanalysis and GPM-retrieved rainfall (simulations) are listed at left (right) column.

MPAS simulated climatology also captures these features (Figure 2b,d,f). The corre-
lation coefficients (R), normalized root-mean-square errors (NRMSE), and mean bias are
listed in Table 2. The NRMSE is the root-mean-square error normalized by the observed
standard deviation [81]. Seven variables are selected to verify the model performance,
500-hPa geopotential height (H500), 200-hPa zonal wind (U200), sea-level pressure (SLP),
2-m temperature (T2m), 850-hPa zonal wind (U850), 850-hPa meridional wind (V850),
and daily rainfall (RAIN). Table 2 indicates that the correlation coefficients are in general
greater than 0.9 except for V850 and RAIN, which also exceed 0.871 and 0.898. Individ-
ually, the MPAS has more skill in simulating H500, U200, and T2m. The SLP, RAIN and
850-hPa winds have larger NRMSE. The mean bias of T2m is −0.58 ◦C, and the mean
bias of simulated daily rainfall is about 0.32 mm day−1. Figure 2f also indicates that the
climatological rainfall in MPAS is larger than the GPM-retrieved rainfall in most small
rainfall areas. Additionally, MPAS simulates stronger northeasterly 850-hPa winds in most
of our experiments (a negative bias in 850-hPa winds). Figure 3 evaluates the interannual
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variances. MPAS also captures the spatial distributions of variances (R exceeds 0.9 for
H500, SLP, T2m, and U850, whereas R exceeds 0.8 for U200, V850, and RAIN), and most of
the mean biases of simulated interannual variances are positive except for RAIN.

Table 2. List of verification results for climatology. H500, U200, SLP, T2m, U850, V850, and RAIN are
500-hPa geopotential height, 200-hPa zonal wind, sea-level pressure, 2-m temperature, 850-hPa zonal
wind, 850-hPa meridional wins, and daily rainfall, respectively.

Variables Correlation Coefficient (R) Normalized Root-Mean-
Square Error (NRMSE) Mean Bias

H500 0.998 0.07 −6.43 (m)
U200 0.998 0.07 0.04 (ms−1)
SLP 0.962 0.32 −0.94 (hPa)
T2m 0.995 0.11 −0.58 (◦C)
U850 0.970 0.29 −0.83 (m s−1)
V850 0.871 0.56 −0.31 (m s−1)
RAIN 0.898 0.48 0.32 (mm day−1)Atmosphere 2021, 12, x FOR PEER REVIEW 7 of 23 
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We further evaluate the ensemble mean performance for the H500, U200, SLP, T2m,
RAIN, U850, and V850 anomalies by Taylor diagrams (Figure 4). Colors are the monthly
mean of 2011–12 to 2019–20 DJF results. Black dots, crosses, plus, asterisks, and squares are
9-years averaged scores of monthly, week 1, week 2, week 3, and week 4, respectively. All
the variables are standardized to obtain the R (azimuthal angle), the standardized deviation
(radial distance) and the NRMSE (green circle). Most of the R for the monthly mean is
between 0.4–0.6 but varies with years. The normalized standard deviation and NRMSE are
about 0.5–0.75 and 0.75–1.0. The score decays from week 1 to week 4 due to the numerical
predictability. The R of week 1 simulations can exceed 0.8 for H500 and U200 and exceed
0.7 for SLP, T2m, and U850. The scores of the monthly mean are approaching those of week
2. Among these variables, the R of the monthly mean can exceed 0.5 except for RAIN and
V850. The Taylor diagram results indicate that the predictability decays quickly after 7 days
in numerical weather forecasts. In the next section, we further examine the probability
forecast results of our ensemble members on the S2S timescale.
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3.2. Three-Category T2m and Rainfall Probability Forecast Verification

Figure 5 shows the GSS of monthly averaged T2m and daily rainfall of MPAS ensemble
mean for DJF over 2011–2020. In general, the MPAS ensemble mean has skill (positive GSS)
in forecasting three-category T2m in most of East Asia during DJF. For rainfall, MPAS has
higher GSS skills in the tropics than that in mid-latitude. For example, the GSS is positive
in Western Pacific, South China Sea, and Indochina Peninsula, while most of the areas at
about 40◦ N, 100–140◦ E have negative GSS. The GSS results also show large variability in
Taiwan during DJF. Figure 5 indicates that MPAS has skill in forecasting rainfall in western,
entire, and eastern Taiwan for December, January, and February, respectively. However,
it also shows that MPAS has no skills in eastern and western Taiwan for December and
February. The spatial composite GSS for individual ensemble members are similar to the
ensemble mean results but generally have lower skill scores (figures not shown).

Atmosphere 2021, 12, x FOR PEER REVIEW 9 of 23 
 

 

 

Figure 5. Gerrity skill score (GSS) of monthly averaged T2m (left column) and averaged daily rainfall (right column) on 

(a,b) December, (c,d) January, and (e,f) February. The zoom-in area of Taiwan is listed on the right panel of each figure. 

Figure 6 shows the ROC curves for monthly averaged T2m and rainfall. It indicates 

that T2m probability forecasts’ skill is in general better than that in rainfall. Among the 

three categories, the skills of below normal and above normal categories are better than 

those of the near normal category for both T2m and rainfall. The AUCs of below normal 

and above normal are approximately 0.75–0.83 for T2m and 0.63–0.67 for rainfall. The 

AUCs of near normal category are about 0.6 and 0.55 for T2m and rainfall. 

Figure 5. Gerrity skill score (GSS) of monthly averaged T2m (left column) and averaged daily rainfall (right column) on
(a,b) December, (c,d) January, and (e,f) February. The zoom-in area of Taiwan is listed on the right panel of each figure.

Figure 6 shows the ROC curves for monthly averaged T2m and rainfall. It indicates
that T2m probability forecasts’ skill is in general better than that in rainfall. Among the
three categories, the skills of below normal and above normal categories are better than
those of the near normal category for both T2m and rainfall. The AUCs of below normal
and above normal are approximately 0.75–0.83 for T2m and 0.63–0.67 for rainfall. The
AUCs of near normal category are about 0.6 and 0.55 for T2m and rainfall.

Figure 7 shows the reliability diagrams with the BS and the BSS. Curves in the gray
zone indicate that the forecasts have skills (better than climatology and contribute positively
to BSS). Our results indicate that the forecast skills of below and above normal events are
more reliable than near normal events. The near normal forecasts have lower resolution.
The curves of T2m forecasts are in general sharper than that of rainfall, which implies that
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T2m forecasts are more reliable and have a better resolution to detect below normal and
above normal events. In detail, the curves of T2m and rainfall all indicate that MPAS tends to
over-forecasting for probabilities below 0.3 and under-forecasting for probabilities above 0.3.Atmosphere 2021, 12, x FOR PEER REVIEW 10 of 23 
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Figure 6. The relative operating characteristic curves (ROC) and the area under the ROC curve
(AUC) for the three-category probabilities of monthly averaged T2m (left column) and averaged
daily rainfall (right column) on (a,b) December, (c,d) January, and (e,f) February. Green, blue, red
lines denote the below normal (B), near normal (N), and above normal (A) categories.



Atmosphere 2021, 12, 865 10 of 22

Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 23 
 

 

MPAS tends to over-forecasting for probabilities below 0.3 and under-forecasting for 

probabilities above 0.3. 

 

Figure 7. Reliability diagrams for the three-category probabilities of monthly averaged T2m (left column) and averaged
daily rainfall (right column) on (a,b) December, (c,d) January, and (e,f) February. Green, blue, red lines denote the below
normal, near normal, and above normal categories. The thin dashed line is 0.333 according to the observed frequency of
climatology for the three-category method. The Brier score (BS) and the Brier skill score (BSS) are denoted at the right
bottom of each figure.



Atmosphere 2021, 12, 865 11 of 22

3.3. Surface Temperature EOF Modes

Two leading EOF modes of surface air temperature over East Asian winter are impor-
tant indicators for evaluating the model performance [4,7,32,82,83]. They are known as the
northern and the southern modes. The northern mode (first EOF mode) is characterized
by a westward shift of the East Asian trough and the moving of cold air from Siberia to
northern East Asia. The major cooling is located at around 40–60◦ N. On the contrary, the
major cooling occurs at the south of 40◦ N for the southern mode (second EOF mode). The
cold air can extend to southern China and the South China Sea due to the deepening of the
East Asian trough.

The normalized principal components of two leading EOF modes over the 2011–2020
winter for CFSR and MPAS ensemble mean are shown in Figure 8. The first and second
EOF modes explain 37.8% (51.2%) and 14.8% (12.1%) of the temperature variance for CFSR
(MPAS) over East Asia. The correlation coefficients for the first principal component (PC1)
and the second principal component (PC2) are 0.60 and 0.35. The days that normalized
principal components greater than 1.0 standard deviation are defined as significant PC1
and PC2 events. CFSR has 124 days and MPAS has 93 days of significant PC1 events over
2011–2020 DJF. For the month distribution of these PC1 event days, December, January,
and February respectively occupy 19%, 58%, and 23% for CFSR while those for MPAS
occupy 12%, 45%, and 43%. By contrast, MPAS has overestimation in February and
underestimation in January. As for the significant PC2 events, there are 136 days for CFSR
with 26%, 37%, and 37% in three separate months and 104 days for MPAS with 32%, 36%,
and 32%. MPAS has a slight underestimation in both January and February. In summary,
the MPAS ensemble mean underestimates the total number of significant PC1 and PC2
events. Individually, MPAS tends to overestimate PC1 events and underestimate PC2
events in February.
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Figure 8. The normalized principal components of (a) the first EOF mode (PC1) and, (b) the second
EOF mode (PC2) for CFS reanalysis (blue) and MPAS (red). The right column shows the observed
and simulated days in December, January, and February for that PC1 and PC2 greater than 1.0
standard deviation.

The difference between the composite anomalies of PC1 and PC2 greater than 1.0
and less than −1.0 standard deviation is shown in Figures 9 and 10. MPAS simulates
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reasonable temperature patterns for the northern and the southern modes, with R = 0.93
and 0.83, respectively (Figure 9a,c and Figure 10a,c). However, the magnitude of the cooling
temperature is underestimated. MPAS also captures the features of SLP, with R = 0.89
and R = 0.85 for the northern and the southern modes. The positive SLP anomalies are
consistent with the surface temperature, which is located at the north (south) of 40◦ N for
the first (second) mode. MPAS also captures the features in the upper troposphere. The
R of U200 and H500 exceed 0.91 (0.93) and 0.97 (0.85) for PC1 (PC2). For PC1, negative
H500 anomalies located near Korea and Japan, and positive U200 anomalies located at
about 30◦ N imply that a significant westward-moving East Asian trough is accompanied
by a strong East Asian westerly jet (Figure 9b,d). For PC2, the negative H500 anomalies
extended southward to the south of 30◦ N, which indicates the deepening of the East Asian
trough. The deepening of the East Asian trough also coincided with the southward moving
positive SLP anomalies and results in the intensification of northeasterly winds and colder
surface temperatures near Taiwan (Figure 10a,c).

Atmosphere 2021, 12, x FOR PEER REVIEW 13 of 23 
 

 

and simulated days in December, January, and February for that PC1 and PC2 greater than 1.0 

standard deviation. 

The difference between the composite anomalies of PC1 and PC2 greater than 1.0 and 

less than −1.0 standard deviation is shown in Figures 9 and 10. MPAS simulates reasonable 

temperature patterns for the northern and the southern modes, with R = 0.93 and 0.83, 

respectively (Figures 9a, 9c, 10a and 10c). However, the magnitude of the cooling temper-

ature is underestimated. MPAS also captures the features of SLP, with R = 0.89 and R = 

0.85 for the northern and the southern modes. The positive SLP anomalies are consistent 

with the surface temperature, which is located at the north (south) of 40° N for the first 

(second) mode. MPAS also captures the features in the upper troposphere. The R of U200 

and H500 exceed 0.91 (0.93) and 0.97 (0.85) for PC1 (PC2). For PC1, negative H500 anom-

alies located near Korea and Japan, and positive U200 anomalies located at about 30° N 

imply that a significant westward-moving East Asian trough is accompanied by a strong 

East Asian westerly jet (Figure 9b,d). For PC2, the negative H500 anomalies extended 

southward to the south of 30° N, which indicates the deepening of the East Asian trough. 

The deepening of the East Asian trough also coincided with the southward moving posi-

tive SLP anomalies and results in the intensification of northeasterly winds and colder 

surface temperatures near Taiwan (Figure 10a,c). 

 

Figure 9. The difference between the composite anomalies of which PC1 greater than 1.0 and less
than −1.0 standard deviation. (a,c) T2m, SLP, and 850-hPa winds. (b,d) U200 and H500. The upper
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3.4. Atmospheric Blocking

Atmospheric blocking is an important feature to influence the EAWM. The blocking
frequency as a function of longitude has two peaks over the Euro-Atlantic and Pacific
region [84–87]. The blocking patterns are associated with the outbreaks of cold air from
the Arctic area in winter. These cold air outbreaks would enhance the Siberian High and
amplify the deepening of the East Asian trough, resulting in extreme cold events in East
Asia [8,17,20,35,88]. The blocking is typically a closed high near 60◦ N with a positive
geopotential height gradient at the south and increases the negative geopotential height
gradient at the north. We follow the method reported in [85,86] to detect the blocking
events in our experiments. First, the southern 500-hPa geopotential height gradient (GHGS)
and the northern 500-hPa geopotential height gradient (GHGN) are calculated at each
longitudinal grid point:

GHGS =
Z500(ϕo)− Z500(ϕs)

ϕo − ϕs
, GHGN =

Z500(ϕn)− Z500(ϕo)

ϕn − ϕo
, (7)

ϕn = 80
◦
N + ∆, ϕo = 60

◦
N + ∆, ϕs = 40

◦
N + ∆, ∆ = −5

◦
, 0

◦
, 5

◦
, (8)
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For any value of ∆ that satisfies the conditions below, the given longitudinal grid is said to
be blocked:

GHGS > 0, GHGN < −10, (9)

The Pacific sector is also defined by the longitude band from 150–210◦ E. The sector is said
to be blocked if the grid points are blocked extended for at least 10◦ longitudes.

The blocking frequency for our simulations over 2011–2020 DJF is shown in Figure 11a.
MPAS simulations capture the typical features of two peaks of blocking frequency at about
0–30◦ E and 150–210◦ E. The average frequency is about 15–20%, which is consistent with
the CFSR. MPAS time-lagged ensembles simulate the reasonable blocking frequency on the
monthly time scale. The frequency can range from a minimum of 15% to a maximum of
40% for the Pacific sector and 10–25% for the Euro-Atlantic sector among our ensemble
members. We further examine the averaged blocking cases as a function of durations for
the Pacific sector (Figure 11b). MPAS simulates the same distribution of blocking cases
compared to the CFSR. Specifically, there are about 1–2 cases over-forecasted for duration
over 5 days, and four cases under-forecasted for a 1-day duration.
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Figure 11. (a) Percentage frequency of blocking as a function of longitude for CFSR (blue) and MPAS
simulations average (red). The shading area is defined by the minimum and maximum values of the
ensemble members. (b) Histograms of the averaged blocking cases as a function of durations for the
Pacific sector (150–210◦ E).

3.5. Investigation of Modeling Variability for the Cold Surge in Taiwan

Our EOF analyzed T2m patterns indicate that the cold air moves southward from EOF
mode 1 to EOF mode 2 accompanied by northeasterly winds’ intensification. However,
Taiwan is located in a transient region of about 23–25◦ N. Both these two modes may cause
cold surge events in northern Taiwan. The Central Weather Bureau, Taiwan (CWB) defined
the cold surge event in Taiwan by the criterion of daily temperature less than 10 ◦C at
Taipei station. This operational criterion is difficult to apply to a global model due to our
model resolution. Instead, we define the events as the minimum 2-m temperature less than
10 ◦C in the region of 24.75–26.5◦ N, 120–122.5◦ E, which is a looser criterion compare with
the CWB definition. Figure 12 shows the annual occurrence frequency of cold surge events.
The annual trend of CFSR (blue line) is consistent with that of Taipei station (gray line), but
both CFSR and MPAS (red line) have more events. Figure 12 also shows that the annual
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trend of MPAS is similar to CFSR except for 2013–2014 DJF. The bars in Figure 12 are the
event day differences between MPAS and CFSR in December (brown), January (yellow),
and February (green). It indicates that the cold surge event days for MPAS are 24 days less
than that of CFSR in February over 2011–2020. February 2014 has the most underestimation
of 8 days among 9 years.
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Figure 12. Annual trend of cold events days for MPAS (red line), CFSR (blue), and Taipei station (gray). The cold events are
defined as the minimum 2-m temperature less than 10 ◦C in the region of 24.75–26.5◦ N, 120–122.5◦ E for MPAS and CFSR.
Bars represent the number of days between MPAS and CFSR in December (brown), January (yellow), and February (green).
The pie chart shows the event days in December (brown), January (yellow), and February (green) for MPAS and CFSR.

Figure 13a,b shows the composite differences for MPAS and CFSR in February 2014.
Figure 13a indicates that the monthly mean East Asian trough tends to locate northern than
40◦ N with a stronger East Asian westerly jet located around Japan in MPAS. Accompanied
with the upper tropospheric features are a weaker surface high anomaly in Eurasia and
a stronger surface high anomaly in the Philippine Sea. The anomalous southwesterly
winds to the west of this SLP anomaly thus reduce the strength of northeasterly winds near
Taiwan (Figure 13b). Figure 14 shows the SST difference between the CFS forecast (also
used as the lower boundary in MPAS) and CFSR during December 2013, January 2014, and
February 2014. The monthly averaged SST used in MPAS is warmer than the reanalysis
in the Eastern and Central Pacific during winter. This kind of SST distribution provides a
similar effect with the establishment of the Philippine Sea anomalous anticyclone during
El Niño [89]. This SST anomaly may also reduce the Walker circulation and produce the
negative precipitation anomaly in the northwestern Pacific (Figure 13c). As a result, MPAS
simulates a 2 ◦C warmer on average surface temperature and weaker northeasterly wind
anomalies near Taiwan. The simulated trend of the westward-moving East Asian trough is
also consistent with the results of Figure 8b. MPAS simulates the negative PC2 phase in
February 2014, while CFSR is in a positive phase.
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and (b) T2m, SLP, and 850-hPa winds. (c) Averaged daily rainfall difference between MPAS and
GPM-retrieved rainfall in February 2014.
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4. Conclusions

This study evaluates the model performance for simulating East Asian winter mon-
soon (EAWM) on subseasonal to seasonal (S2S) time scales. Model for Prediction Across
Scales (MPAS) is used to conduct the hindcast experiments for DJF over 2011–2020 with
30 km horizontal resolution. An ensemble system is constructed with the time-lagged
ensemble method, and the performance of the ensemble mean is analyzed. MPAS captures
the features of EAWM climatology, such as the location of the East Asian trough and
the East Asian westerly jet. The pattern correlations of seven selected variables (H500,
U200, SLP, T2m, U850, V850, RAIN) are above 0.85. The mean bias of surface temperature
and daily rainfall is −0.58 ◦C (−4.06%) and 0.32 mm day−1 (8.96%). The monthly and
weekly mean anomalies are analyzed with Taylor diagrams. The correlation coefficients
of week 1 simulations are about 0.8 for H500 and U200, and about 0.7 for SLP and T2m.
The correlation coefficients drop quickly after week 1, but the monthly mean results are
similar to week 2. The results are consistent with previous studies that the skill of the
forecast for time averages can be greater than that of the instantaneous weather forecast at
long range [90]. The correlation coefficients for the monthly mean are in general between
0.4–0.6, and the NRMSEs are about 0.75–1.0. The performance of daily rainfall is the worst
among our selected variables. The correlation coefficients are in general below 0.5 even for
the week 1 forecast.

The results of the three-category probability for monthly T2m and rainfall forecasts
are further examined. The Gerrity Skill Scores (GSS) show that MPAS can make skillful
T2m categories forecasts in most of East Asia during DJF 2011–2020. The GSS for monthly
rainfall indicates that MPAS has higher skills in the tropics than that in mid-latitude, such
as Western Pacific, South China Sea, and Indochina Peninsula. These regions also provide
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large interannual variability of rainfall during winter. MPAS has skills in Taiwan for
January and has skills in western and eastern Taiwan for December and February. The ROC
curve and reliability diagram analyze the accuracy and reliability of our three-category
probability forecasts. In general, the probability forecasts of T2m are better than that of
rainfall. Among the three categories, MPAS has more skill in detecting below normal and
above normal events, and the forecasts are more reliable than those of the near normal
category. However, MPAS still tends to over-forecasting (under-forecasting) for lower
(higher) probability forecasts.

The EOF analysis is applied to the simulated surface temperature. MPAS reproduces
the two leading modes and their associated circulations for EAWM, which represent the
cold air located in northern East Asia or propagating into southern East Asia. The first
and the second simulated EOF modes explain 63.3% of the temperature variance over
East Asia, and the correlation coefficients for each principal component (PC1 and PC2)
are 0.60 and 0.35, respectively. However, the MPAS ensemble mean tends to overestimate
significant PC1 events and underestimate significant PC2 events in February. Atmospheric
blocking index is chosen as another indicator to examine the model’s ability to simulate
the synoptic features of EAWM. The forecast skills of blocking for climate models have
been discussed in many studies. Most of the climate models can capture the distribution of
Euro-Atlantic and Pacific sectors but may underestimate the blocking frequency [91–93].
MPAS reproduces the two peaks of blocking frequency at Euro-Atlantic and Pacific sectors
and simulates the distribution of averaged blocking durations for the Pacific sector over
the 2011–2020 winter.

Overall, MPAS captures the climatology, the major modes of EAWM variability, and
the blocking activities. The evaluation results suggest that MPAS can produce skillful
temperature probability forecasts and has the potential to predict extreme cases on S2S
time scales. Many previous studies have shown the importance of AO and blocking to cold
surge events in high latitudes, such as Japan, Korea, and northern China [17,20–24,35,88].
Since Taiwan is located in the subtropical region and the Western Pacific, ocean forcing may
also play some roles to affect the occurrence chance of cold events through modulating the
local circulation near Western Pacific. Our results show one of the possible mechanisms
that influences the modeling variability of cold surge events in Taiwan. MPAS reproduces
the annual trend of cold surge event days in Taiwan during 2011–2020 except in February
2014. We found that the Eastern and Central Pacific SSTs in MPAS are warmer than the
reanalysis during DJF 2013–2014. This biased SST anomaly may reduce the strength of
Walker circulation and enhance an anomalous anticyclonic high at the Philippine Sea. The
associated southwesterly wind anomalies to the west of this anomalous high reduce the
northeasterly winds near Taiwan. The weakening of the northeasterly winds might also
reduce the occurrence numbers of the southern mode of surface temperature in our model.
The association implies that the SST-forcing in the Western Pacific may affect the occurrence
of cold events in Taiwan on S2S time scales. A fully coupled atmospheric-ocean model may
play an important role in studying the interaction between the ocean and EAWM. It is also
important to have longer hindcast data to verify the model’s capability for simulating El
Niño/La Niña events.
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