A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Materials
2.3. Biodiesel Production
2.4. Experimental Station
2.5. Analytical Methods
2.6. Statistical Methods
3. Results and Discussion
3.1. Algae Growth and Bio-Oil Properties
3.2. Engine Emission
3.2.1. Carbon Dioxide (CO2)
3.2.2. Carbon Monoxide (CO)
3.2.3. Nitrogen Oxides (NOx)
3.2.4. Unburned Hydrocarbons (HC)
3.2.5. Smoke Opacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2018, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F.; Taghizadeh-Hesary, F. How Is Mortality Affected by Fossil Fuel Consumption, CO2 Emissions and Economic Factors in CIS Region? Energies 2020, 13, 2255. [Google Scholar] [CrossRef]
- Puglia, M.; Morselli, N.; Pedrazzi, S.; Tartarini, P.; Allesina, G.; Muscio, A. Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification. Sustainability 2021, 13, 3312. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Wichłacz, J. The Impact of Fuel Type on the Output Parameters of a New Biofuel Burner. Energies 2019, 12, 1383. [Google Scholar] [CrossRef] [Green Version]
- Rivera-González, L.; Bolonio, D.; Mazadiego, L.F.; Naranjo-Silva, S.; Escobar-Segovia, K. Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application. Sustainability 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Culaba, A.B.; Ubando, A.T.; Ching, P.M.L.; Chen, W.-H.; Chang, J.-S. Biofuel from Microalgae: Sustainable Pathways. Sustainability 2020, 12, 8009. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K.; Saravanan, B.; Azad, K.; Patel, D.; Sudarshan, B.; Aaditya Ramasamy, R. Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications. Fuel 2019, 235, 984–994. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Sinaga, N. The Perspective of Large-Scale Production of Algae Biodiesel. Appl. Sci. 2020, 10, 8181. [Google Scholar] [CrossRef]
- Saad, M.G.; Dosoky, N.S.; Zoromba, M.S.; Shafik, H.M. Algal Biofuels: Current Status and Key Challenges. Energies 2019, 12, 1920. [Google Scholar] [CrossRef] [Green Version]
- Dębowski, M.; Zieliński, M.; Kazimierowicz, J.; Kujawska, N.; Talbierz, S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020, 12, 9980. [Google Scholar] [CrossRef]
- Sahu, S.K.; Mantri, V.A.; Zheng, P.; Yao, N. Chapter 1 Algae Biotechnology. Current Status, Potential and Impediments. In Encyclopedia of Marine Biotechnology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Pugliese, A.; Biondi, L.; Bartocci, P.; Fantozzi, F. Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production. Fermentation 2020, 6, 46. [Google Scholar] [CrossRef]
- Adeniyi, O.M.; Azimov, U.; Burluka, A. Algae biofuel: Current status and future applications. Renew. Sustain. Energy Rev. 2018, 90, 316–335. [Google Scholar] [CrossRef]
- Atmanli, A. Experimental comparison of biodiesel production performance of two different microalgae. Fuel 2020, 278, 118311. [Google Scholar] [CrossRef]
- Vélez-Landa, L.; Hernández-De León, H.R.; Pérez-Luna, Y.D.C.; Velázquez-Trujillo, S.; Moreira-Acosta, J.; Berrones-Hernández, R.; Sánchez-Roque, Y. Influence of Light Intensity and Photoperiod on the Photoautotrophic Growth and Lipid Content of the Microalgae Verrucodesmus verrucosus in a Photobioreactor. Sustainability 2021, 13, 6606. [Google Scholar] [CrossRef]
- Bajpai, P. Fuel Potential of Third Generation Biofuels. In Third Generation Biofuels. SpringerBriefs in Energy; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Escapa, C.; Otero, M. Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend. Energies 2019, 12, 2962. [Google Scholar] [CrossRef] [Green Version]
- SundarRajan, P.; Gopinath, K.P.; Greetham, D.; Antonysamy, A.J. A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. J. Clean. Prod. 2019, 210, 445–458. [Google Scholar] [CrossRef]
- Mizik, T.; Gyarmati, G. Economic and Sustainability of Biodiesel Production—A Systematic Literature Review. Clean Technol. 2021, 3, 19–36. [Google Scholar] [CrossRef]
- Spicer, A.; Molnar, A. Gene Editing of Microalgae: Scientific Progress and Regulatory Challenges in Europe. Biology 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholkar, P.; Shastri, Y.; Tanksale, A. Renewable hydrogen and methane production from microalgae: A techno-economic and life cycle assessment study. J. Clean. Prod. 2021, 279. [Google Scholar] [CrossRef]
- Milledge, J.J.; Smith, B.; Dyer, P.W.; Harvey, P. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies 2014, 7, 7194–7222. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Gałczyńska, M. Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy. Energies 2020, 13, 5975. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Fan, L.; Zhou, W. A Review on the Use of Microalgae for Sustainable Aquaculture. Appl. Sci. 2019, 9, 2377. [Google Scholar] [CrossRef] [Green Version]
- Show, P.L.; Tang, M.S.Y.; Nagarajan, D.; Ling, T.C.; Ooi, C.-W.; Chang, J.-S. A Holistic Approach to Managing Microalgae for Biofuel Applications. Int. J. Mol. Sci. 2017, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, R.; Mousavi, S.E.; Goyette, B.; Adhikary, S. Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts. Bioengineering 2021, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, D.; Fraczyk, J.; Debowski, M.; Zielinski, M.; Kaminski, Z.J.; Kregiel, D.; Jacob, C.; Kolesinska, B. Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage. Molecules 2020, 25, 1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randrianarison, G.; Ashraf, M.A. Microalgae: A potential plant for energy production. Geol. Ecol. Landsc. 2017, 9508, 1–17. [Google Scholar] [CrossRef]
- Mayers, J.J.; Nilsson, A.E.; Albers, E.; Flynnc, K.J. Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp. -Impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Res. 2017, 6, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, S.; Periyasamy, M.; Prathima, A. Performance characteristics of CI engine using Chlorella Vulgarismicroalgae oil as a pilot dual fuel blends. Mater. Today Proc. 2020, 33, 3277–3282. [Google Scholar] [CrossRef]
- Felneris, M.; Raslavičius, L.; Pukalskas, S.; Rimkus, A. Assessment of Microalgae Oil as a Carbon-Neutral Transport Fuel: Engine Performance, Energy Balance Changes, and Exhaust Gas Emissions. Sustainability 2021, 13, 7878. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kim, J.; Lee, C. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci. Rep. 2019, 9, 6123. [Google Scholar] [CrossRef]
- Singh, M.; Reynolds, D.L.; Das, K.C. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour. Technol. 2011, 102, 10841–10848. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Gong, W.; Tang, X.; Bai, L.; Guo, Y.; Wang, J.; Zhao, J.; Fan, Y.; Li, G.; Liang, H. Blending high concentration of anaerobic digestion effluent and rainwater for cost-effective Chlorella vulgaris cultivation in the photobioreactor. Chem. Eng. J. 2019, 360, 861–865. [Google Scholar] [CrossRef]
- Gülyurt, M.Ö.; Özçimen, D.; İnan, B. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification. Int. J. Mol. Sci. 2016, 17, 579. [Google Scholar] [CrossRef] [Green Version]
- Aydın, F.; Ogüt, H. Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions. Renew. Energy 2017, 103, 688–694. [Google Scholar] [CrossRef]
- Sanjid, A.; Masjuki, H.H.; Kalam, M.A.; Rahman, S.M.A.; Abedin, M.J.; Palash, S.M. Production of palm and jatropha based biodiesel and investigation of palm jatropha combined blend properties, performance, exhaust emission and noise in an unmodified diesel engine. J. Clean. Prod. 2014, 65, 295–303. [Google Scholar] [CrossRef]
- Kilic, G.; Sungur, B.; Topaloglu, B.; Ozcan, H. Experimental analysis on the performance and emissions of diesel/butanol/biodiesel blended fuels in a flame tube boiler. Appl. Therm. Eng. 2018, 130, 195–202. [Google Scholar] [CrossRef]
- Bazooyar, B.; Hallajbashi, N.; Shariati, A.; Ghorbani, A. An investigation of the effect of input air upon combustion performance and emissions of biodiesel and diesel fuel in an experimental boiler. Energy Sources Part A Recover. Utili. Environ. Eff. 2014, 36, 383–392. [Google Scholar] [CrossRef]
- Abed, K.A.; Gad, M.S.; El Morsi, A.K.; Sayed, M.M.; Elyazeed, S.A. Effect of biodiesel fuels on diesel engine emissions. Egypt. J. Pet. 2019, 28, 183–188. [Google Scholar] [CrossRef]
- Valencia Ochoa, G.; Acevedo Peñaloza, C.; Duarte Forero, J. Combustion and Performance Study of Low-Displacement Compression Ignition Engines Operating with Diesel–Biodiesel Blends. Appl. Sci. 2020, 10, 907. [Google Scholar] [CrossRef] [Green Version]
- Rajak, U.; Verma, T.N. Spirulina microalgae biodiesel—A novel renewable alternative energy source for compression ignition engine. J. Clean. Prod. 2018, 201, 343–357. [Google Scholar] [CrossRef]
- Namitha, B.; Sathish, A.; Kumar, P.S.; Nithya, K.; Sundar, S. Micro algal biodiesel synthesized from Monoraphidium sp., and Chlorella sorokiniana: Feasibility and emission parameter studies. Fuel 2021, 301, 121063. [Google Scholar] [CrossRef]
- Gad, M.S.; El-Araby, R.; Abed, K.A.; El-Ibiari, N.N.; El Morsi, A.K.; El-Diwani, G.I. Performance and emissions characteristics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel. Egypt. J. Pet. 2018, 27, 215–219. [Google Scholar] [CrossRef]
- Wu, G.; Ge, J.C.; Choi, N.J. A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Appl. Sci. 2020, 10, 8015. [Google Scholar] [CrossRef]
- Gharehghani, A.; Mirsalim, M.; Hosseini, R. Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission. Renew. Energy 2017, 101, 930–936. [Google Scholar] [CrossRef]
- Perumal, V.; Ilangkumaran, M. Experimental analysis of engine performance, combustion and emission using pongamia biodiesel as fuel in CI engine. Energy 2017, 129, 228–236. [Google Scholar] [CrossRef]
- Arunkumar, M.; Kannan, M.; Murali, G. Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine. Renew. Energy 2019, 131, 737–744. [Google Scholar] [CrossRef]
- Rajak, U.; Nashine, P.; Verma, T.N. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 2019, 166, 1025–1036. [Google Scholar] [CrossRef]
- Azad, A.K.; Adhikari, J.; Halder, P.; Rasul, M.G.; Hassan, N.M.S.; Khan, M.M.K.; Naqvi, S.R.; Viswanathan, K. Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels. Energies 2020, 13, 2748. [Google Scholar] [CrossRef]
- Wan Ghazali, W.N.M.; Mamat, R.; Masjuki, H.H.; Najafi, G. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renew. Sustain. Energy Rev. 2015, 51, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xie, B.; Ma, J.; Chen, Y. NOx emission of biodiesel compared to diesel: Higher or lower? Appl. Therm. Eng. 2018, 137, 584–593. [Google Scholar] [CrossRef]
- Geng, P.; Mao, H.; Zhang, Y.; Wei, L.; You, K.; Ju, J.; Chen, T. Combustion characteristics and NOx emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine. Appl. Therm. Eng. 2017, 115, 947–954. [Google Scholar] [CrossRef]
- An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chou, S.K.; Chua, K.J. Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils. Appl. Energy 2013, 112, 493–499. [Google Scholar] [CrossRef]
- Wahlen, B.D.; Morgan, M.R.; Mccurdy, A.T.; Willis, R.M.; Morgan, M.D.; Dye, D.J.; Bugbee, B.; Wood, B.C.; Seefeldt, L.C. Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy Fuels 2013, 27, 220–228. [Google Scholar] [CrossRef]
- Miri, S.M.R.; Seyedi, S.R.M.; Ghobadian, B. Effects of biodiesel fuel synthesized from non-edible rapeseed oil on performance and emission variables of diesel engines. J. Clean. Prod. 2017, 142, 3798–3808. [Google Scholar] [CrossRef]
- Ozsezen, A.N.; Canakci, M.; Turkcan, A.; Sayin, C. Performance and combustion characteristics of a DI diesel engine fueled with palm oil and canola oil methyl esters. Fuel 2009, 88, 629–636. [Google Scholar] [CrossRef]
- Özener, O.; Yüksek, L.; Ergenç, A.T.; Özkan, M. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2014, 115, 875–883. [Google Scholar] [CrossRef]
- Al-lwayzy, S.H.; Yusaf, T. Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel. Renew. Energy 2017, 101, 690–701. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagos, F.Y.; Mamat, R.; Adam, A.A.; Ishak, W.F.W.; Alenezi, R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines-A review. Renew. Sustain. Energy Rev. 2017, 72, 497–509. [Google Scholar] [CrossRef]
- Zahan, K.A.; Kano, M. Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review. Energies 2018, 11, 2132. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Soudagar, M.E.M.; Afzal, A.; Mujtaba, M.; Fattah, I.R.; Naik, B.; Mulla, M.H.; Badruddin, I.A.; Khan, T.M.Y.; Raju, V.D.; et al. Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends. Energies 2020, 13, 4578. [Google Scholar] [CrossRef]
- Zahos-Siagos, I.; Karathanassis, V.; Karonis, D. Exhaust Emissions and Physicochemical Properties of n-Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers. Energies 2018, 11, 3413. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Ickes, A.M.; Bohac, S.V.; Huang, Z.; Assanis, D.N. HC and CO emissions of premixed low-temperature combustion fueled by blends of diesel and gasoline. Fuel 2012, 99, 13–19. [Google Scholar] [CrossRef]
- Palash, S.M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Rizwanul Fattah, I.M.; Sanjid, A. Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh. Energy Convers. Manag. 2015, 91, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.C.; Choi, N.J. Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends. Energies 2020, 13, 5736. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ge, J.C.; Choi, N.J. Effects of Fuel Injection Pressure on Combustion and Emission Characteristics under Low Speed Conditions in a Diesel Engine Fueled with Palm Oil Biodiesel. Energies 2019, 12, 3264. [Google Scholar] [CrossRef] [Green Version]
- Nabi, M.N.; Rahman, M.M.; Islam, M.A.; Hossain, F.M.; Brooks, P.; Rowlands, W.N.; Tulloch, J.; Ristovski, Z.D.; Brown, R.J. Fuel characterisation, engine performance, combustion and exhaust emissions with a new renewable Licella biofuel. Energy Convers. Manag. 2015, 96, 588–598. [Google Scholar] [CrossRef]
- Gavhane, R.S.; Kate, A.M.; Soudagar, M.E.M.; Wakchaure, V.D.; Balgude, S.; Rizwanul Fattah, I.M.; Nik-Ghazali, N.-N.; Fayaz, H.; Khan, T.M.Y.; Mujtaba, M.A.; et al. Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine. Energies 2021, 14, 1489. [Google Scholar] [CrossRef]
- Aydin, M.; Irgin, A.; Çelik, M.B. The Impact of Diesel/LPG Dual Fuel on Performance and Emissions in a Single Cylinder Diesel Generator. Appl. Sci. 2018, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.O.G.; Liu, D. Dimethyl Carbonate as a Promising Oxygenated Fuel for Combustion: A Review. Energies 2018, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T. Study of Performance, Emissions, and Combustion of a Common-Rail Injection Engine Fuelled with Blends of Cocos nucifera Biodiesel with Diesel Oil. Processes 2020, 8, 1287. [Google Scholar] [CrossRef]
Parameter | Unit | Brassica Napus | Chlorella Protothecoides | |
---|---|---|---|---|
Stage 2 | Stage 3 | Stage 4 | ||
Dry Mass | (% f.m.) | 94.5 ± 13.22 | 78.43 ± 10.59 | 77.19 ± 12.95 |
Organic dry matter | (% d.m.) | 95.14 ± 0.98 | 87.12 ± 0.97 | 91.47 ± 0.92 |
Mineral dry matter | (% d.m.) | 4.46 ± 0.62 | 12.88 ± 0.97 | 8.53 ± 0.92 |
Ntot | (mg·g d.m.−1) | 37.5 ± 1.43 | 43.37 ± 1.75 | 58.07 ± 5.67 |
Ptot | (mg·g d.m.−1) | 7.9 ± 0.88 | 19.96 ± 1.32 | 10.31 ± 0.97 |
Tc | (mg·g d.m.−1) | 512 ± 19.24 | 474.80 ± 11.50 | 493.40 ± 17.10 |
Toc | (mg·g d.m.−1) | 488 ± 31.64 | 439.40 ± 27.27 | 434.30 ± 12.74 |
Protein | (% d.m.) | 23.46 ± 1.97 | 27.11 ± 2.72 | 36.29 ± 8.92 |
Lipids | (% d.m.) | 42.69 ± 1.76 | 14.19 ± 0.65 | 7.38 ± 0.37 |
Saccharides | (% d.m.) | 5.13 ± 0.45 | 39.77 ± 1.29 | 41.38 ± 0.36 |
Parameter | Unit | Value |
---|---|---|
No. of cylinders | – | 1 |
Bore × stroke | (mm) | 80 × 110 |
Cubic capacity | (Ltr) | 0.553 |
Compression ratio | – | 16.5:1 |
Rated output | kW(hp) | 3.7 (5) |
Rated speed | rpm | 1500 |
Torque at full load (crankshaft drive) | kN–m(kg–m) | 0.024 (2.387) |
Crank shaft center height | (mm) | 203 |
Specific fuel consumption (sfc) | (gm/hp–hr) | 195 + 5% |
Lube oil consumption | – | 0.8% of SFC max. |
Lube oil sump capacity | (Ltr) | 3.7 at higher level on dipstick |
Fuel tank capacity | (Ltr) | 6.5 |
Physical dimensions of bare engine (length × width × height) | (mm) | 617 × 504 × 843 |
Engine weight (dry) | (kg) | 130 |
Rotation while looking at the flywheel | – | Clockwise |
Power take–off | – | Flywheel end |
Starting | – | Hand start |
Governing | – | Class “B1” |
Type of fuel injection | – | Direct injection |
Overloading capacity of engine | – | 10% of rated output |
Parameter | Unit | Value | ||
---|---|---|---|---|
BD-R | BD-ABM | BD-AAR | ||
Density at 15 °C | kg/m3 | 885 ± 49.7 | 859 ± 51.6 | 861 ± 45.5 |
Viscosity at 40 °C | Mm2/s | 4.7 ± 1.1 | 3.9 ± 0.9 | 4.0 ± 1.2 |
Flash point | °C | 156 ± 8.2 | 126 ± 6.6 | 122 ± 7.4 |
Carbon residue (on 10% distillation residue) | % (wt/wt) | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 |
Total contamination | mg/g | 1.9 ± 0.3 | 2.1 ± 0.4 | 2.3 ± 0.3 |
Oxidative stability at 110 °C | Hours | 11.9 ± 3.5 | 12.3 ± 2.9 | 11.4 ± 3.0 |
Calorific value | MJ/kg | 37.6 ± 3.3 | 37.5 ± 3.8 | 37.9 ± 3.4 |
Acid value | mg·KOH/g | 0.27 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 |
Iodine value | mg·KOH/g | 69.4 ± 5.7 | 47.5 ± 4.3 | 51.3 ± 4.8 |
Water content | mg/g | 84.0 ± 7.2 | 80.0 ± 6.6 | 77.0 ± 6.1 |
Sulfur content | mg/g | 19.0 ± 1.5 | 2.0 ± 0.3 | 2.0 ± 0.4 |
Phosphorus content | mg/g | 27.0 ± 2.1 | 3.0 ± 0.4 | 2.7 ± 0.3 |
Hydrocarbon/ Fatty Acid | Stage 1 D-CO | Stage 2 BD-R | Stage 3 BD-ABM | Stage 4 BD-AAR |
---|---|---|---|---|
Content % wt/wt | ||||
C8:0 | 0.15 ± 0.04 | 0.07 ± 0.03 | ||
C9:0 | 0.50 ± 0.08 | |||
C10:0 | 1.84 ± 0.11 | 0.05 ± 0.04 | 0.03 ± 0.01 | |
C11:0 | 3.70 ± 0.23 | 0.06 ± 0.05 | 0.02 ± 0.01 | |
C12:0 | 3.26 ± 0.27 | 0.03 ± 0.01 | ||
C13:0 | 2.94 ± 0.15 | |||
C14:0 | 2.62 ± 0.12 | 0.07 ± 0.01 | 0.04 ± 0.02 | |
C14:1 (cis–9) | 0.03 ± 0.02 | |||
C15:0 | 1.85 ± 0.13 | 0.03 ± 0.01 | 0.02 ± 0.01 | |
C15:1 (cis–10) | 0.03 ± 0.02 | |||
C16:0 | 1.14 ± 0.11 | 4.78 ± 0.16 | 6.14 ± 0.19 | 5.52 ± 0.09 |
C16:1 (cis–9) | 0.27 ± 0.02 | 0.09 ± 0.03 | 0.07 ± 0.02 | |
C17:0 | 0.70 ± 0.04 | 0.07 ± 0.02 | 0.07 ± 0.01 | |
C17:1 (cis–10) | 0.05 ± 0.02 | 0.04 ± 0.00 | ||
C18:0 | 0.25 ± 0.03 | 2.38 ± 0.13 | 4.72 ± 0.01 | 4.56 ± 0.03 |
C18:1 (trans–9) | 0.03 ± 0.02 | 0.03 ± 0.01 | ||
C18:1 (cis–9) | 59.68 ± 1.02 | 21.88 ± 0.63 | 21.56 ± 0.45 | |
C18:2 (all–cis–9,12) | 19.84 ± 0.31 | 15.45 ± 0.57 | 15.43 ± 0.56 | |
C18:3 (all–cis–6,9,12) | 0.55 ± 0.04 | 0.24 ± 0.01 | 0.27 ± 0.01 | |
C18:3 (all–cis–9,12,15) | 8.74 ± 0.11 | 50.14 ± 0.86 | 51.43 ± 1.42 | |
C19:0 | 0.06 ± 0.01 | |||
C20:0 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.03 |
C20:1 (cis–11) | 1.77 ± 0.15 | 0.20 ± 0.05 | 0.19 ± 0.01 | |
C20:2 (all–cis–11,14) | 0.22 ± 0.01 | 0.07 ± 0.07 | 0.02 ± 0.01 | |
C22:0 | 0.34 ± 0.03 | 0.09 ± 0.01 | 0.10 ± 0.03 | |
C22:1 (cis–13) | 1.3 ± 0.12 | 0.14 ± 0.05 | 0.08 ± 0.02 | |
C20:4 (all–cis–5,8,11,14) | 0.04 ± 0.01 | 0.04 ± 0.01 | ||
C22:2 (all–cis–13,16) | 0.04 ± 0.01 | 0.09 ± 0.03 | ||
C24:0 | 0.34 ± 0.04 | 0.12 ± 0.02 | 0.14 ± 0.02 | |
C24:1 (cis–15) | 0.06 ± 0.01 | |||
C22:6 (all–cis–4,7,10,13,16,19) | 0.05 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Michalski, R.; Zieliński, M.; Kazimierowicz, J. A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. Atmosphere 2021, 12, 1099. https://doi.org/10.3390/atmos12091099
Dębowski M, Michalski R, Zieliński M, Kazimierowicz J. A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. Atmosphere. 2021; 12(9):1099. https://doi.org/10.3390/atmos12091099
Chicago/Turabian StyleDębowski, Marcin, Ryszard Michalski, Marcin Zieliński, and Joanna Kazimierowicz. 2021. "A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions" Atmosphere 12, no. 9: 1099. https://doi.org/10.3390/atmos12091099
APA StyleDębowski, M., Michalski, R., Zieliński, M., & Kazimierowicz, J. (2021). A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. Atmosphere, 12(9), 1099. https://doi.org/10.3390/atmos12091099