Sources of PM2.5-Associated PAHs and n-alkanes in Changzhou China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. Sample Analysis
2.2.1. Analysis of OC, EC and Water-Soluble Ions
2.2.2. Analysis of Polycyclic Aromatic Hydrocarbons
2.2.3. Analysis of n-alkanes
2.3. Quality Assurance and Quality Control (QA/QC)
3. Results and Discussions
3.1. PM2.5 and Its Constituents
3.2. Mass Concentration and Distribution of n-alkanes
3.3. PAHs Mass Concentration and Distribution of Different Rings
3.4. Source Identification of n-alkanes and PAHs
3.4.1. Source Identification of n-alkanes by Diagnostic Parameters
3.4.2. Correlations between n-alkanes, PAHs and Other Chemical Species
3.4.3. Source Identification of PAHs by PCA
3.4.4. Source Identification of n-alkanes by PCA
3.5. Backward Trajectory Analysis for Transport Pattern of Organics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, S.; Liu, Y.; Wang, J.; Wang, J.; Hou, L.; Lv, B.; Wang, X.; Zhao, X.; Yang, W.; Geng, C.; et al. Chemical compositions and source analysis of PM2.5 during autumn and winter in a heavily polluted city in China. Atmosphere 2020, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Sulaymon, I.; Mei, X.; Yang, S.; Chen, S.; Zhang, Y.; Hopke, P.; Schauer, J.; Zhang, Y. PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmos. Res. 2020, 237, 104833. [Google Scholar] [CrossRef]
- Russell, A. A Focus on Particulate Matter and Health. Environ. Sci. Technol. 2009, 43, 4620–4625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Liu, J.; Gu, A.; Feng, F.; Liu, Y.; Bi, C.; Xu, J.; Li, L.; Chen, H.; Chen, Y.; et al. Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry. Atmos. Chem. Phys. 2017, 17, 2573–2592. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Xu, T.; Yang, X.; Chen, J.; Cheng, T.; Li, X. Seasonal contributions to size-resolved n-alkanes (C8–C40) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes. Sci. Total Environ. 2017, 579, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, X.; Tam, F.; Zhang, X.; Liu, K.; Yeung, C.; Feng, Y.; Cheng, Y.; Wong, Y.; Ng, W.; et al. Source apportionment of fine particulate matter in Macao, China with and without organic tracers: A comparative study using positive matrix factorization. Atmos. Environ. 2019, 198, 183–193. [Google Scholar] [CrossRef]
- Zhang, H.; Worton, D.; Shen, S.; Nah, T.; Isaacman-VanWertz, G.; Wilson, K.; Goldstein, A. Fundamental Time Scales Governing Organic Aerosol Multiphase Partitioning and Oxidative Aging. Environ. Sci. Technol. 2015, 49, 9768–9777. [Google Scholar] [CrossRef] [PubMed]
- Karali, D.; Rapsomanikis, S.; Christoforidis, A. Decomposition Kinetics of Non-Volatile Alkanes on Urban Aerosol. Atmosphere 2017, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Duan, F.; He, K.; Liu, X. Characteristics and source identification of fine particulate n-alkanes in Beijing, China. J. Environ. Sci. 2010, 22, 998–1005. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, N.; Yin, S.; Li, X.; Yu, F.; Guo, Y.; Zhang, R. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment. Atmos. Res. 2017, 191, 1–11. [Google Scholar] [CrossRef]
- Yadav, S.; Tandon, A.; Attri, A. Characterization of aerosol associated non-polar organic compounds using TD-GC-MS: A four year study from Delhi, India. J. Hazard. Mater. 2013, 252–253, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, I.; Koutrakis, P.; Tsapakis, M.; Lagoudaki, E.; Stephanou, E.; Baer, D.; Oyola, P. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ. Sci. Technol. 2001, 35, 2288–2294. [Google Scholar] [CrossRef]
- Mario-Tovar, M.; Barradas-Gimate, A.; Arias-Montoya, M.; Saldarriaga-Noreña, H. Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments 2018, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Eagar, J.; Ervens, B.; Herckes, P. Impact of partitioning and oxidative processing of PAH in fogs and clouds on atmospheric lifetimes of PAH. Atmos. Environ. 2017, 160, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, B.; Liu, Y.; Sun, X.; Fu, D.; Sun, S.; Thapa, S.; Geng, J.; Qi, H.; Zhang, A.; et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China. J. Clean. Prod. 2020, 264, 121673. [Google Scholar] [CrossRef]
- Wang, W.; Ding, X.; Turap, Y.; Tursun, Y.; Abulizi, A.; Wang, X.; Shao, L.; Talifu, D.; An, J.; Zhang, X.; et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. Sci. Total Environ. 2020, 739, 139518. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ho, S.; Ma, S.; Cao, J.; Dai, W.; Liu, S.; Shen, Z.; Huang, R.; Wang, G.; Han, Y. Characterization of PM2.5 in Guangzhou, China: Uses of organic markers for supporting source apportionment. Sci. Total Environ. 2016, 550, 961–971. [Google Scholar] [CrossRef]
- Ladji, R.; Yassaa, N.; Balducci, C.; Cecinato, A. Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria. Environ. Sci. Pollut. Res. Int. 2014, 21, 1819–1832. [Google Scholar] [CrossRef] [PubMed]
- Iakovides, M.; Iakovides, G.; Stephanou, E. Atmospheric particle-bound polycyclic aromatic hydrocarbons, n-alkanes, hopanes, steranes and trace metals: PM2.5 source identification, individual and cumulative multi-pathway lifetime cancer risk assessment in the urban environment. Sci. Total Environ. 2021, 752, 141834. [Google Scholar] [CrossRef]
- Xue, G.; Wang, G.; Wu, C.; Xie, Y.; Chen, Y.; Li, X.; Wang, X.; Li, D.; Zhang, S.; Ge, S.; et al. Pollution characteristics and source apportionment of n-alkanes and PAHs in summertime PM2.5 at background site of Yangtze River Delta. Environ. Sci. 2020, 41, 554–563. [Google Scholar]
- Lyu, R.; Shi, Z.; Alam, M.; Wu, X.; Liu, D.; Vu, T.; Stark, C.; Xu, R.; Fu, P.; Feng, Y.; et al. Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China. Atmos. Environ. 2019, 202, 244–255. [Google Scholar] [CrossRef]
- Teng, J.; Zhong, C.; Liang, D.; Ma, X.; Wu, J. Characteristics and source analysis of water-soluble ions in PM2.5 in Changzhou. Resour. Environ. Yangtze Basin. 2016, 25, 1368–1374. [Google Scholar]
- Ye, X.; Wang, Z.; Zhao, Y.; Yang, W.; Li, C.; He, T. Distribution characteristics of organic and elemental carbon in atmosphere of Changzhou City. Environ. Prot. Technol. 2020, 26, 1–7. [Google Scholar]
- Wang, Q.; Dai, X.; Chao, W.; Shang, T. Analysis and pollution characteristics of metal elements in PM2.5 in CHangzhou during spring. Chin. J. Environ. Eng. 2015, 9, 323–330. [Google Scholar]
- Teng, J.; Wang, W.; Jiang, S.; Cheng, Z.; Xue, Y. Study on the Source Profiles of PM2.5 Major Emissions in Changzhou. Environ. Sci. Technol. 2015, 28, 56–59, 64. [Google Scholar]
- Jiang, S.; Xue, Y.; Teng, J.; Zhang, L.; Wang, Y.; Dai, X. Study on the pollution characteristics and source identification of PAHs on ambient PM2.5 in fall of Changzhou. Environ. Monit. China 2015, 31, 40–44. [Google Scholar]
- Li, H.; Zhang, Q.; Zhang, Q.; Chen, C.; Wang, L.; Wei, Z.; Zhou, S.; Parworth, C.; Zheng, B.; Canonacoe, F.; et al. Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion. Atmos. Chem. Phys. 2017, 17, 4751–4768. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.; Watson, J.; Chen, L.; Arnott, W.; Moosmüller, H.; Fung, K. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [PubMed]
- Tao, Y.; Yuan, Y.; Cui, Y.; Zhu, L.; Zhao, Z.; Ma, S.; Ye, Z.; Ge, X. Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China. Atmos. Pollut. Res. 2021, 12, 101124. [Google Scholar] [CrossRef]
- Ho, S.; Yu, J. In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. J. Chromatogr. A 2004, 1059, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Sun, N.; Li, X.; Zhao, Z.; Ma, S.; Huang, H.; Ye, Z.; Ge, X. Chemical and optical characteristics and sources of PM2.5 humic-like substances at industrial and suburban sites in Changzhou, China. Atmosphere 2021, 12, 276. [Google Scholar] [CrossRef]
- Ye, S.; Ma, T.; Duan, F.; Li, H.; He, K.; Xia, J.; Yang, S.; Zhu, L.; Ma, Y.; Huang, T.; et al. Characteristics and formation mechanisms of winter haze in Changzhou, a highly polluted industrial city in the Yangtze River Delta, China. Environ. Pollut. 2019, 253, 377–383. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, L.; Lou, S.; Zhou, M.; Ding, A.; Huang, H.; Chen, J.; Wang, Q.; Tao, S.; Chen, C.; et al. Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. J. Clean. Prod. 2016, 112, 1302–1311. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Liu, M.; Lu, M.; Ge, R.; Li, S.; Liu, X.; Dong, W.; Qadeer, A. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in different seasons from Shanghai, China. Sci. Total Environ. 2018, 644, 725–735. [Google Scholar] [CrossRef]
- Karali, D.; Rapsomanikis, S.; Christoforidis, A. Kinetic behavior of non-volatile PAHs associated with urban aerosol. Air Qual. Atmos. Health 2018, 11, 825–833. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Feng, J.; Zhang, D.; Li, H.; Gu, Z.; Wang, B.; Sheng, G.; Fu, J. Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China. J. Environ. Sci. 2010, 22, 405–412. [Google Scholar] [CrossRef]
- Kang, M.; Ren, L.; Ren, H.; Zhao, Y.; Kawamura, K.; Zhang, H.; Wei, L.; Sun, Y.; Wang, Z.; Fu, P. Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. Environ. Pollut. 2018, 243, 1579–1587. [Google Scholar] [CrossRef]
- Perrone, M.; Carbone, C.; Faedo, D.; Ferrero, L.; Maggioni, A.; Sangiorgi, G.; Bolzacchini, E. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmos. Environ. 2014, 82, 391–400. [Google Scholar] [CrossRef]
- Xu, H.; Tao, J.; Ho, S.; Ho, K.; Cao, J.; Li, N.; Chow, J.; Wang, G.; Han, Y.; Zhang, R.; et al. Characteristics of fine particulate non-polar organic compounds in Guangzhou during the 16th Asian Games: Effectiveness of air pollution controls. Atmos. Environ. 2013, 76, 94–101. [Google Scholar] [CrossRef]
- Kong, S.; Yan, Q.; Zheng, H.; Liu, H.; Wang, W.; Zheng, S.; Yang, G.; Zheng, M.; Wu, J.; Qi, S.; et al. Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM2.5 pollution controls. Environ. Int. 2018, 114, 266–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourotte, C.; Forti, M.; Taniguchi, S.; Bícego, C.; Lotufo, P. A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmos. Environ. 2005, 39, 3799–3811. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, F.; Zheng, H.; Zhang, D.; Zhai, X.; Fan, M.; Zhang, Y. Source Apportionment and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in PM2.5 in Changchun City, Autumn of 2017. Environ. Sci. 2020, 41, 564–573. [Google Scholar]
- Li, B.; Ma, L.; Sun, S.; Thapa, S.; Lu, L.; Wang, K.; Qi, H. Polycyclic aromatic hydrocarbons and their nitro-derivatives in urban road dust across China: Spatial variation, source apportionment, and health risk. Sci. Total Environ. 2020, 747, 141194. [Google Scholar] [CrossRef] [PubMed]
- Bernd, R.; Simoneit; Sheng, G.; Chen, X.; Fu, J.; Zhang, J.; Xu, Y. Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos. Environ. Part A 1991, 25, 2111–2129. [Google Scholar]
- Yi, Y.; Hou, Z.; Yang, Q.; Liu, X.; Li, Z.; Meng, J.; Yan, L.; Wei, B.; Fu, M. Chemical Compositions and Sources of n-alkanes and Saccharides inPM2.5 from Taian City during the Summer. Environ. Sci. 2020, 41, 1045–1055. [Google Scholar]
- Zhang, N.; Cao, J.; Li, L.; Ho, S.; Wang, Q.; Zhu, C.; Wang, L. Characteristics and source identification of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in Xiamen. Aerosol. Air Qual. Res. 2018, 18, 1673–1683. [Google Scholar] [CrossRef]
- Guo, X.; Li, C.; Gao, Y.; Tang, L.; Briki, M.; Ding, H.; Ji, H. Sources of organic matter (PAHs and n-alkanes) in PM2.5 of Beijing in haze weather analyzed by combining the C-N isotopic and PCA-MLR analyses. Environ. Sci. Process. Impacts 2016, 18, 314–322. [Google Scholar] [CrossRef]
- Hong, Z.; Hong, Y.; Zhang, H.; Chen, J.; Xu, L.; Deng, J.; Du, W.; Zhang, Y.; Xiao, H. Pollution Characteristics and Source Apportionment of PM2.5-Bound n-alkanes in the Yangtze River Delta, China. Aerosol Air Qual. Res. 2017, 17, 1985–1998. [Google Scholar] [CrossRef]
- Li, W.; Peng, Y.; Bai, Z. Distributions and sources of n-alkanes in PM2.5 at urban, industrial and coastal sites in Tianjin, China. J. Environ. Sci. 2010, 22, 1551–1557. [Google Scholar] [CrossRef]
- Dreij, K.; Lundin, L.; Bihanic, F.; Lundstedt, S. Polycyclic aromatic compounds in urban soils of Stockholm City: Occurrence, sources and human health risk assessment. Environ. Res. 2020, 182, 108989. [Google Scholar] [CrossRef]
- Yang, D.; Qi, S.; Zhang, Y.; Xing, X.; Liu, H.; Qu, C.; Liu, J.; Li, F. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China. Mar. Pollut. Bull. 2013, 76, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Chen, Z.; Tian, Q.; Mao, Y.; Liu, W.; Shi, M.; Cheng, C.; Hu, T.; Zhu, G.; Li, Y.; et al. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicol. Environ. Saf. 2020, 191, 110219. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jiang, N.; Yu, X.; Dong, Z.; Duan, S.; Zhang, L.; Zhang, R. Sources and spatial distribution of PM2.5-bound polycyclic aromatic hydrocarbons in Zhengzhou in 2016. Atmos. Res. 2019, 16, 65–75. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, L.; Guo, T.; Lin, T.; Guo, Z. Aeolian transport and deposition of carbonaceous aerosols over the Northwest Pacific Ocean in spring. Atmos. Environ. 2020, 223, 117209. [Google Scholar] [CrossRef]
Constituents | Severely Polluted (n = 8) | Polluted (n = 48) | Non-Polluted (n = 19) | All (n = 75) |
---|---|---|---|---|
Average ± Std | Average ± Std | Average ± Std | Average ± Std | |
PM2.5, carbonaceous contents (μg/m3) | ||||
PM2.5 | 159.53 ± 9.36 | 107.85 ± 19.33 | 56.42 ± 10.59 | 101.97 ± 35.45 |
EC | 7.76 ± 1.55 | 6.36 ± 1.86 | 3.67 ± 1.08 | 5.76 ± 2.04 |
OC | 20.24 ± 5.82 | 15.02 ± 4.08 | 8.64 ± 3.33 | 14.39 ± 5.96 |
Water-soluble ions (μg/m3) | ||||
NO3− | 25.22 ± 9.10 | 15.77 ± 7.96 | 8.30 ± 3.74 | 15.10 ± 9.05 |
NH4+ | 9.63 ± 2.09 | 7.46 ± 2.46 | 5.61 ± 1.39 | 7.27 ± 2.51 |
SO42− | 12.33 ± 2.82 | 10.27 ± 3.60 | 7.96 ± 1.68 | 9.93 ± 3.39 |
Mg2+ | 0.17 ± 0.06 | 0.09 ± 0.05 | 0.03 ± 0.03 | 0.09 ± 0.06 |
Ca2+ | 4.67 ± 1.35 | 2.85 ± 1.64 | 1.15 ± 0.74 | 2.62 ± 1.72 |
K+ | 0.61 ± 0.28 | 0.39 ± 0.20 | 0.24 ± 0.21 | 0.40 ± 0.27 |
Na+ | 1.35 ± 0.98 | 0.81 ± 0.42 | 0.75 ± 0.37 | 0.86 ± 0.50 |
Cl− | 3.82 ± 2.48 | 1.78 ± 1.46 | 1.04 ± 1.05 | 1.88 ± 1.75 |
SNA | 47.18 ± 12.59 | 33.50 ± 12.59 | 21.87 ± 6.00 | 32.20 ± 13.31 |
∑WSIIs | 57.80 ± 14.58 | 39.42 ± 12.98 | 25.09 ± 6.92 | 37.72 ± 15.00 |
Organic compounds (ng/m3) | ||||
∑n-alkanes | 486.22 ± 260.44 | 241.43 ± 178.51 | 200.99 ± 113.97 | 252.37 ± 184.02 |
∑PAHs | 9.59 ± 8.28 | 4.30 ± 4.44 | 2.36 ± 1.60 | 4.37 ± 4.95 |
Percentage (%) | ||||
EC/PM2.5 | 4.9 ± 1.0 | 5.9 ± 1.8 | 6.5 ± 1.1 | 5.6 ± 1.6 |
OC/PM2.5 | 12.7 ± 3.7 | 13.9 ± 4.1 | 15.3 ± 4.5 | 14.1 ± 4.2 |
SNA/∑WSIIs | 81.6 ± 5.7 | 85.0 ± 8.2 | 87.2 ± 4.3 | 84.5 ± 7.3 |
∑WSIIs/PM2.5 | 36.2 ± 8.8 | 36.6 ± 9.3 | 44.5 ± 12.3 | 38.5 ± 10.6 |
∑n-alkanes/PM2.5 | 0.31 ± 0.17 | 0.23 ± 0.16 | 0.37 ± 0.25 | 0.27 ± 0.20 |
∑PAHs/PM2.5 | 0.006 ± 0.005 | 0.004 ± 0.004 | 0.004 ± 0.003 | 0.004 ± 0.004 |
Severely Polluted | Polluted | Non-Polluted | All | |||||
---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | |
CPI | 1.18 ± 0.12 | 1.08–1.42 | 1.36 ± 0.33 | 0.93–2.55 | 1.39 ± 0.67 | 0.93–4.05 | 1.35 ± 0.43 | 0.93–4.05 |
CPI1 | 1.84 ± 0.53 | 1.35–2.65 | 1.82 ± 0.35 | 1.22–2.68 | 1.84 ± 0.23 | 1.43–2.19 | 1.83 ± 0.34 | 1.22–2.68 |
CPI2 | 1.05 ± 0.15 | 0.88–1.35 | 1.27 ± 0.37 | 0.84–2.57 | 1.31 ± 0.74 | 0.66–4.22 | 1.26 ± 0.48 | 0.66–4.22 |
Cities | Sampling Period | CPI | Main Source | Ref. | ||
---|---|---|---|---|---|---|
CPI | CPI1 | CPI2 | ||||
Zhengzhou | 2015, Spring | 1.3 | 1.1 | 1.4 | anthropogenic emission | [10] |
Chongming Island | 2018, Summer | 2.2 | 0.74 | 2.9 | fossil fuel combustion | [20] |
Shanghai | 2013, Spring | 1.5 | 1.4 | 1.5 | anthropogenic sources | [36] |
Taian | 2016–2017 | 1.83 | - | - | biogenic sources | [45] |
Xiamen | 2013, Winter | 0.96 | 0.86 | 0.99 | anthropogenic sources | [46] |
2013, Summer | 1.27 | 1.51 | 1.11 | biogenic sources | [46] | |
Beijing | 2013, Autumn | 0.99 | 1.16 | 0.82 | petroleum, diesel and gasoline emissions | [47] |
Shanghai | 2015, Spring | 1.85 | 1.66 | 1.91 | biogenic sources | [48] |
Nanjing | 2015, Spring | 1.78 | 1.57 | 1.94 | biogenic sources | [48] |
Ningbo | 2015, Spring | 1.57 | 1.93 | 1.49 | anthropogenic sources | [48] |
Tianjin | 2007, Spring | 1.29 | 1.28 | 1.30 | anthropogenic sources | [49] |
OC | EC | NO3− | SO42− | NH4+ | Na+ | K+ | Mg2+ | Ca2+ | Cl− | ∑n-alkanes | ∑PAHs | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OC | 1 | |||||||||||
EC | 0.848 ** | 1 | ||||||||||
NO3− | 0.545 ** | 0.421 ** | 1 | |||||||||
SO42− | 0.255 * | 0.315 ** | 0.568 ** | 1 | ||||||||
NH4+ | 0.396 ** | 0.288 * | 0.934 ** | 0.738 ** | 1 | |||||||
Na+ | 0.169 | 0.319 ** | 0.017 | 0.128 | −0.026 | 1 | ||||||
K+ | 0.574 ** | 0.503 ** | 0.375 ** | 0.326 ** | 0.328 * | 0.590 ** | 1 | |||||
Mg2+ | 0.537 ** | 0.648 ** | 0.349 ** | 0.217 | 0.246 * | 0.534 ** | 0.560 ** | 1 | ||||
Ca2+ | 0.511 ** | 0.656 ** | 0.194 | 0.109 | 0.039 | 0.407 ** | 0.342 ** | 0.754 ** | 1 | |||
Cl− | 0.331 ** | 0.266 * | 0.598 ** | 0.30 ** | 0.623 ** | 0.509 ** | 0.547 ** | 0.491 ** | 0.202 | 1 | ||
∑n-alkanes | 0.160 | 0.120 | 0.143 | 0.252 * | 0.192 | 0.156 | 0.294 * | 0.244 * | 0.211 | 0.255 * | 1 | |
∑PAHs | 0.251 * | 0.640 ** | 0.352 ** | 0.092 | 0.275 * | 0.286 * | 0.265 * | 0.336 ** | 0.330 ** | 0.409 ** | 0.133 | 1 |
Compounds | PC1 | PC2 | PC3 |
---|---|---|---|
Ace | 0.844 | −0.278 | 0.124 |
Flu | 0.566 | −0.282 | −0.122 |
Phe | 0.916 | −0.332 | −0.005 |
Ant | 0.956 | −0.204 | 0.028 |
Fla | 0.904 | −0.379 | −0.059 |
Pyr | 0.929 | −0.329 | −0.068 |
BaA | 0.785 | −0.320 | −0.047 |
Chr | 0.860 | −0.182 | −0.015 |
BbF | 0.323 | 0.197 | 0.335 |
BkF | 0.744 | 0.489 | −0.108 |
BaF | 0.540 | 0.390 | 0.350 |
BeP | 0.612 | 0.641 | −0.165 |
BaP | 0.570 | 0.769 | −0.034 |
Per | 0.605 | 0.725 | −0.003 |
DahA | 0.164 | 0.199 | 0.507 |
InP | −0.061 | −0.142 | 0.787 |
BghiP | −0.029 | −0.085 | 0.744 |
% of Variance | 46.3 | 16.0 | 10.3 |
Sources | Coal combustion | Biomass burning | Vehicle exhaust |
Compounds | PC1 | PC2 |
---|---|---|
C15 | 0.380 | 0.296 |
C16 | 0.575 | 0.580 |
C17 | 0.658 | 0.578 |
C18 | 0.616 | 0.608 |
C19 | 0.745 | 0.497 |
C20 | 0.730 | 0.588 |
C21 | 0.759 | 0.581 |
C22 | 0.639 | 0.696 |
C23 | 0.598 | 0.689 |
C24 | 0.612 | 0.641 |
C25 | 0.704 | 0.516 |
C26 | 0.801 | 0.333 |
C27 | 0.851 | 0.089 |
C28 | 0.901 | −0.068 |
C29 | 0.454 | −0.315 |
C30 | 0.930 | −0.305 |
C31 | 0.903 | −0.399 |
C32 | 0.897 | −0.426 |
C33 | 0.882 | −0.458 |
C34 | 0.861 | −0.473 |
C35 | 0.871 | −0.470 |
C36 | 0.871 | −0.462 |
C37 | 0.872 | −0.455 |
C38 | 0.874 | −0.451 |
C39 | 0.874 | −0.439 |
C40 | 0.884 | −0.417 |
% of Variance | 59.9 | 23.1 |
Sources | Biogenic source | Vehicle exhaust and coal combustion |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | |||
---|---|---|---|---|---|---|
PM2.5 (μg/m3) | 113.63 | 126.98 | 107.69 | 87.37 | ||
∑n-alkanes (ng/m3) | 316.97 | 264.84 | 208.63 | 237.99 | ||
∑PAHs (ng/m3) | 5.79 | 3.76 | 4.63 | 3.79 | ||
n-alkanes | Severely polluted (%) | C9–C25 | 18.61 | 11.64 | 48.17 | 17.39 |
C26–C40 | 81.39 | 88.36 | 51.83 | 82.61 | ||
Polluted (%) | C9–C25 | 28.09 | 12.52 | 12.47 | 19.32 | |
C26–C40 | 71.91 | 87.48 | 87.53 | 80.68 | ||
Non-polluted (%) | C9–C25 | 20.74 | - | - | 11.60 | |
C26–C40 | 79.26 | - | - | 88.40 | ||
PAHs | Severely polluted (%) | 3-ring | 10.86 | 15.49 | 9.80 | 11.61 |
4-ring | 54.91 | 30.26 | 55.60 | 62.79 | ||
5-ring | 33.99 | 38.41 | 34.54 | 25.22 | ||
6-ring | 0.24 | 15.84 | 0.06 | 0.38 | ||
Polluted (%) | 3-ring | 12.08 | 8.86 | 9.01 | 9.02 | |
4-ring | 49.73 | 44.03 | 32.86 | 39.39 | ||
5-ring | 34.41 | 43.35 | 55.99 | 50.71 | ||
6-ring | 3.78 | 3.75 | 2.15 | 0.88 | ||
Non-polluted (%) | 3-ring | 9.31 | - | - | 11.24 | |
4-ring | 47.67 | - | - | 34.17 | ||
5-ring | 42.28 | - | - | 52.39 | ||
6-ring | 0.74 | - | - | 2.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Li, X.; Ji, Y.; Huang, H.; Ye, Z.; Zhao, Z. Sources of PM2.5-Associated PAHs and n-alkanes in Changzhou China. Atmosphere 2021, 12, 1127. https://doi.org/10.3390/atmos12091127
Sun N, Li X, Ji Y, Huang H, Ye Z, Zhao Z. Sources of PM2.5-Associated PAHs and n-alkanes in Changzhou China. Atmosphere. 2021; 12(9):1127. https://doi.org/10.3390/atmos12091127
Chicago/Turabian StyleSun, Ning, Xudong Li, Ye Ji, Hongying Huang, Zhaolian Ye, and Zhuzi Zhao. 2021. "Sources of PM2.5-Associated PAHs and n-alkanes in Changzhou China" Atmosphere 12, no. 9: 1127. https://doi.org/10.3390/atmos12091127
APA StyleSun, N., Li, X., Ji, Y., Huang, H., Ye, Z., & Zhao, Z. (2021). Sources of PM2.5-Associated PAHs and n-alkanes in Changzhou China. Atmosphere, 12(9), 1127. https://doi.org/10.3390/atmos12091127