Investigation of Air-Sea Turbulent Momentum Flux over the Aegean Sea with a Wind-Wave Coupling Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Models
2.2. Measurements
2.3. Meteorological Conditions
2.4. Numerical Applications
3. Results and Discussion
3.1. Wave Conditions
3.1.1. SWAN Sensitivity
3.1.2. Simulated Sea State during Etesian Conditions
3.1.3. Wave Simulation Comparison with In-Situ Measurements
3.2. Observed and Simulated Fluxes
3.2.1. Island Effects to the Turbulent Fluxes
3.2.2. The Effect of Mean Flow Parameters on Fluxes Variability
3.2.3. Momentum Fluxes Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Edson, J.B.; Zappa, C.J.; Ware, J.A.; McGillis, W.R.; Hare, J.E. Scalar Flux Profile Relationships over the Open Ocean: Oceanic scalar flux-profile relationships. J. Geophys. Res. 2004, 109, C08S09. [Google Scholar] [CrossRef] [Green Version]
- Edson, J.; Fairall, C. Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance Budgets. J. Atmos. Sci. 1998, 55, 2311–2328. [Google Scholar] [CrossRef]
- Hare, J.E.; Hara, T.; Edson, J.B.; Wilczak, J.M. A Similarity Analysis of the Structure of Airflow over Surface Waves. J. Phys. Oceanogr. 1997, 27, 1018–1037. [Google Scholar] [CrossRef]
- Donelan, M.A.; Dobson, F.W.; Smith, S.D.; Anderson, R.J. On the Dependence of Sea Surface Roughness on Wave Development. J. Phys. Oceanogr. 1993, 23, 2143–2149. [Google Scholar] [CrossRef] [Green Version]
- Drennan, W.M. On the Wave Age Dependence of Wind Stress over Pure Wind Seas. J. Geophys. Res. 2003, 108, 8062. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk Parameterization of Air-Sea Fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.T.; Katsaros, K.B.; Businger, J.A. Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface. J. Atmos. Sci. 1979, 36, 1722–1735. [Google Scholar] [CrossRef] [Green Version]
- Chalikov, D.; Rainchik, S. Coupled Numerical Modelling of Wind and Waves and the Theory of the Wave Boundary Layer. Bound. Layer Meteorol 2011, 138, 1–41. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. Quasi-Linear Theory of Wind-Wave Generation Applied to Wave Forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.; Makin, V.; Chapron, B. Coupled Sea Surface-Atmosphere Model-2. Spectrum of Short Wind Waves. J. Geophys. Res. 1999, 104, 7625–7639. [Google Scholar] [CrossRef]
- Makin, V.K.; Kudryavtsev, V.N. Coupled Sea Surface-Atmosphere Model: 1. Wind over Waves Coupling. J. Geophys. Res. 1999, 104, 7613–7623. [Google Scholar] [CrossRef]
- Chalikov, D.V.; Belevich, M.Y. One-Dimensional Theory of the Wave Boundary Layer. Bound. Layer Meteorol 1993, 63, 65–96. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. Experimental Evidence of the Effect of Surface Waves on the Airflow. J. Phys. Oceanogr. 1992, 22, 1600–1604. [Google Scholar] [CrossRef] [Green Version]
- Grachev, A.; Fairall, C. Upward Momentum Transfer in the Marine Boundary Layer. J. Phys. Oceanogr. 2001, 31, 1698–1711. [Google Scholar] [CrossRef]
- Hanley, K.; Belcher, S.E. Wave-Driven Wind Jets in the Marine Atmospheric Boundary Layer. J. Atmos. Sci. 2008, 65. [Google Scholar] [CrossRef] [Green Version]
- Semedo, A.; Saetra, Ø.; Rutgersson, A.; Kahma, K.K.; Pettersson, H. Wave-Induced Wind in the Marine Boundary Layer. J. Atmos. Sci. 2009, 66, 2256–2271. [Google Scholar] [CrossRef] [Green Version]
- Chalikov, D.V.; Makin, V.K. Models of the Wave Boundary Layer. Bound. Layer Meteorol 1991, 56, 83–99. [Google Scholar] [CrossRef]
- Makin, V.K.; Kudryavtsev, V.N.; Mastenbroek, C. Drag of the Sea Surface. Bound. Layer Meteorol 1995, 73, 159–182. [Google Scholar] [CrossRef]
- Makin, V.K.; Mastenbroek, C. Impact of Waves on Air-Sea Exchange of Sensible Heat and Momentum. Bound. Layer Meteorol 1996, 79, 279–300. [Google Scholar] [CrossRef]
- Grachev, A.A.; Fairall, C.W.; Hare, J.E.; Edson, J.B.; Miller, S.D. Wind Stress Vector over Ocean Waves. J. Phys. Oceanogr. 2003, 33, 22. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Edson, J.B.; Hristov, T.; McWilliams, J.C. Large-Eddy Simulations and Observations of Atmospheric Marine Boundary Layers above Nonequilibrium Surface Waves. J. Atmos. Sci. 2008, 65, 1225–1245. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.N.; Makin, V.K. The Impact Of Air-Flow Separation On The Drag Of The Sea Surface. Bound. Layer Meteorol. 2001, 98, 155–171. [Google Scholar] [CrossRef]
- Sun, J.; Vandemark, D.; Mahrt, L.; Vickers, D.; Crawford, T.; Vogel, C. Momentum Transfer over the Coastal Zone. J. Geophys. Res. 2001, 106, 12437–12448. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L.; Sun, J.; Crawford, T. Structure of Offshore Flow. Mon. Weather Rev. 2001, 129, 8. [Google Scholar] [CrossRef]
- Mahrt, L.; Miller, S.; Hristov, T.; Edson, J. On Estimating the Surface Wind Stress over the Sea. J. Phys. Oceanogr. 2018, 48, 1533–1541. [Google Scholar] [CrossRef]
- Mahrt, L.; Vickers, D.; Edson, J.; Wilczak, J.M.; Hare, J.; Højstrup, J. Vertical Structure Of Turbulence In Offshore Flow During Rasex. Bound. Layer Meteorol. 2001, 100, 47–61. [Google Scholar] [CrossRef]
- Grachev, A.A.; Leo, L.S.; Fernando, H.J.S.; Fairall, C.W.; Creegan, E.; Blomquist, B.W.; Christman, A.J.; Hocut, C.M. Air–Sea/Land Interaction in the Coastal Zone. Bound. Layer Meteorol 2017. [Google Scholar] [CrossRef]
- Tombrou, M.; Bossioli, E.; Kalogiros, J.; Allan, J.D.; Bacak, A.; Biskos, G.; Coe, H.; Dandou, A.; Kouvarakis, G.; Mihalopoulos, N.; et al. Physical and Chemical Processes of Air Masses in the Aegean Sea during Etesians: Aegean-GAME Airborne Campaign. Sci. Total Environ. 2015, 506–507, 201–216. [Google Scholar] [CrossRef]
- Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H. Investigation of Turbulence Parametrization Schemes with Reference to the Atmospheric Boundary Layer Over the Aegean Sea During Etesian Winds. Bound. Layer Meteorol. 2017, 164, 303–329. [Google Scholar] [CrossRef]
- Kostopoulos, V.E.; Helmis, C.G. Flux Measurements in the Surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece. Sci. Total Environ. 2014, 494–495, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudryavtsev, V.; Chapron, B.; Makin, V. Impact of Wind Waves on the Air-Sea Fluxes: A Coupled Model. J. Geophys. Res. Ocean. 2014, 119, 1217–1236. [Google Scholar] [CrossRef] [Green Version]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions: 1. Model Description and Validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note -475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Plant, W.J. A Relationship between Wind Stress and Wave Slope. J. Geophys. Res. Ocean. 1982, 87, 1961–1967. [Google Scholar] [CrossRef]
- Belcher, S.E.; Hunt, J.C.R. Turbulent Shear Flow over Slowly Moving Waves. J. Fluid Mech. 1993, 251, 109–148. [Google Scholar] [CrossRef]
- Belcher, S.E.; Hunt, J.C.R. Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 1998, 30, 507–538. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Johannessen, J. On Effect of Wave Breaking on Short Wind Waves. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Donelan, M.A.; Hamilton, J.; Hui, W.H.; Stewart, R.W. Directional Spectra of Wind-Generated Ocean Waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 509–562. [Google Scholar] [CrossRef]
- Yurovskaya, M.V.; Dulov, V.A.; Chapron, B.; Kudryavtsev, V.N. Directional Short Wind Wave Spectra Derived from the Sea Surface Photography: Short wave spectra from photography. J. Geophys. Res. Ocean. 2013, 118, 4380–4394. [Google Scholar] [CrossRef]
- Webster, P.J.; Lukas, R. TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Am. Meteor. Soc. 1992, 73, 1377–1416. [Google Scholar] [CrossRef] [Green Version]
- Grachev, A.A.; Fairall, C.W.; Bradley, E.F. Convective Profile Constants Revisited. Bound. Layer Meteorol. 2000, 94, 495–515. [Google Scholar] [CrossRef]
- Beljaars, A.; Holtslag, B. Flux Parameterization over Land Surfaces for Atmospheric Models. J. Appl. Meteor. 1991, 30, 327–341. [Google Scholar] [CrossRef]
- Persson, P.O.G.; Fairall, C.W.; Andreas, E.L.; Guest, P.S.; Perovich, D.K. Measurements near the Atmospheric Surface Flux Group Tower at SHEBA: Near-Surface Conditions and Surface Energy Budget. J. Geophys. Res. Ocean. 2002, 107, 8045. [Google Scholar] [CrossRef] [Green Version]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A Third-Generation Wave Model for Coastal Regions: 2. Verification. J. Geophys. Res. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Zubier, K.; Panchang, V.; Demirbilek, Z. Simulation of Waves at Duck (North Carolina) Using Two Numerical Models. Coast. Eng. J. 2003, 7, 439–469. [Google Scholar] [CrossRef]
- Zijlema, M.; van Vledder, G.P.; Holthuijsen, L.H. Bottom Friction and Wind Drag for Wave Models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Kalogiros, J.; Wang, Q.; Lind, R.J.; Herbers, T.; Cook, J. Shipboard Turbulence Measurements of the Marine Atmospheric Boundary Layer from Hires Experiment; Naval Postgraduate School: Monterey, CA, USA, 2012. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 1988; ISBN 978-90-277-2768-8. [Google Scholar]
- Korres, G.; Papadopoulos, A.; Katsafados, P.; Ballas, D.; Perivoliotis, L.; Nittis, K. A 2-Year Intercomparison of the WAM-Cycle4 and the WAVEWATCH-III Wave Models Implemented within the Mediterranean Sea. Mediterr. Mar. Sci. 2011, 12, 129–152. [Google Scholar] [CrossRef] [Green Version]
- Sofianos. Available online: http://www.oc.phys.uoa.gr/workshop/Aegean_Draft_Report_f.htm (accessed on 11 June 2021).
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Bound. Layer Meteorol 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Gridded Bathymetry Data (General Bathymetric Chart of the Oceans). Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 13 July 2021).
- Janssen, P.A.E.M. Wave-Induced Stress and the Drag of Air Flow over Sea Waves. J. Phys. Oceanogr. 1989, 19, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, S.; Hasselmann, K.; Allender, J.H.; Barnett, T.P. Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models. J. Phys. Oceanogr. 1985, 15, 1378–1391. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.A.; Babanin, A.V.; Riedel, P.; Young, I.R.; Oliver, S.; Hubbert, G. Introduction of a New Friction Routine into the SWAN Model That Evaluates Roughness Due to Bedform and Sediment Size Changes. Coast. Eng. 2011, 58, 317–326. [Google Scholar] [CrossRef]
- Eldeberky, Y.; Battjes, J.A. Spectral Modeling of Wave Breaking: Application to Boussinesq Equations. J. Geophys. Res. Ocean. 1996, 101, 1253–1264. [Google Scholar] [CrossRef]
- Battjes, J.A.; Janssen, J.P.F.M. Energy Loss and Set-Up Due to Breaking of Random Waves. Coast. Eng. 1978, 569–587. [Google Scholar] [CrossRef] [Green Version]
- Stelling, G.S.; Leendertse, J.J. Approximation of Convective Processes by Cyclic AOI Methods. In Estuarine and Coastal Modeling; ASCE: Reston, VA, USA, 1992; pp. 771–782. [Google Scholar]
- Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations. In Prentice-Hall Series in Automatic Computation, Engelwood Cliffs; Prentice-Hall: New York, NY, USA, 1971. [Google Scholar]
- Rogers, W.E.; Kaihatu, J.M.; Petit, H.A.H.; Booij, N.; Holthuijsen, L.H. Diffusion Reduction in an Arbitrary Scale Third Generation Wind Wave Model. Ocean Eng. 2002, 29, 1357–1390. [Google Scholar] [CrossRef]
- Rogers, W.E.; Kaihatu, J.M.; Hsu, L.; Jensen, R.E.; Dykes, J.D.; Holland, K.T. Forecasting and Hindcasting Waves with the SWAN Model in the Southern California Bight. Coast. Eng. 2007, 54, 1–15. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K.; Lalas, D. The Effect of the Island of Crete on the Etesian Winds over the Aegean Sea. Q. J. R. Meteorol. Soc. 2001, 127, 1917–1937. [Google Scholar] [CrossRef]
- Aijaz, S.; Rogers, W.E.; Babanin, A.V. Wave Spectral Response to Sudden Changes in Wind Direction in Finite-Depth Waters. Ocean Model. 2016, 103, 98–117. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L. Evaluation of the Air-Sea Bulk Formula and Sea-Surface Temperature Variability from Observations. J. Geophys. Res. 2006, 111, C05002. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; McWilliams, J.C.; Shchepetkin, A.F. Island Wakes in Deep Water. J. Phys. Oceanogr. 2007, 37, 962–981. [Google Scholar] [CrossRef]
- Caldeira, R.; Groom, S.; Miller, P.; Pilgrim, D.; Nezlin, N. Sea-Surface Signatures of the Island Mass Effect Phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 2002, 80, 336–360. [Google Scholar] [CrossRef]
- Caldeira, R.M.A.; Marchesiello, P.; Nezlin, N.P.; DiGiacomo, P.M.; McWilliams, J.C. Island Wakes in the Southern California Bight. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Wang, Q.; Kalogiros, J.A.; Ramp, S.R.; Paduan, J.D.; Buzorius, G.; Jonsson, H. Wind Stress Curl and Coastal Upwelling in the Area of Monterey Bay Observed during AOSN-II. J. Phys. Oceanogr. 2011, 41, 857–877. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L.; Andreas, E.L.; Edson, J.B.; Vickers, D.; Sun, J.; Patton, E.G. Coastal Zone Surface Stress with Stable Stratification. J. Phys. Oceanogr. 2016, 46, 95–105. [Google Scholar] [CrossRef]
- Smedman, A.-S.; Högström, U.; Bergström, H. The Turbulence Regime of a Very Stable Marine Airflow with Quasi-Frictional Decoupling. J. Geophys. Res. 1997, 102, 21049–21059. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L.; Hristov, T. Is the Influence of Stability on the Sea Surface Heat Flux Important? J. Phys. Oceanogr. 2017, 47, 689–699. [Google Scholar] [CrossRef]
- Sun, J.; French, J.R. Air–Sea Interactions in Light of New Understanding of Air–Land Interactions. J. Atmos. Sci. 2016, 73, 3931–3949. [Google Scholar] [CrossRef]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced Drag Coefficient for High Wind Speeds in Tropical Cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Holthuijsen, L.; Powell, M.; Pietrzak, J. Wind and Waves in Extreme Hurricanes. J Geophys Res 117:C09003. J. Geophys. Res. 2012, 117, 9003. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L.; Andreas, E.L. Formulation of the Sea Surface Friction Velocity in Terms of the Mean Wind and Bulk Stability. J. Appl. Meteor. Climatol. 2015, 54, 691–703. [Google Scholar] [CrossRef]
- Smedman, A.-S.; Tjernström, M.; Högström, U. Analysis of the Turbulence Structure of a Marine Low-Level Jet. Bound. Layer Meteorol. 1993, 66, 105–126. [Google Scholar] [CrossRef]
- Hanna, S.R.; Heinold, D.W. Development and Application of a Simple Method for Evaluating Air Quality Models; American Petroleum Institute: Washington, DC, USA, 1985. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-Based Wave Model Validations. Ocean Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
Physical Process | Formulation |
---|---|
Wave growth | [11,55] |
White-capping | [11] |
Quadruplet wave-wave interaction | Fully explicit computation of the nonlinear transfer with Discrete Interaction Approximation per iteration [56] |
Bottom friction | [57] |
Triad wave-wave interactions | Lumped Tried Approximation [58] |
Depth-induced wave breaking | Breaker index scales with both the bottom slope and the dimensionless depth [59] |
Numerical scheme | Scheme for non-stationary runs [60]; Second Order Upwind scheme for stationary runs also known as a BDF scheme [61] |
Depth at Buoy Location (m) | Distance from Nearest Shore (km) | Wind 3 m above msl (m/s) | Prevailing Wind Direction | (m) | (s) | (s) | ||||||||
Obs | Sims | Obs | Sims | Obs | Sims | Obs | Sims | Obs | Sims | Obs | Sims | |||
Skyros | 83 | 10.2 | 4.8 | 6.1 | NNE | NE | 0.68 | 0.82 | 3.3 | 3.7 | 4.0 | 5.1 | NNE | NNE |
Lesvos | 123 | 3.7 | 7.2 | 6.9 | N | N | 0.74 | 0.82 | 3.5 | 3.5 | 4.5 | 4.8 | NNW | N |
Saronikos | 216 | 9.6 | 4.5 | 5.1 | E | SE | 0.43 | 0.45 | 2.9 | 2.5 | 3.7 | 3.2 | ENE | NNE |
Mykonos | 99 | 5.7 | 9.5 | 9.3 | NNW | NNW | 1.50 | 1.52 | 4.2 | 4.6 | 5.6 | 5.8 | NNW | N |
Santorini | 303 | 9.4 | 5.9 | 7.0 | NW | NNW | 0.81 | 0.86 | 3.4 | 3.6 | 4.3 | 5.1 | NNW | N |
Crete | 1073 | 35.8 | 5.7 | 6.3 | WNW | NW | 0.89 | 0.94 | 3.7 | 3.9 | 4.7 | 4.9 | NNW | NNW |
(°deg) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Skyros | 0.81 | 0.47 | 0.340 | 0.89 | 0.55 | 0.146 | 0.80 | 0.51 | 0.267 | 18 | 0.058 |
Lesvos | 0.88 | 0.75 | 0.224 | 0.99 | 0.56 | 0.095 | 0.95 | 0.73 | 0.102 | 16 | 0.050 |
Saronikos | 0.91 | 0.79 | 0.254 | 1.10 | 0.15 | 0.241 | 1.10 | 0.22 | 0.606 | 35 | 0.151 |
Mykonos | 0.99 | 0.70 | 0.172 | 0.90 | 0.66 | 0.131 | 0.98 | 0.75 | 0.095 | 10 | 0.034 |
Santorini | 0.93 | 0.58 | 0.220 | 0.94 | 0.64 | 0.089 | 0.85 | 0.44 | 0.200 | 21 | 0.070 |
Crete | 0.96 | 0.75 | 0.252 | 0.94 | 0.73 | 0.115 | 0.95 | 0.33 | 0.236 | 18 | 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portalakis, P.; Tombrou, M.; Kalogiros, J.; Dandou, A.; Wang, Q. Investigation of Air-Sea Turbulent Momentum Flux over the Aegean Sea with a Wind-Wave Coupling Model. Atmosphere 2021, 12, 1208. https://doi.org/10.3390/atmos12091208
Portalakis P, Tombrou M, Kalogiros J, Dandou A, Wang Q. Investigation of Air-Sea Turbulent Momentum Flux over the Aegean Sea with a Wind-Wave Coupling Model. Atmosphere. 2021; 12(9):1208. https://doi.org/10.3390/atmos12091208
Chicago/Turabian StylePortalakis, Panagiotis, Maria Tombrou, John Kalogiros, Aggeliki Dandou, and Qing Wang. 2021. "Investigation of Air-Sea Turbulent Momentum Flux over the Aegean Sea with a Wind-Wave Coupling Model" Atmosphere 12, no. 9: 1208. https://doi.org/10.3390/atmos12091208
APA StylePortalakis, P., Tombrou, M., Kalogiros, J., Dandou, A., & Wang, Q. (2021). Investigation of Air-Sea Turbulent Momentum Flux over the Aegean Sea with a Wind-Wave Coupling Model. Atmosphere, 12(9), 1208. https://doi.org/10.3390/atmos12091208