Temporal Variability and Predictability of Intense Cyclones in the Western and Eastern Mediterranean
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
- North Atlantic Oscillation (NAO);
- East Atlantic Oscillation (EA);
- East Atlantic/West Russia (EA/WR) pattern;
- Scandinavia pattern (SCAND);
- Polar/Eurasia pattern (POL/EUR);
- Tropical/Northern Hemisphere (TNH) pattern;
- Pacific/North America (PNA) pattern;
- East Pacific/North Pacific (EP/NP) pattern;
- West Pacific oscillation (WP).
- Arctic Oscillation (AO) (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html (accessed on 13 September 2021);
- Atlantic Multidecadal Oscillation (AMO) (https://psl.noaa.gov/data/timeseries/AMO/ (accessed on 13 September 2021);
- Pacific Decadal Oscillation (PDO) (https://www.ncdc.noaa.gov/teleconnections/pdo/ (accessed on 13 September 2021);
- Southern Oscillation index (SOI) (https://www.cpc.ncep.noaa.gov/data/indices/soi, (accessed on 13 September 2021).
2.2. Cyclone Detection Algorithm
- Monthly, seasonal, and annual values for the period 1951–2017;
- Description of fluctuations and analysis of linear trends;
- Spectral Fourier analysis of seasonal and annual values;
- Correlation analysis with teleconnection indices;
- Modeling using our artificial neural network.
2.3. Spectral Analysis
2.4. Correlation Analysis
2.5. Description of the Modeling Method
3. Results
3.1. Seasonal and Monthly Averages
3.2. Variability and Linear Trends
3.3. Spectral Analysis
3.4. Correlation with Teleconnection Patterns
- annual SCAND (+0.35);
- winter SCAND (+0.28) mostly due to February SCAND (+0.37);
- spring SCAND (+0.28);
- winter NAO (−0.38) mostly due to February NAO index (−0.34);
- winter AO (−0.34) mostly due to February AO index (−0.32);
- February MO index (−0.34);
- September AO index (−0.34);
- April EA index (−0.3).
- winter MO (−0.45);
- winter AO (−0.44) mostly due to February AO (−0.43);
- annual AO (−0.31);
- winter SCAND (+0.39) mostly due to February SCAND (+0.35);
- May POL/EUR (−0,36);
- May WMO (+0.33);
- winter NAO (−0.27) mostly due to February NAO (−0.3);
- May SOI (−0.27).
- spring SCAND (+0.41) mostly due to March SCAND (+0.34);
- annual SCAND (+0.35);
- spring SOI (+0.33) mostly due to March SOI (+0.31);
- December TNH index (+0.32);
- autumn ER/WR (+0.32);
- autumn NAO (+0.31);
- spring AMO (−0.44) due to March AMO (−0.4), April AMO (−0.43), and May AMO (−0.44);
- spring EA (−0.39) due to April EA (−0.36) and May EA (−0.33);
- spring MO (−0.36) due to March MO (−0.36);
- annual EA (−0.32) and August EA (−0.34);
- February WMO index (−0.31);
- summer AMO (−0.49) due to June AMO (−0.51), July AMO (−0.48), and August (−0.44) AMO;
- autumn AMO (−0.44) due to September AMO (−0.44), October AMO (−0.4), and November AMO (−0.45);
- annual AMO (−0.46) and December AMO (−0.51);
- winter WP (−0.36) mostly due to January WP (−0.4);
- summer PNA (−0.3) mostly due to July (−0.3).
- summer WMO (+0.3) mostly due to August WMO (+0.33);
- annual WMO (+0.35);
- annual POL/EUR index (+0.3);
- annual NAO (−0.46);
- winter NAO (−0.44) due to December NAO (−0.33), January NAO (−0.34), and February NAO (−0.34);
- spring NAO (−0.35);
- annual AO (−0.39) and April AO (−0.35);
- winter AO (−0.39) mostly due to December AO (−0.3) and January AO (−0.32);
- December TNH (−0.39).
- November EP/NP index (+0.3);
- November MO index (−0.43);
- winter WMO (−0.31) mostly due to February (−0.35);
- December PNA index (−0.35).
- annual MO (+0.28);
- winter AO (−0.3) mostly due to January AO (−0.34);
- December TNH (−0.43).
- winter MO (+0.32) due to January MO (+0.33);
- winter EA (−0.33);
- winter TNH (−0.31);
- winter WP (−0.29) due to January WP index (−0.37).
- spring SCAND (+0.33);
- March MO (+0.33);
- June EA/WR (+0.3);
- spring WP (+0.32) due to April WP (+0.41) and May WP (+0.3);
- annual WP (+0.29);
- winter EA (−0.31);
- May PNA (−0.35).
- annual SCAND (+0.35) and February SCAND (+0.32);
- summer EA/WR (+0.36) due to June EA/WR (+0.35);
- August EP/NP (+0.35);
- autumn EP/NP (+0.3) due to September EP/NP (+0.38);
- monthly AMO indices (−0.5–−0.55);
- April EA (−0.44);
- March PNA (−0.33);
- May PDO (−0.32).
- autumn MO (+0.27) due to November MO (+0.43 with autumn cyclones and +0.5 with November cyclones);
- September WMO (+0.33);
- September NAO (−0.3 with November cyclones);
- August EA/WR (−0.27);
- April SCAND (−0.3).
- annual AO (−0.32);
- winter AO (−0.34) mostly due to February AO (−0.37);
- winter NAO (−0.33) mostly due to February NAO (−0.38);
- March EA/RW (+0.34).
- winter AO (−0.44) mostly due to February AO (−0.37);
- winter NAO (−0.3) mostly due to February NAO (−0.35);
- winter MO (−0.33);
- May POL/EUR (−0.34);
- May EA/WR (−0.3).
- April MO index (−0.33);
- March PDO (−0.31);
- winter PDO (−0.4) due to January PDO (−0.38) and February PDO (−0.38);
- January AO index (+0.37).
- November MO (−0.38);
- June WMO index (+0.34);
- autumn WMO index (+0.32 with October cyclones).
- January MO (+0.39);
- autumn NAO index (−0.33);
- winter TNH (−0.31) mostly due to January TNH (−0.31);
- June WMO (−0.3);
- August WP (−0.3).
- January MO (+0.42);
- January WP index (−0.36).
- in January, +0.5 with MO index, +0.27 with PNA index, and +0.26 with WMO index;
- in December, +0.39 with MO index, −0.3 with TNH index, and −0.26 with EA index;
- in February, −0.5 with EA index and +0.28 with SCAND index.
- winter EA/WR index (+0.32);
- winter EA/WR index (+0.32);
- autumn NAO (−0.3) due to September NAO (−0.43);
- summer SCAND (−0.34).
- autumn MO index (+0.32);
- July MO index (−0.29);
- April EA/WR index (+0.42);
- October EA/WR index (−0.39);
- September WP (+0.33);
- winter PNA (+0.33) mostly due to February PNA (+0.32);
- spring PDO (+0.3) mostly due to March PDO (+0.33);
- September EP/NP (−0.31).
- Scandinavia pattern in January (+0.25 for intense cyclones), February (+0.35 for intense cyclones), March (+0.37 for intense cyclones), April (+0.31 for intense cyclones and +0.26 for extreme cyclones), and September (+0.2 for intense cyclones);
- Mediterranean Oscillation in September (−0.26 for intense cyclones), October (−0.43 for intense cyclones and −0.33 for extreme cyclones), November (−0.49 for intense cyclones and −0.41 for extreme cyclones), December (−0.42 for intense cyclones and −0.36 for extreme cyclones), January (−0.27 for intense cyclones), February (−0.44 for intense cyclones and −0.35 for extreme cyclones), March (−0.45 for intense cyclones and −0.31 for extreme cyclones), April (−0.29 for intense cyclones and −0.34 for extreme cyclones), and even May (−0.48 for intense cyclones and −0.21 for extreme cyclones);
- East Atlantic Oscillation in October (−0.36 for intense cyclones and −0.24 for extreme cyclones), November (−0.28 for intense cyclones), December (−0.33 for intense cyclones), February (−0.22 for intense cyclones), April (−0.29 for intense cyclones), and May (−0.42 for intense cyclones);
- Arctic Oscillation in January (−0.21 for extreme cyclones), February (−0.33 for intense cyclones and −0.38 for extreme cyclones), September (−0.26 for intense cyclones), October (−0.26 for intense cyclones), and December (−0.28 for intense cyclones and −0.27 for extreme cyclones);
- East Atlantic/West Russia pattern in December (−0.38 for extreme cyclones).
- Mediterranean Oscillation in November (+0.5 for intense cyclones and +0.28 for extreme cyclones), December (+0.52 for intense cyclones and +0.39 for extreme cyclones), January (+0.48 for intense cyclones and +0.5 for extreme cyclones), and March (+0.47 for intense cyclones and +0.3 for extreme cyclones);
- Scandinavia pattern in February (+0.33 for intense cyclones and +0.28 for extreme cyclones);
- East Atlantic Oscillation in January (−0.33 for intense cyclones), February (−0.36 for intense cyclones and −0.5 for extreme cyclones), and April (−0.44 for intense cyclones);
- Tropical Northern Hemisphere in December (−0.37 for intense cyclones and −0.3 for extreme cyclones);
- Polar/Eurasia pattern in February (−0.27 for intense cyclones), April (−0.35 for extreme cyclones), and October (−0.23 for extreme cyclones).
- Arctic Oscillation in July (+0.26 for the WM intense cyclones);
- Western Mediterranean Oscillation in August (+0.21 for the WM intense cyclones) and September (+0.2 for the WM intense cyclones);
- East Atlantic/West Russia pattern in July (+0.21 for the WM intense cyclones);
- Atlantic Multidecadal Oscillation in August (−0.22 for the WM intense cyclones) and September (+0.27 for intense EM cyclones);
- Polar/Eurasia pattern in June (−0.2 for the WM extreme cyclones);
- North Atlantic Oscillation in August (−0.2 for the EM intense cyclones).
- −0.37 for the November EM intense cyclones with September index (a 2-month lag of cyclones);
- −0.21 for the March WM intense cyclones with January index (a 2-month lag);
- +0.27 for the April WM intense and extreme cyclones with January index (a 3-month lag);
- −0.36 for the June WM intense cyclones with January index (a 5-month lag) and −0.34 with December index (a 6-month lag).
- +0.27 and +0.39 for April WM intense and extreme cyclones, respectively, with January index (a 3-month lag of cyclones);
- +0.24 for March WM intense cyclones with December index (a 3-month lag);
- +0.34 for February WM extreme cyclones with November index (a 3-month lag);
- −0.33 for November WM extreme cyclones with July index (a 4-month lag);
- −0.34 for June WM intense cyclones with January index (a 5-month lag);
- −0.32 for the May WM intense cyclones with September index (an 8-month lag).
3.5. Neural Network Output
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Appl. Clim. 2009, 96, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Khromov, S.P.; Petrosyants, M.A. Meteorology and Climatology; MSU: Moscow, Russia, 2001; 528p. [Google Scholar]
- Trigo, I.F.; Bigg, G.R.; Davies, T.D. Climatology of cyclogenesis mechanisms in the Mediterranean. Mon. Weather Rev. 2002, 130, 549–569. [Google Scholar] [CrossRef]
- Alpert, P.; Neeman, B.U.; Shay-El, Y. Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus A 1990, 42, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Luterbacher, J.; Xoplaki, E.; Casty, C.; Wanner, H.; Pauling, A.; Küttel, M.; Rutishauser, T.; Brönnimann, S.; Fischer, E.; Fleitmann, D.; et al. Mediterranean climate variability over the last centuries: A review. Dev. Earth Environ. Sci. 2006, 4, 27–148. [Google Scholar] [CrossRef]
- Maheras, P.; Flocas, H.; Patrikas, I.; Anagnostopoulou, C. A 40 year objective climatology of surface cyclones in the Mediterranean region: Spatial and temporal distribution. Int. J. Clim. 2001, 21, 109–130. [Google Scholar] [CrossRef]
- Kouroutzoglou, J.; Flocas, H.A.; Keay, K.; Simmonds, I.; Hatzaki, M. Climatological aspects of explosive cyclones in the Mediterranean. Int. J. Clim. 2011, 31, 1785–1802. [Google Scholar] [CrossRef]
- Haylock, M.R.; Goodess, C.M. Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int. J. Clim. 2004, 24, 759–776. [Google Scholar] [CrossRef]
- Nissen, K.M.; Leckebusch, G.C.; Pinto, J.G.; Renggli, D.; Ulbrich, S.; Ulbrich, U. Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst. Sci. 2010, 10, 1379–1391. [Google Scholar] [CrossRef]
- Maslova, V.N.; Voskresenskaya, E.N.; Lubkov, A.S.; Yurovsky, A.V.; Zhuravskiy, V.Y.; Evstigneev, V.P. Intense Cyclones in the Black Sea Region: Change, Variability, Predictability and Manifestations in the Storm Activity. Sustainability 2020, 12, 4468. [Google Scholar] [CrossRef]
- Jansa, A.; Genoves, A.; Garcia-Moya, J.A. Western Mediterranean cyclones and heavy rain. Part 1: Numerical experiment concerning the Piedmont flood case. Meteorol. Appl. 2000, 7, 323–333. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Trigo, R.M.; Trigo, I.F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci. 2005, 5, 331–344. [Google Scholar] [CrossRef]
- Ziv, B.; Saaroni, H.; Yair, Y.; Ganot, M.; Baharad, A.; Isaschari, D. Atmospheric factors governing winter thunderstorms in the coastal region of the eastern Mediterranean. Appl. Clim. 2009, 95, 301–310. [Google Scholar] [CrossRef]
- Flaounas, E.; Kotroni, V.; Lagouvardos, K.; Kazadzis, S.; Gkikas, A.; Hatzianastassiou, N. Cyclone contribution to dust transport over the Mediterranean region. Atmos. Sci. Lett. 2015, 16, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Bakkensen, L.A. Mediterranean hurricanes and associated damage estimates. J. Extrem. Events 2017, 4, 1750008. [Google Scholar] [CrossRef]
- Paliaga, G.; Faccini, F.; Luino, F.; Turconi, L.; Bobrowsky, P. Geomorphic processes and risk related to a large landslide dam in a highly urbanized Mediterranean catchment (Genova, Italy). Geomorphology 2019, 327, 48–61. [Google Scholar] [CrossRef]
- Flaounas, E.; Raveh-Rubin, S.; Wernli, H.; Drobinski, P.; Bastin, S. The dynamical structure of intense Mediterranean cyclones. Clim. Dyn. 2015, 44, 2411–2427. [Google Scholar] [CrossRef]
- Guijarro, J.A.; Jansa, A.; Campins, J. Time variability of cyclonic geostrophic circulation in the Mediterranean. Adv. Geosci. 2006, 7, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Trigo, I.F.; Davies, T.D.; Bigg, G.R. Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys. Res. Lett. 2000, 27, 2913–2916. [Google Scholar] [CrossRef]
- Campins, J.; Genovés, A.; Picornell, M.A.; Jansà, A. Climatology of Mediterranean cyclones using the ERA-40 dataset. Int. J. Clim. 2011, 31, 1596–1614. [Google Scholar] [CrossRef] [Green Version]
- Jansa, A.; Genoves, A.; Picornell, M.A.; Campins, J.; Radinovic, D.; Alpert, P. Mediterranean cyclones: Subject of a WMO project. Life Cycle Extratropical Cyclones 1994, 2, 26–31. [Google Scholar]
- Lionello, P.; Gacic, M.; Gomis, D.; Garcia-Herrera, R.; Giorgi, F.; Planton, S.; Trigo, R.; Theocharis, A.; Tsimplis, M.N.; Ulbrich, U.; et al. Program focuses on climate of the Mediterranean region. Eos Trans. Agu 2012, 93, 105–106. [Google Scholar] [CrossRef]
- Genovés, A.; Campins, J.; Jansà, A. Intense storms in the Mediterranean: A first description from the ERA-40 perspective. Adv. Geosci. 2006, 7, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Jansa, A.; Alpert, P.; Arbogast, P.; Buzzi, A.; Ivancan-Picek, B.; Kotroni, V.; Llasat, M.C.; Ramis, C.; Richard, E.; Romero, R.; et al. MEDEX: A general overview. Nat. Hazards Earth Syst. Sci. 2014, 14, 1965–1984. [Google Scholar] [CrossRef] [Green Version]
- Sahsamanoglou, H.S. A contribution to the study of action centres in the North Atlantic. Int. J. Clim. 1990, 10, 247–261. [Google Scholar] [CrossRef]
- Kondrat’ev, K.I.; Kozoderov, V.V. Satellite observations of the earth’s radiation budget components and the problem of the energetically active zones of the world ocean (EAZO). In Vistas in Applied Mathematics: Numerical Analysis; Optimization Software, Inc.: New York, NY, USA, 1986; pp. 223–243. [Google Scholar]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M. Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Clim. 1999, 12, 2719–2733. [Google Scholar] [CrossRef]
- Van Loon, H.; Rogers, J.C. The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Weather Rev. 1978, 106, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.C.; Van Loon, H. The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Weather Rev. 1979, 107, 509–519. [Google Scholar] [CrossRef]
- Rogers, J.C. Patterns of low-frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J. Clim. 1990, 3, 1364–1379. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Hurrell, J.W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 1994, 9, 303–319. [Google Scholar] [CrossRef]
- Hurrell, J.W. Transient eddy forcing of the rotational flow during northern winter. J. Atmos. Sci. 1995, 52, 2286–2301. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlesinger, M.E.; Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33, L17706. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M. The Southern Oscillation Revisited: Sea Level Pressures, Surface Temperatures, and Precipitation. J. Clim. 2000, 13, 4358–4365. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Voskresenskaya, E.N.; Polonsky, A.B. Air pressure fluctuations in the North Atlantic and their relationship with El Nino-southern oscillations. Phys. Oceanogr. 1993, 4, 275–282. [Google Scholar] [CrossRef]
- Serreze, M.C.; Carse, F.; Barry, R.G.; Rogers, J.C. Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Clim. 1997, 10, 453–464. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2010, 79, 231–244. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Renfrew, I.A. Cold European winters: Interplay between the NAO and the East Atlantic mode. Atmos. Sci. Lett. 2012, 13, 1–8. [Google Scholar] [CrossRef]
- Nesterov, E.S. East Atlantic oscillation of the atmospheric circulation. Russ. Meteorol. Hydrol. 2009, 34, 794–800. [Google Scholar] [CrossRef]
- Gao, N.; Bueh, C.; Xie, Z.; Gong, Y. A novel identification of the Polar/Eurasia pattern and its weather impact in May. J. Meteorol. Res. 2019, 33, 810–825. [Google Scholar] [CrossRef]
- Kaznacheeva, V.D.; Shuvalov, S.V. Climatic characteristics of Mediterranean cyclones. Russ. Meteorol. Hydrol. 2012, 37, 315–323. [Google Scholar] [CrossRef]
- Mändla, K.; Jaagus, J.; Sepp, M. Climatology of cyclones with southern origin in northern Europe during 1948–2010. Appl. Clim. 2015, 120, 75–86. [Google Scholar] [CrossRef]
- Romanski, J.; Romanou, A.; Bauer, M.; Tselioudis, G. Teleconnections, midlatitude cyclones and Aegean Sea turbulent heat flux variability on daily through decadal time scales. Reg. Environ. Chang. 2014, 14, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Cassou, C.; Terray, L. Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys. Res. Lett. 2001, 28, 3195–3198. [Google Scholar] [CrossRef] [Green Version]
- Bardin, M.Y.; Voskresenskaya, E.N. Pacific decadal oscillation and European climatic anomalies. Phys. Oceanogr. 2007, 17, 200–208. [Google Scholar] [CrossRef]
- Voskresenskaya, E.; Maslova, V. Joint manifestations of PDO (Pacific Decadal Oscillation) and negative AMO (Atlantic Multidecadal Oscillation) phases in winter cyclonic activity. J. Environ. Sci. Eng. A 2012, 1, 1325. [Google Scholar]
- Drouard, M.; Rivière, G.; Arbogast, P. The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Clim. 2015, 28, 3957–3976. [Google Scholar] [CrossRef]
- Alpert, P.; Baldi, M.; Ilani, R.; Krichak, S.; Price, C.; Rodo, X.; Saaroni, H.; Ziv, B.; Kishcha, P.; Barkan, J.; et al. Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In Developments in Earth and Environmental Sciences; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 149–177. [Google Scholar] [CrossRef]
- Brönnimann, S.; Xoplaki, E.; Casty, C.; Pauling, A.; Luterbacher, J.J.C.D. ENSO influence on Europe during the last centuries. Clim. Dyn. 2007, 28, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Kamil, S.; Almazroui, M.; Kucharski, F.; Kang, I.S. Multidecadal changes in the relationship of storm frequency over Euro-Mediterranean region and ENSO during boreal winter. Earth Syst. Environ. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Dunstone, N.J.; Scaife, A.A.; Smith, D.M.; Knight, J.R.; Davies, P.; Claus, M.; Greatbatch, R.J. Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO. Atmos. Sci. Lett. 2000, 21, e1005. [Google Scholar] [CrossRef]
- Polonsky, A.B.; Basharin, D.V. How strong is the impact of the Indo-ocean dipole on the surface air temperature/sea level pressure anomalies in the Mediterranean region? Glob. Planet. Chang. 2017, 151, 101–107. [Google Scholar] [CrossRef]
- Graf, H.F.; Zanchettin, D. Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Chen, W.; Feng, J.; Graf, H.F. Combined impacts of PDO and two types of La Niña on climate anomalies in Europe. J. Clim. 2017, 30, 3253–3278. [Google Scholar] [CrossRef]
- Voskresenskaya, E.N.; Marchukova, O.V.; Maslova, V.N.; Lubkov, A.S. Interannual climate anomalies in the Atlantic-European region associated with La-Nina types. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 107, p. 012043. [Google Scholar] [CrossRef]
- Picornell, M.A.; Jansa, A.; Genovés, A.; Campins, J. Automated database of mesocyclones from the HIRLAM (INM)-0.5° analyses in the western Mediterranean. Int. J. Clim. 2001, 21, 335–354. [Google Scholar] [CrossRef]
- Conte, M.; Giuffrida, A.; Tedesco, S. The Mediterranean oscillation: Impact on precipitation and hydrology in Italy. In Proceedings of the Conference on Climate and Water, Helsinki, Finland, 11–15 September 1989; Publications of Academy of Finland: Helsinki, Finland, 1989; Volume 1, pp. 121–137. [Google Scholar]
- Dünkeloh, A.; Jacobeit, J. Circulation dynamics of Mediterranean precipitation variability 1948–98. Int. J. Clim. 2003, 23, 1843–1866. [Google Scholar] [CrossRef]
- Maheras, P.; Xoplaki, E.; Kutiel, H. Wet and dry monthly anomalies across the Mediterranean basin and their relationship with correlation, 1860–1990. Appl. Clim. 1999, 64, 189–199. [Google Scholar] [CrossRef]
- Martin-Vide, J.; Lopez-Bustins, J.A. The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int. J. Clim. J. R. Meteorol. Soc. 2006, 26, 1455–1475. [Google Scholar] [CrossRef]
- Lubkov, A.S.; Voskresenskaya, E.N.; Marchukova, O.V. Forecasting El Niño/La Niña and Their Types Using Neural Networks. Russ. Meteorol. Hydrol. 2020, 45, 806–813. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Bardin, M.Y. Variability of cyclonicity characteristics in the middle troposphere of temperate latitudes of the Northern Hemisphere. Russ. Meteorol. Hydrol. 1995, 11, 24–37. [Google Scholar]
- Bardin, M.Y.; Polonsky, A.B. North Atlantic oscillation and synoptic variability in the European-Atlantic region in winter. Izv. Atmos. Ocean. Phys. 2005, 41, 127–136. [Google Scholar]
- Neu, U.; Akperov, M.G.; Bellenbaum, N.; Benestad, R.S.; Blender, R.; Caballero, R.; Cocozza, A.; Dacre, H.F.; Feng, Y.; Fraedrich, K.; et al. IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bull. Am. Meteorol. Soc. 2013, 94, 529–547. [Google Scholar] [CrossRef]
- Gil, V.E.; Genovés, A.; Picornell, M.A.; Jansa, A. Automated database of cyclones from the ECMWF model: Preliminary comparison between west and east Mediterranean basins. In Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, 2–4 October 2002. [Google Scholar]
- Alexandersson, H.; Tuomenvirta, H.; Schmith, T.; Iden, K. Trends of storms in NW Europe derived from an updated pressure data set. Clim. Res. 2000, 14, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Matulla, C.; Schoner, W.; Alexandersson, H.; von Storch, H.; Wang, X.L. European storminess: Late nineteenth century to present. Clim. Dyn. 2008, 31, 125–130. [Google Scholar] [CrossRef]
- Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Duin, R.P.W. On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions. IEEE Trans. Comput. 1976, 25, 1175–1179. [Google Scholar] [CrossRef]
- Lubkov, A.; Voskresenskaya, E.; Kukushkin, A. Method for reconstructing the monthly mean water transparencies for the northwestern part of the Black Sea as an example. Atmos. Ocean. Opt. 2016, 29, 457–464. [Google Scholar] [CrossRef]
- Osovsky, S. Neural Networks for Data Processing; Finansy i Statistika: Moscow, Russia, 2004; p. 344. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Polonsky, A. The Ocean’s Role in Climate Change; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2019; 276p. [Google Scholar]
- Gamiz-Fortis, S.R.; Pozo-Vazquez, D.; Esteban-Parra, M.J.; Castro-Diez, Y. Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis. J. Geophys. Res. Atmos. 2002, 107, 15. [Google Scholar] [CrossRef]
- Seip, K.L.; Gron, O. On the statistical nature of distinct cycles in global warming variables. Clim. Dyn. 2019, 52, 7329–7337. [Google Scholar] [CrossRef]
- Kinter, J.L.; Miyakoda, K.; Yang, S. Recent change in the connection from the Asian monsoon to ENSO. J. Clim. 2002, 15, 1203–1215. [Google Scholar] [CrossRef]
- Trigo, I.F. Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dynam. 2005, 26, 127–143. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R.; Pattantyús-Ábrahám, M. Analyzing the genesis, intensity, and tracks of western Mediterranean cyclones. Appl. Clim. 2009, 96, 133–144. [Google Scholar] [CrossRef]
- Maslova, V.; Voskresenskaya, E.; Bardin, M. Variability of the cyclone activity in the Mediterranean-Black Sea region. J. Environ. Prot. Ecol. 2010, 11, 1366–1372. [Google Scholar]
- Rodó, X.; Baert, E.; Comin, F.A. Variations in seasonal rainfall in Southern Europe during the present century: Relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Clim. Dyn. 1997, 13, 275–284. [Google Scholar] [CrossRef]
- Gong, Z.; Sun, C.; Li, J.; Feng, J.; Xie, F.; Ding, R.; Yang, Y.; Xue, J. An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales. Clim. Dyn. 2020, 54, 807–822. [Google Scholar] [CrossRef]
Frequency Parameter | klin, ×10−3 | p-Probability, % | r2lin, % |
---|---|---|---|
WMC-75 | |||
winter | −5.38 | 60.2 | 1.1 |
spring | −4.14 | 48.4 | 0.7 |
autumn | 6.06 | 65.9 | 1.4 |
annual | −4.49 | 51.8 | 0.8 |
WMC-95 | |||
winter | −1.99 | 24.5 | 0.2 |
spring | 3.40 | 40.6 | 0.4 |
autumn | 0.04 | 0.5 | 0.0 |
annual | −1.88 | 23.1 | 0.1 |
EMC-75 | |||
winter | 0.06 | 0.8 | 0.0 |
spring | −9.18 | 85.3 | 3.2 |
autumn | 8.62 | 82.6 | 2.8 |
annual | −2.13 | 26.2 | 0.2 |
EMC-95 | |||
winter | 6.30 | 67.8 | 1.5 |
spring | 7.88 | 78.5 | 2.4 |
autumn | 11.68 | 93.6 | 5.2 |
annual | 9.74 | 87.6 | 3.6 |
Averaging Time | WMC-75 | WMC-95 | EMC-75 | EMC-95 |
---|---|---|---|---|
winter | 2,4; 8.3 | 2.4; 4.7 | 2.3; 3.3 | 3.9; 7.3 |
spring | 2.2 | 2.2; 7.3 | 2.2 | 2.1; 3.9 |
autumn | 2.9 | 2.1; 4.4 | 2.2 | 2.1; 3.3 |
annual | 3.9; 8.3 | 2.6 | 3.5 | 2.4; 8.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslova, V.N.; Voskresenskaya, E.N.; Lubkov, A.S.; Yurovsky, A.V. Temporal Variability and Predictability of Intense Cyclones in the Western and Eastern Mediterranean. Atmosphere 2021, 12, 1218. https://doi.org/10.3390/atmos12091218
Maslova VN, Voskresenskaya EN, Lubkov AS, Yurovsky AV. Temporal Variability and Predictability of Intense Cyclones in the Western and Eastern Mediterranean. Atmosphere. 2021; 12(9):1218. https://doi.org/10.3390/atmos12091218
Chicago/Turabian StyleMaslova, Veronika N., Elena N. Voskresenskaya, Andrey S. Lubkov, and Alexander V. Yurovsky. 2021. "Temporal Variability and Predictability of Intense Cyclones in the Western and Eastern Mediterranean" Atmosphere 12, no. 9: 1218. https://doi.org/10.3390/atmos12091218
APA StyleMaslova, V. N., Voskresenskaya, E. N., Lubkov, A. S., & Yurovsky, A. V. (2021). Temporal Variability and Predictability of Intense Cyclones in the Western and Eastern Mediterranean. Atmosphere, 12(9), 1218. https://doi.org/10.3390/atmos12091218