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Abstract: The pollution status of ten potentially toxic elements (PTEs), isotopic compositions (Cu,
Zn, Pb), and the potential ecological risk posed by them were investigated in the PM10 fraction
of road dust in Busan Metropolitan city, South Korea. Enrichment factors revealed extremely to
strongly polluted levels of Sb, Cd, Zn, Pb, and Cu in the PM10 fraction of road dust, with Sb levels
being the highest. Statistical analyses showed that the major cause for contamination with PTEs was
non-exhaust traffic emissions such as tire and brake wear. Cu and Zn isotopic compositions of road
dust were related to traffic-related emission sources such as brake and tires. Pb isotopic compositions
were close to that of road paint, indicating that Pb was a different source from Cu and Zn in this
study. No significant health risk was posed by the PTEs. Taking into account the total length of
road in Busan, a high quantity of PTEs in road dust (PM10) can have serious deleterious effects
on the atmospheric environment and ecosystems. The results of metal concentrations and isotopic
compositions in road dust will help identify and manage atmospheric fine particle and coastal metal
contamination derived from fine road dust.

Keywords: road dust; particulate matter; potentially toxic elements; Cu-Zn-Pb isotopes; risk
assessment

1. Introduction

The acceleration of urbanization and the growth of population in cities has increased
the magnitude of the negative environmental impact caused by road dust [1]. The total
length of roads in Korea in 2019 was 110,714 km, which is an increase of 5401 km over the
previous five years [2]. Vehicles are the main contributors of various contaminants that
constitute road dust. The number of vehicles in Korea increased from 20.1 million in 2014
to 23.7 million in 2019. Therefore, environmental pollution caused by road dust in urban
environments has attracted considerable attention.

Potentially toxic elements (PTEs) are pollutants that can accumulate in the environ-
ment because of traffic as well as industrial and mining activities [3–5]. The presence
of PTEs in road dust, soils, and atmospheric particulate matter have been reported in
many countries [6–13]. The concentrations of PTEs in road dust are used as indicators of
environmental pollution and for the identification of pollution sources such as traffic and
industrial activities.

The fine particles in road dust have a much higher concentration of PTEs compared to
coarse particles [14–16]. The fine particles (<10 µm) in road dust are easily resuspended
into the atmosphere by wind and vehicle movement, and thus, they can be transported
over a long distance [16–18]. PTEs in fine road dust can pose a greater health risk to the
human body via ingestion, inhalation, and dermal contact pathways [19–26].
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Fine road dust is an important source of PTE contamination in urban atmosphere
and soils. Fugitive road dust particles caused by vehicle movement on paved roads are
emitted from the road to the surrounding atmosphere because of turbulence and contribute
significantly to the concentration of PM10 in the atmospheric environment [27–29]. The
contribution of fugitive dust to total particulate matter is gaining importance because
of the increase in the number of vehicles and the detrimental health impacts of high
concentrations of heavy metals contained in them [30–32]. Several studies have reported
that fugitive road dust accounts for 14% to 55% of PM10 concentrations in India [33],
Brazil [34], and European urban areas [35]. In Korea, PM10 contributes more than 60% of
the fine dust that is re-suspended from the paved road [36].

Souto-Oliveira et al. [37] studied the source contribution in aerosol using Cu, Zn,
and Pb multi-isotopes. According to atmospheric emission inventory of the PM10 sources,
road transport and resuspension contributed 40% and 25% in Sao Paulo and 48% and 21%
in London, respectively. Cu-Zn [38–40], Zn [41,42], and Pb [43–45] isotopes are used for
identifying anthropogenic/natural sources in various environmental samples. Recently,
multi-isotope studies using Cu, Zn, and Pb have been conducted to determine pollution
sources in atmospheric environments [37,46,47].

The purpose of this study is to (1) characterize the PTEs in fine particulate matter
(PM10) of road dust in Busan Metropolitan in South Korea; (2) assesses the potential
ecological risk and non-carcinogenic health risk posed by them; (3) present Cu, Zn, and Pb
isotope compositions as a preliminary study for identifying potential pollution sources.

2. Materials and Methods
2.1. Study Area

The Busan Metropolitan City is the largest port city in South Korea. Busan is located
in the southeastern part of South Korea and has a land area of 506 km2 and an impermeable
area of 234.31 km2. Busan has a population of 3.4 million, and the population density of the
impermeable area is 14,570 persons/km2. The average temperature, precipitation, humidity,
and wind speed over the past 30 years are 14.7 ◦C, 1519 mm, 64.7%, and 13.3 km/h,
respectively. The road dust in Busan is contaminated with Sb, Cu, Cd, Zn, and Pb caused
by transportation activities, and these toxic elements present on the road surfaces are
transported to coastal areas through runoff during precipitation [48].

2.2. Sampling and Measurement of PTEs

Road dust samples were collected from 25 sites in Busan during May 2014. The
sampling locations and the study area are shown in Figure 1. Road dust was obtained
using a cordless vacuum cleaner (DC35, Dyson Limited, Malmesbury, UK) covering an
area of 0.25 m2 (0.5 m × 0.5 m) from the curb, and each composite sample comprised of
4–5 subsamples to ensure representativeness. The vacuum cleaner was disassembled and
cleaned prior to sampling at each site to prevent cross contamination. The samples were
stored in a zipper bag, dried in an oven at 40 ◦C, and weighed. Road dust containing
particles of less than 10 µm (PM10) size was separated using a nylon sieve and a vibratory
sieve shaker (Analysette 3 PRO, Fritsch GmbH, Germany) in the laboratory.

The analysis of PTEs in the PM10 fraction of road dust was performed through total
digestion using a high-purity (Suprapur® grade) acid mixture containing HNO3, HF, and
HClO4. About 0.1 g of the sample was decomposed in a Teflon digestion vessel using the
acid mixture on a hot plate at 180 ◦C, evaporated, and then redissolved using 2% HNO3.
Al, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb were measured using inductively coupled plasma
mass spectrometry (ICP-MS, iCAP-Q, Thermo Fisher Scientific, Braunschweig, Germany).
Hg was measured using a Hg analyzer (Hydra-C, Teledyne Leeman Labs, Hudson, NH,
USA). Duplicate measurements were performed to ensure the reliability of the analysis.
Data accuracy was ensured using certified reference materials MESS-4 and PACS-3, and
the recoveries ranged from 95.7% to 102.4%.
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Figure 1. Sampling sites for road dust (RD) from the Busan metropolitan city, South Korea (base map
from Google Earth).

2.3. Pollution and Ecological Risk Assessments

The enrichment factor (EF) was used to assess the contamination levels of individual
metals using the following equation [49]:

EF =
(PTEs/Al)samples

(PTEs/Al)background
. (1)

The EF values were classified into five classes [50], and the classification is provided
in Table S1.

Single factor ecological risk degree (Ei
r) and potential ecological risk (PER) were used

to assess the ecological risk of the ten PTEs on their toxicity response using the following
equations [51]:

Ei
r = Ti

r × (Ci/Bi); PER =
n

∑
i

Ei
r (2)

where Ci and Bi are the measured and geological background concentrations by Rudnick
and Gao [52], respectively, Ti

r is the toxic response factor (Hg = 40, Cd = 30, As = 10, Sb = 7,
Co = Cu = Ni = Pb = 5, Cr = 2, and Zn = 1) [51,53,54]. Ei

r and PER values were classified
into five and four classes, respectively (Table S1).

2.4. Health Risk Assessment

Health risk assessment was carried out considering the exposure of adults and chil-
dren, through the pathways of ingestion, inhalation, and dermal contact, to the ten PTEs
present in the PM10 fraction of road dust by calculating the non-carcinogenic hazards based
on the guidelines of [55,56].

The average daily dose (ADD) for the exposure assessment of PTEs via ingestion
(ADDing), inhalation (ADDinh), and dermal contact (ADDderm) were calculated using the
follow equations:

ADDing = Ci ×
(

IngR × EF × ED
BW × AT

)
× 10−6 (3)

ADDinh = Ci ×
(

IngR × EF × ED
PEF × BW × AT

)
(4)

ADDderm = Ci ×
(

SL × SA × ABS × EF × ED
BW × AT

)
× 10−6 (5)
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where Ci represents the concentration of PTEs (mg/kg) in the PM10 fraction of road dust.
All the other parameters present in these equations and their corresponding values for
adults and children are provided in Table S2 [57].

The hazard quotient (HQ) was calculated using the rate of the corresponding reference
dose (RfD) for each exposure pathway i to determine the non-carcinogenic risks posed by
the PTEs in road dust. The RfD values reported by Ferreira-Baptista and De Miguel [58]
and Ma et al.„ [59] were used in this study.

HQi =
ADDi

RfDi
(6)

If HQ > 1, a potential adverse health effect may occur, whereas if HQ < 1, an adverse
health effect will not occur.

The hazard index (HI) for each PTE was also calculated using the following equation:

HI = HQing + HQinh + HQderm (7)

If the HI value exceeds the threshold value of 1, non-carcinogenic effects are likely to
occur.

2.5. Measurement of Cu, Zn, and Pb Isotopes

Isotopic compositions of Cu, Zn, and Pb isotopes were measured using multi-collector
ICP-MS (MC-ICP-MS) at the Korea Institute of Ocean Science and Technology (KIOST).
Analytical methods and instrumental settings followed [48]. The Cu and Zn isotopic
data for each sample represent the average of 3–4 standard sample brackets. Samples of
100–200 ppb were introduced into the Teflon nebulizer through a 100 µL min−1. Cu and Zn
isotopic compositions are expressed in delta notation from isotopic standards (ERM-AE647,
IRMM-3702).

δ65Cu =

( (65Cu/63Cu
)

sample

(65Cu/63Cu)ERM−AE647
− 1

)
× 1000 (8)

δ66Zn =

( (66Zn/64Zn
)

sample

(66Zn/64Zn)IRMM−3702
− 1

)
× 1000 (9)

3. Results and Discussion
3.1. Characteristics of PTEs in Road Dust (<10 µm)
3.1.1. Concentrations of PTEs

The concentrations of PTEs in the PM10 fraction of road dust are summarized in
Table 1. The spatial distribution of these elements is illustrated in Figure S1. The average
concentrations of PTEs in the PM10 fraction of the road dust are as follows: Zn (3007 mg/kg),
Cu (513 mg/kg), Pb (480 mg/kg), Cr (300 mg/kg), Ni (75.6 mg/kg), Sb (61.6 mg/kg), Co
(19.8 mg/kg), As (17.0 mg/kg), Cd (5.6 mg/kg), and Hg (0.6 mg/kg) (Figure 2a).

High concentrations of Cu, Zn, Cd, Pb, and Hg were observed in sampling sites
R11–R16 that experience heavy traffic because of the presence of large departmental stores,
city halls, and fish markets. Many studies have reported that pollution by these elements
is mainly caused by traffic activities [60–63]. Previous studies have reported that heavy
traffic intensity contributes to high levels of heavy metals in the fine size fraction of road
dust [64–67]. In this study, the concentrations of PTEs were relatively low in sampling sites
that experience low traffic volume and areas with smaller road widths.
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Table 1. Comparison of mean values for PTEs concentrations (mg/kg) in PM10 of road dust and
those in the other published data.

Cr Co Ni Cu Zn As Cd Sb Pb Hg Sample Size

300 19.8 75.6 513 3007 17.0 5.6 61.6 480 0.6 <10 µm (this study)
182 - 109 287 1829 - 0.9 - 456 - <20 µm 1

373 - 296 333 819 - 2 29 233 - 2.5~10 µm 2

196 26 121 550 2038 - 3.7 85 234 - <20 µm 3

75.5 113 591 0.6 112 <44 µm 4

176 8.87 48.3 376 1150 406 <50 µm 5

576 28.9 2945 33.5 1.8~10 µm 6

822 1000 5.4 3.4 11 313 <37 µm 7

53.8 9.3 34.2 100 302 17.0 0.6 48.8 <10 µm 8

34 270 470 1.9 148 <2 µm 9

68 15 46 184 1026 0.8 12 91 <10 µm 10

1 Adamiec et al., 2016 [61] (road-deposited sediment); 2 Padoan et al., 2017 [66] (road dust); 3 Adamiec
and Jarosz-Krzemińska 2019 [57] (sidewalk dust); 4 Zhao et al., 2010 [67] (road-deposited sediments); 5 Bi
et al., 2013 [68] (road dust); 6 Levesque et al., 2021 [69] (urban dust); 7 Fujiwara et al., 2011 [70] (road dust); 8

Kong et al., 2012 [14] (road dust); 9 Logiewa et al., 2020 [16] (road dust at Krakow); 10 Vlasov et al., 2021 [21] (road
dust).
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The highest concentrations of Cr, Ni, and Co were observed in sampling sites R21
and R23 that are located in an industrial area containing metal- and steel-related facilities
(processing and cutting). Cr and Ni are the most common metals used for alloying be-
cause of their high hardness and corrosion resistance, and they are widely used in steel
production. Daigo et al. [71] reported that 85% and 61% of the global production of Cr
and Ni, respectively, are used in stainless steel production. Stainless steel contains more
than 10% of Cr and Ni. Various alloying metals are extensively used in food, beverage, and
medical industries and in the manufacturing of equipment, machinery, and vehicle. Co
is released from stainless steel and Ni-based alloy powders and Cr-alloy powders [72,73].
The highest concentrations of Sb and Pb were found in R22, which has a tire replacement
shop. Particles released from the tire and brake pad replacement process spread to the
surrounding, resulting in a high concentration of these elements in road dust.

The average concentrations of Co, Ni, Cu, Zn, Cd, Sb, Pb, and Hg in the PM10
fraction of road dust were 1.1 (Ni)–4.1 (Hg) times higher than those of the bulk road dust
samples [48]. The concentrations of PTEs in this study were lower than that of the soil
pollution standard for roads and factory sites in Korea [74]; however, they were higher
than the fine particulate fraction of road dust in other cities [14,16,21,57,61,67,69,70,75].

3.1.2. Pollution Assessment of PTEs

The average EF value of Sb was the highest among the PTEs (average 183 mg/kg,
minimum: 64.8 mg/kg, and maximum: 292 mg/kg). The average of EF values occurs in
the following order: Sb > Cd > Zn > Pb > Cu > As > Cr > Ni > Hg > Co (Figure 2b). The
Sb and Cd in the PM10 fraction of the road dust had EF values exceeding 32, indicating
the extremely polluted level at all the sampling sites. The average EF value for Zn (53.4)
indicates an extremely polluted level. The average EF of Cu was 21.7, which corresponds
to the strongly polluted level with three sampling sites corresponding to the extremely
polluted level. The reasons for the high levels of contamination with Sb, Cu, Zn, and Cd
are wearing of brakes and tires [70,76,77].

Substantial quantities of Sb compounds are used in the production of polyethylene
terephthalate as catalysts and brake pads as lubricants [78,79]. Of the 54 µg of Sb emitted
per braking event per car, 32 µg is apportioned in the PM10 fraction and 22 µg is apportioned
in the PM2.5 fraction [76,80,81]. Bukowiecki et al. [82] reported that the Sb emission factors
of Sb were 11 µg km−1 vehicle−1 for light-duty vehicles and 86 µg km−1 vehicle−1 for
heavy-duty vehicles. Garg et al. [83] concluded that about 30% of brake wear was released
into the airborne particulate matter and the emission rate ranged from 3.3 to 8.8 mg/km.
Extreme enrichment of Sb in road dust, stream sediments, and particulate matter in runoff
has been observed in Korea [48,84,85]. The average values of EF for As show that the
PM10 fraction of road dust was moderately polluted, and Cr, Ni, Hg, and Co were slightly
polluted to unpolluted levels.

3.1.3. Ecological Risk Assessments

A comparison of the single factor ecological risk degree (Ei
r) for the measured PTEs is

presented in Figure 2c. The average Ei
r values of Cd (1872), Sb (1078), and Hg (489) exceeded

320, which indicates that these elements in the PM10 fraction of road dust correspond to the
extreme ecological risk level because of their high concentrations. The average Ei

r values of
the PTEs in the descending order were as follows: Cd > Sb > Hg > Pb > Cu > Zn > As > Ni
> Cr > Co. The average Ei

r values of Pb and Cu indicate considerable potential risk.
The average Ei

r value of Zn was 44.9, indicating moderate potential risk. The average
Ei

r value of As, Ni, Cr, and Co were less than 40, indicating low potential risk. The average
PER value (3772), which represents the comprehensive ecological risk of the ten PTEs,
significantly exceeded 600, indicating high ecological risk for all the sampling sites in the
PM10 fraction of road dust.
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3.1.4. Health Risk Assessments

The values of the HQ and HI are provided in Table 2. For adults, the average values of
HQing, HQinh, and HQderm were <1, indicating no non-carcinogenic risks posed by PTEs in
the PM10 fraction of road dust (Figure 3). The HQing values of Cr, Cd, and Sb were higher
than those of HQinh and HQderm. The average HI values for adults in decreasing order
were as follows: Sb > Cr > Pb > As > Cd > Cu > Zn > Ni > Co > Hg (Figure 3a). The HI for
adults was <1, indicating no non-carcinogenic health risk by PTEs in the PM10 fraction of
road dust.

Table 2. The results of hazard quotient (HQ) and hazard index (HI) of non-carcinogenic hazards for potentially toxic
elements in PM10 of road dust.

Adult Children
Metals HQing HQinh HQderm HI HQing HQinh HQderm HI

Cr 3.5 × 10−2 2.8 × 10−3 4.0 × 10−2 7.8 × 10−2 3.3 × 10−1 2.6 × 10−2 9.2 × 10−2 4.5 × 10−1

Ni 1.3 × 10−3 1.0 × 10−6 1.1 × 10−4 1.4 × 10−3 1.2 × 10−2 9.4 × 10−6 2.6 × 10−4 1.3 × 10−2

Co 3.5 × 10−4 9.3 × 10−4 9.9 × 10−6 1.3 × 10−3 3.3 × 10−3 8.7 × 10−3 2.3 × 10−5 1.2 × 10−2

Cu 4.5 × 10−3 3.4 × 10−6 3.4 × 10−4 4.9 × 10−3 4.2 × 10−2 3.2 × 10−5 7.9 × 10−4 4.3 × 10−2

Zn 3.5 × 10−3 2.7 × 10−6 4.0 × 10−4 3.9 × 10−3 3.3 × 10−2 2.5 × 10−5 9.2 × 10−4 3.4 × 10−2

As 2.0 × 10−2 1.5 × 10−5 1.1 × 10−3 2.1 × 10−2 1.9 × 10−1 1.4 × 10−4 2.5 × 10−3 1.9 × 10−1

Cd 2.0 × 10−3 1.5 × 10−6 4.5 × 10−3 6.5 × 10−3 1.8 × 10−1 1.4 × 10−5 1.0 × 10−2 2.9 × 10−2

Sb 5.4 × 10−2 4.1 × 10−5 6.2 × 10−2 1.2 × 10−1 5.1 × 10−1 3.8 × 10−4 1.4 × 10−1 6.5 × 10−1

Pb 4.8 × 10−2 3.7 × 10−5 7.3 × 10−3 5.6 × 10−2 4.5 × 10−1 3.4 × 10−4 1.7 × 10−2 4.7 × 10−1

Hg 7.2 × 10−4 5.5 × 10−7 2.3 × 10−4 9.5 × 10−4 6.7 × 10−3 5.1 × 10−6 5.4 × 10−4 7.2 × 10−3

Sum 1.7 × 10−1 3.8 × 10−3 1.2 × 10−1 2.9 × 10−1 1.6 3.6 × 10−2 2.7 × 10−1 1.9
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Co 0.615 -         
Ni 0.925 0.672 -        
Cu 0.415 0.304 0.348 -       
Zn 0.315 0.370 0.371 0.703 -      
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Figure 3. Comparison of mean ± standard deviation (1 s) values for hazard index (HI) for adult (a) and children in PM10 of
road dust in this study (b).

The average value of HQ for children in terms of non-carcinogenic risk through the
three pathways was less than 1. The HI values for children were higher than those for
adults. However, HQing values of the sampling sites in industrial areas for Cr and Pb
were >1, indicating that potential adverse health effects can occur. HQinh and HQderm
values of all the sampling sites and PTEs were <1. The HI values for children were in the
decreasing order as follows: Sb > Pb > Cr > As > Cu > Zn > Cd > Ni > Co > Hg (Figure 3b).
The HI values for children in industrial areas (R21, R23, and R25) for Cr and near the tire
replacement facility (R22) for Sb and Pb exceeded 1, indicating a potential non-carcinogenic
effect of the PM10 fraction of road dust. The total HQ values of PTEs for both adults and
children decreased in the following order: ingestion > dermal contact > inhalation in the
PM10 fraction of road dust (Table 2). This suggests that ingestion is the major exposure
pathway for most toxic elements except for Cr, Cd, and Sb for adults and children. Dermal
contact was the main exposure pathway for Cr, Cd, and Sb. The HI value for children was
higher than that for adults.

The quantity of the PM10 fraction in road dust per unit area of road surface ranged
from 0.01 to 6.9 g/m2 with an average of 2.4 g/m2. The average quantities of PTEs in
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the PM10 fraction of road dust were 0.71 mg/m2 for Cr, 0.05 mg/m2 for Co, 0.19 mg/m2

for Ni, 1.26 mg/m2 for Cu, 7.75 mg/m2 for Zn, 0.04 mg/m2 for As, 0.01 mg/m2 for Cd,
0.15 mg/m2 for Sb, 1.29 mg/m2 for Pb, and 0.001 mg/m2 for Hg, respectively. Considering
the total length of paved roads in Busan at 3313 km, significant quantities of PTEs have
accumulated on the road surfaces in its urban area.

3.2. Pollution Source and Environmental Impact of PTEs in the PM10 Fraction of Road Dust
3.2.1. Statistical Analysis

To understand the sources of the PTEs, principal component analysis (PCA) and
Pearson’s correlation analysis were conducted using SPSS (version 18.0). The Kaiser–Meyer–
Olkin (KMO) test value was 0.625, and the Bartlett test result was p < 0.001, indicating that
the data set was suitable for PCA analysis. Two principal components explaining 63.0%
of the total variance were extracted (Figure 4). PC1 explained 40.8% of the total variance,
and it had a positive loading on Cu, Zn, Cd, Sb, and Pb with a strong positive correlation
between these elements (Table 3). The PCA result and the significant degree of pollution of
these elements in road dust are attributed to traffic sources. PC2 explained 22.2% of the
total variance, and it had a positive loading on Cr, Co, and Ni with positive correlations
between them. The pollution levels of these elements were not significant, and these are
attributed to natural origins except for sampling sites in industrial areas.
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elements in this study.

Table 3. Pearson’s correlation of the potentially toxic elements in PM10 of road dust. Bold indicates
that correlation significant at 0.01 level.

Cr Co Ni Cu Zn As Cd Sb Pb Hg

Cr -
Co 0.615 -
Ni 0.925 0.672 -
Cu 0.415 0.304 0.348 -
Zn 0.315 0.370 0.371 0.703 -
As 0.031 0.129 0.060 0.139 0.107 -
Cd 0.094 0.210 0.082 0.511 0.798 0.143 -
Sb 0.02 −0.023 −0.108 0.589 0.457 0.411 0.498 -
Pb 0.243 0.275 0.244 0.616 0.679 0.642 0.582 0.644 -
Hg −0.127 −0.189 −0.170 −0.010 0.058 −0.215 0.022 0.104 −0.449 -
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3.2.2. Elemental Ratios

Some researchers have found that brake and tire wear show a specific pattern of
some heavy metals such as Fe, Ti, Cu, Zn, Zr, Mo, Sn, Sb, Cd, and Pb [86–89]. In many
studies, elemental concentrations and ratios between elements such as Zn/Cu and Cu/Sb
were used as tracers to evaluate the relative contributions and contamination sources of
PTEs in road dust [90–92]. Since brake pads and linings contain Sb2O3 and Sb2S3, a high
concentration of Sb is present in road dust and atmospheric particulate matter [93]. The EF
values show that Sb contamination was more than that of other elements. PM10 emission
factors from brake and tire wear were reported at 2.9–7.5 mg and 3.0–13.0 mg km−1

vehicle−1, respectively [83,94–98]. The total number of vehicles in Busan is 1.4 million, and
the average daily driving distance is 39.6 km vehicle−1. Therefore, a substantial quantity of
PTEs generated by these traffic activities would have accumulated on the road surface.

Sanders et al. [99] reported that 50–70% of the total wear lining material was released
in the form of airborne particles. Grigoratos and Martini [100] reported that brake wear can
contribute up to 55% of the mass of the total non-exhaust traffic-related PM10 emissions
and up to 21% of the mass of the total transportation-related PM10 emissions in urban
environments. Tires lose approximately 1.0–1.5 kg of weight over their lifetime, of which
the PM10 percentage is less than 10% [101,102]. In this study, the average Zn/Cu and
Cu/Sb ratios were 6.1 ± 1.3 and 8.9 ± 3.4, respectively. This indicates that the dominant
pollution source of the PM10 fraction of the road dust was non-exhaust traffic activities
such as wear of brakes and tires.

3.2.3. Cu, Zn, and Pb Isotopic Compositions

Cu isotopic compositions (δ65CuAE647) of road dust (<10 µm) in this study ranged
from −0.04 to +0.13‰ (mean: +0.05‰ ± 0.05, sd, n = 25). The δ65CuAE647 values of
road dust (<10 µm) were closer to those of the brake pads from Korea (unpublished
data) than brake pads from the UK [103] (Figure 5a). It also indicates that the isotopic
compositions of the brake pads can differ depending on the manufacturers. Zn isotopic
compositions (δ66ZnIRMM3702) of road dust (<10 µm) in this study ranged from −0.17 to
−0.03 (mean: −0.11‰ ± 0.03, sd, n = 25). Road dust (<10 µm) was distinguished from
road paint (UK; [103]) and brake pads (UK; [103]) in the plot of concentrations and isotopic
compositions of Zn. However, road dust (<10 µm) was similar to brake pads (Korea;
unpublished data) and tires (UK; [103]) in Figure 5b, suggesting that the Zn sources in road
dust were closely related to traffic-related sources. Previous studies reported that brake
pads and tires had significantly high Cu and Zn concentrations, respectively, and these were
major sources of road dust from traffic-related emissions [88,95]. Our results also showed
that Cu and Zn sources of road dust (<10 µm) were associated with traffic-related emissions.
The Pb isotopic composition (206Pb/207Pb) of road dust (<10 µm) in this study ranged
from 1.1432 to 1.1606 (mean: 1.1514 ± 0.0036, sd, n = 25). Road dust (<10 µm) overlapped
with road paint (UK; [103]) and was distinguished from brake pads (UK; [103], Korea;
unpublished data) and tires (UK) in Figure 5c. Previous study reported that the mean of
206Pb/207Pb values in lead-based paint ranged from 1.083 to 1.183 (mean: 1.117 ± 0.030,
sd, n = 15; [104]). Anthropogenic Pb sources in urban environments derive from various
sources such as lead-based paint, traffic-related exhaust, and industrial activities [105].
Additionally, lead-based paints are common sources of lead-contaminated soil and road
dust [106–108]. Pb sources of road dust (<10 µm) in this study appear to be different
sources from Zn and Cu.
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The average δ65CuAE647 and δ66ZnIRMM3702 values of this study are slightly higher
than those of heavily industrialized areas [109]. On the other hand, the average 206Pb/207Pb
ratio of this study had a lower value than industrial areas [109]. In the plots of concentration
and isotopic composition for Cu and Pb, the urban area (this study) can be clearly distin-
guished from the industrial area (Figure S2) [109]. This industrial area provided a clear
signal, as it was heavily contaminated with Cu and Pb compared to Zn. Additionally, it
was difficult to distinguish between urban and industrial areas in the plot of concentration
and isotopic values for Zn (Figure S2).

Recent studies reported the contribution of pollution sources using various modeling
programs (Iso-source, SIAR, PMF) in atmospheric fine dust [110–112]. Endmembers of
various pollution sources will enable more accurate source tracking, and evaluation of
the contribution rate for specific pollutants using these models can help improve source
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identification. However, metallic isotope fingerprints of various pollution sources are still
insufficient in South Korea. Therefore, it is important to collect endmembers of various
pollutants to trace these sources precisely by applying these models in further study.
Especially, isotopic fingerprints of products from each country are also needed, since
traffic-related sources may differ depending on the manufacturing countries.

4. Conclusions

Recently, PTEs in the fine particle fraction of road dust have been attracting significant
attention because they can easily resuspend and affect the atmosphere and human health.
Ten PTEs in the PM10 fraction of road dust from the port city of Busan were investigated to
evaluate the pollution status, identify isotopic compositions (Cu, Zn, Pb), and assess the
potential ecological risks posed by them. The average concentrations of the studied PTEs
(mg/kg) in decreasing order are as follows: Zn (3007) > Cu (513) > Pb (480) > Cr (300) >
Ni (75.6) > Sb (61.6) > Co (19.8) > As (17.0) > Cd (5.6) > Hg (0.6). The enrichment factors
showed extremely polluted level in terms of Sb, Cd, Zn, and Pb, and strongly polluted
levels for Cu. Based on average EF value, the PTEs can be ranked as follows: Sb > Cd > Zn
> Pb > Cu > As > Cr > Ni > Hg > Co. Ecological risk assessment indicated that the PM10
fraction of road dust poses extreme risk of Cd, Sb, and Hg contamination, considerable
risk of Pb and Cu, and moderate risk of Cu. Considering the high total length of road in
the study area and the quantity of PM10 contained in the road dust, some PTEs (Sb, Cd,
Zn, Pb, and Cu) can seriously affect the atmospheric environment and human health. The
degree of pollution and statistical analyses such as Pearson’s correlation and PCA analysis
showed that the PTEs in the PM10 fraction of road dust were mainly due to the abrasion of
tires and brake pads. The result of Cu isotopic compositions (δ65CuAE647) indicated that Cu
source of road dust (<10 µm) was more related to brake pads from Korea than that of the
UK. The δ66ZnIRMM3702 had similar values to brake pads (Korea) and tires (UK), indicating
Zn source associated with traffic-related emission sources. Pb isotopic ratios (206Pb/207Pb)
of road dust (<10 µm) were close to road paint (UK), suggesting that the dominant Pb
source in this study was different from Cu and Zn. The approach using multi-isotope has
been successfully carried out, and it is meaningful to compare the isotopic composition of
road dust (<10 µm) with potential pollution sources in this study. Long-term monitoring is
required to efficiently reduce/manage fine road dust polluted with high concentrations
of PTEs and to understand the impact of PTEs in road dust on the environments and the
relationship between road dust and atmospheric particles.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12091229/s1, Figure S1: Spatial distribution of potentially toxic elements in PM10 of road
dust in this study, Figure S2: Plots of concentrations and isotopic values of Cu, Zn, and Pb (a: this
study, b: Jeong et al., 2021), Table S1: Classification of enrichment factor (EF) and potential ecological
risk factor (Ei

r) for each element and potential ecological risk index (PER), Table S2: Key parameters
for the health risk assessment through three pathways used in this study (USEPA, 2011;2016, Zhou
et al., 2015; Adamiec, 2017).
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