Evaluation of the Influence between Local Meteorology and Air Quality in Beijing Using Generalized Additive Models
Abstract
:1. Introduction
2. Data
2.1. Local Meteorological Data
2.2. Air Pollutant Monitoring Data
3. Methods
3.1. General Form of Generalized Additive Models
3.2. Model Construction
4. Results and Discussion
4.1. PM2.5
4.2. SO2
4.3. O3
4.4. CO
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearce, J.L.; Beringer, J.; Nicholls, N.; Hyndman, R.; Tapper, N. Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos. Environ. 2011, 45, 1328–1336. [Google Scholar] [CrossRef]
- Kinney, P.L. Climate Change, Air Quality, and Human Health. Am. J. Prev. Med. 2008, 35, 459–467. [Google Scholar] [CrossRef]
- Dahari, N.; Latif, M.T.; Muda, K.; Hussein, N. Influence of Meteorological Variables on Suburban Atmospheric PM2.5 in the Southern Region of Peninsular Malaysia. Aerosol Air Qual. Res. 2020, 20, 14–25. [Google Scholar] [CrossRef]
- Rani, B.; Singh, U.; Chuhan, A.K.; Sharma, D.; Maheshwari, R. Photochemical Smog Pollution and Its Mitigation Measures. J. Adv. Sci. Res. 2011, 2, 28–33. [Google Scholar]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Lacour, S.A.; De Monte, M.; Diot, P.; Brocca, J.; Veron, N.; Colin, P.; Leblond, V. Relationship between ozone and temperature during the 2003 heat wave in France: Consequences for health data analysis. BMC Public Health 2006, 6, 261. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, C.; Mathis, H.; Furger, M.; Henne, S.; Hüglin, C.; Staehelin, J.; Prévôt, A.S.H. Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos. Chem. Phys. Discuss. 2005, 5, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, W.; Hou, K.; Lin, J.; Song, C.; Zhou, C.; Huang, B.; Tong, X.; Wang, J.; Rhine, W.; et al. Air pollution exposure associates with increased risk of neonatal jaundice. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Jing, H.; Li, Y.-F.; Zhao, J.; Li, B.; Sun, J.; Chen, R.; Gao, Y.; Chen, C. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environ. Pollut. 2014, 192, 204–211. [Google Scholar] [CrossRef]
- Hai, C.D.; Oanh, N.T.K. Effects of local, regional meteorology and emission sources on mass and compositions of par-ticulate matter in Hanoi. Atmos. Environ. 2013, 78, 105–112. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Hoch, S.W.; Horel, J.D.; Charland, A. Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley. Atmos. Environ. 2014, 94, 742–753. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J.; Hu, M.; Wong, H. Estimation of daily PM2.5 concentration and its relationship with meteorological conditions in Beijing. J. Environ. Sci. 2016, 48, 161–168. [Google Scholar] [CrossRef]
- He, J.; Gong, S.; Liu, H.; An, X.; Yu, Y.; Zhao, S.; Wu, L.; Song, C.; Zhou, C.; Wang, J.; et al. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing–Tianjin–Hebei area. J. Meteorol. Res. 2017, 31, 1062–1069. [Google Scholar] [CrossRef]
- Calkins, C.; Ge, C.; Wang, J.; Anderson, M.; Yang, K. Effects of meteorological conditions on sulfur dioxide air pollution in the North China plain during winters of 2006–2015. Atmos. Environ. 2016, 147, 296–309. [Google Scholar] [CrossRef]
- Sezer Turalıoğlu, F.; Nuhoğlu, A.; Bayraktar, H. Impacts of some meteorological parameters on SO2 and TSP concentrations in Erzurum, Turkey. Chemosphere 2005, 59, 1633–1642. [Google Scholar] [CrossRef]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Hou, K.; Lin, J.; Zhou, C.; Tong, X.; Wang, Z.; Wang, Y.; Jiang, Y.; Wang, Z.; et al. Air pollution-induced missed abortion risk for pregnancies. Nat. Sustain. 2019, 2, 1011–1017. [Google Scholar] [CrossRef]
- Camalier, L.; Cox, W.; Dolwick, P. The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 2007, 41, 7127–7137. [Google Scholar] [CrossRef]
- Schlink, U.; Herbarth, O.; Richter, M.; Dorling, S.; Nunnari, G.; Cawley, G.; Pelikan, E. Statistical models to assess the health effects and to forecast ground-level ozone. Environ. Model. Softw. 2006, 21, 547–558. [Google Scholar] [CrossRef]
- Dominici, F.; McDermott, A.; Zeger, S.L.; Samet, J.M. On the Use of Generalized Additive Models in Time-Series Studies of Air Pollution and Health. Am. J. Epidemiol. 2002, 156, 193–203. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models; Chapman & Hall: London, UK, 1986; Volume 1, pp. 297–310. [Google Scholar]
- Aldrin, M.; Haff, I. Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Shen, B.; Hu, X.; Wu, H. Impacts of climate variations on crime rates in Beijing, China. Sci. Total Environ. 2020, 725, 138190. [Google Scholar] [CrossRef]
- Chen, Z.; Zhuang, Y.; Xie, X.; Chen, D.; Cheng, N.; Yang, L.; Li, R. Understanding long-term variations of meteorological influences on ground ozone concentrations in Beijing During 2006–2016. Environ. Pollut. 2019, 245, 29–37. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, T.; Liu, S.; Wang, K.; Rogers, T.; Yao, L.; Zhao, P. Reducing energy consumption and pollution in the urban transportation sector: A review of policies and regu-lations in Beijing. J. Clean. Prod. 2021, 285, 125339. [Google Scholar] [CrossRef]
- Li, S.; Zhao, P. Exploring car ownership and car use in neighborhoods near metro stations in Beijing: Does the neighborhood built environment matter? Transp. Res. Part D Transp. Environ. 2017, 56, 1–17. [Google Scholar] [CrossRef]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Huang, F.; Li, X.; Wang, C.; Xu, Q.; Wang, W.; Luo, Y.; Tao, L.; Gao, Q.; Guo, J.; Chen, S.; et al. PM2.5 Spatiotemporal Variations and the Relationship with Meteorological Factors during 2013–2014 in Beijing, China. PLoS ONE 2015, 10, e0141642. [Google Scholar]
- Song, C.; Pei, T.; Yao, L. Analysis of the Characteristics and Evolution Modes of PM2.5 Pollution Episodes in Beijing, China During 2013. Int. J. Environ. Res. Public Health 2015, 12, 1099–1111. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Che, H.; Zhang, X.; Ma, Y.; Wang, Y.; Wang, H.; Wang, Y. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res. 2013, 4, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, S.-B.; Woo, D.; Bae, G.-N. Influence of wind direction and speed on the transport of particle-bound PAHs in a roadway environment. Atmos. Pollut. Res. 2015, 6, 1024–1034. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J.; Mark, D.; Stedman, J.; Appleby, R.S.; Booker, J.; Moorcroft, S. Studies of the coarse particle (2.5–10 μm) component in UK urban atmospheres. Atmos. Environ. 2001, 35, 3667–3679. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D.; Tate, J.E. Modelling and assessing trends in traffic-related emissions using a generalised ad-ditive modelling approach. Atmos. Environ. 2007, 41, 5289–5299. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, W.; Zhang, C.; Wang, X.; Wang, Y. Study on the influence of fog and haze on solar radiation based on scattering-weakening effect. Renew. Energy 2019, 134, 178–185. [Google Scholar] [CrossRef]
- Wu, J.; Bei, N.; Hu, B.; Liu, S.; Wang, Y.; Shen, Z.; Li, X.; Liu, L.; Wang, R.; Liu, Z.; et al. Aerosol–photolysis interaction reduces particulate matter during wintertime haze events. Proc. Natl. Acad. Sci. USA 2020, 117, 9755–9761. [Google Scholar] [CrossRef]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. Discuss. 2007, 7, 4295–4309. [Google Scholar] [CrossRef] [Green Version]
- Miyakawa, T.; Takegawa, N.; Kondo, Y. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo. J. Geophys. Res. Space Phys. 2007, 112, 13209. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, S.; Tao, Y.; Tsui, W.G.; Ye, J.; Yu, J.Z.; Murphy, J.G.; McNeill, V.F.; Abbatt, J.P.D.; Chan, A.W.H. Organic Peroxides and Sulfur Dioxide in Aerosol: Source of Particulate Sulfate. Environ. Sci. Technol. 2019, 53, 10695–10704. [Google Scholar] [CrossRef]
- Dawson, J.P.; Adams, P.; Pandis, S.N. Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ. 2007, 41, 1494–1511. [Google Scholar] [CrossRef]
- Davis, J.M.; Speckman, P. A model for predicting maximum and 8h average ozone in Houston. Atmos. Environ. 1999, 33, 2487–2500. [Google Scholar] [CrossRef]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Jasaitis, D.; Vasiliauskienė, V.; Chadyšienė, R.; Pečiulienė, M. Surface Ozone Concentration and Its Relationship with UV Radiation, Meteorological Parameters and Radon on the Eastern Coast of the Baltic Sea. Atmosphere 2016, 7, 27. [Google Scholar] [CrossRef] [Green Version]
Variable | Units | Mean | Median | SD | Min | Max | Definition |
---|---|---|---|---|---|---|---|
PM2.5 | μg/m3 | 80.05 | 59.41 | 71.08 | 4.29 | 516.23 | Daily Avg |
SO2 | μg/m3 | 13.8 | 8.25 | 15.03 | 1.98 | 97.87 | Daily Avg |
CO | mg/m3 | 1.25 | 0.95 | 1.04 | 0.10 | 9.03 | Daily Avg |
O3 | μg/m3 | 60.65 | 55.04 | 39.78 | 2.00 | 183.13 | Daily Avg |
Atmospheric pressure | hPa | 1011.39 | 1012.5 | 29.24 | 142 | 1040.5 | Daily Avg |
Zonal (u) wind | km/h | −1.72 | −3.03 | 13.35 | −18.52 | 391.99 | Daily Avg (N+, S−) |
Meridional (v) wind | km/h | 1.99 | 2.68 | 8.63 | −20.37 | 214.61 | Daily Avg (E+, W−) |
Temperature | °C | 55.8 | 56.24 | 19.91 | 9.17 | 97.43 | Daily Avg |
Relative humidity | % | 13.62 | 15 | 11 | −15.38 | 32.5 | Daily Avg |
Visibility | km | 11.68 | 9.73 | 7.23 | 0.64 | 30 | Daily Avg |
Solar irradiance | w/m2 | 249.6 | 246.07 | 79.42 | 80.52 | 392.77 | Daily Avg |
Precipitation | mm | 17.8 | 12.39 | 14.6 | 0 | 68.18 | Daily Avg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, K.; Xu, X. Evaluation of the Influence between Local Meteorology and Air Quality in Beijing Using Generalized Additive Models. Atmosphere 2022, 13, 24. https://doi.org/10.3390/atmos13010024
Hou K, Xu X. Evaluation of the Influence between Local Meteorology and Air Quality in Beijing Using Generalized Additive Models. Atmosphere. 2022; 13(1):24. https://doi.org/10.3390/atmos13010024
Chicago/Turabian StyleHou, Kun, and Xia Xu. 2022. "Evaluation of the Influence between Local Meteorology and Air Quality in Beijing Using Generalized Additive Models" Atmosphere 13, no. 1: 24. https://doi.org/10.3390/atmos13010024
APA StyleHou, K., & Xu, X. (2022). Evaluation of the Influence between Local Meteorology and Air Quality in Beijing Using Generalized Additive Models. Atmosphere, 13(1), 24. https://doi.org/10.3390/atmos13010024