Sounding Data from Ground-Based Microwave Radiometers for a Hailstorm Case: Analyzing Spatiotemporal Differences and Initializing an Idealized Model for Prediction
Abstract
:1. Introduction
2. Methodology
2.1. Data Description
2.2. Circulation Characterization
2.3. Design of the Idealized WRF Model
3. Results
3.1. Satellite Data Analysis
3.2. Circulation Characterization
3.3. Hail Weather Analysis Based on a Ground-Based Microwave Radiometer
3.3.1. Water Vapor and Liquid Water Change Characteristics
3.3.2. Temperature Change Characteristics
3.3.3. Displacement Temperature (Pseudoequivalent Displacement Temperature) Gradient Characteristics
3.4. Idealized Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, T.M.; Pogorzelski, W.H.; Giammanco, I.M. Evaluating Hail Damage Using Property Insurance Claims Data. Weather Clim. Soc. 2015, 7, 197–210. [Google Scholar] [CrossRef]
- Phillips, V.T.J.; Khain, A.; Benmoshe, N.; Ilotoviz, E. Theory of Time-Dependent Freezing. Part I: Description of Scheme for Wet Growth of Hail. J. Atmos. Sci. 2014, 71, 4527–4557. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Zou, T.; Lin, J.; Kong, H.; Ren, Z. Climatology of Hail Frequency and Size in China, 1980–2015. J. Appl. Meteorol. Climatol. 2018, 57, 875–887. [Google Scholar] [CrossRef]
- Brimelow, J.C.; Reuter, G.W.; Goodson, R.; Krauss, T.W. Spatial Forecasts of Maximum Hail Size Using Prognostic Model Soundings and HAILCAST. Weather Forecast. 2006, 21, 206–219. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Fan, J.; Zhang, F. Notable Contributions of Aerosols to the Predictability of Hail Precipitation. Geophys. Res. Lett. 2021, 48, e2020GL091712. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Zhang, Q.; Kumjian, M.R. Sensitivity of Hail Precipitation to Ensembles of Uncertainties of Representative Initial Environmental Conditions From ECMWF. J. Geophys. Res. Atmos. 2019, 124, 6929–6948. [Google Scholar] [CrossRef]
- Adams-Selin, R.D.; Ziegler, C.L. Forecasting Hail Using a One-Dimensional Hail Growth Model within WRF. Mon. Weather Rev. 2016, 144, 4919–4939. [Google Scholar] [CrossRef]
- Knupp, K.R.; Coleman, T.; Phillips, D.; Ware, R.; Cimini, D.; Vandenberghe, F.; Vivekanandan, J.; Westwater, E. Ground-Based Passive Microwave Profiling during Dynamic Weather Conditions. J. Atmos. Ocean. Technol. 2009, 26, 1057–1073. [Google Scholar] [CrossRef]
- Bedka, K.M.; Wang, C.; Rogers, R.; Carey, L.D.; Feltz, W.; Kanak, J. Examining Deep Convective Cloud Evolution Using Total Lightning, WSR-88D, and GOES-14 Super Rapid Scan Datasets. Weather Forecast. 2015, 30, 571–590. [Google Scholar] [CrossRef]
- Dworak, R.; Bedka, K.; Brunner, J.; Feltz, W. Comparison between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports. Weather Forecast. 2012, 27, 684–699. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; Jewett, C.P.; Apke, J.M.; Carey, L.D. Analysis of Cumulus Cloud Updrafts as Observed with 1-Min Resolution Super Rapid Scan GOES Imagery. Mon. Weather Rev. 2016, 144, 811–830. [Google Scholar] [CrossRef]
- Borque, P.; Vidal, L.; Rugna, M.; Lang, T.J.; Nicora, M.G.; Nesbitt, S.W. Distinctive Signals in 1-min Observations of Overshooting Tops and Lightning Activity in a Severe Supercell Thunderstorm. J. Geophys. Res. Atmos. 2020, 125, e2020JD032856. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Mao, J.; Li, B.; Guo, C.; Zhang, S. Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere 2021, 12, 551. [Google Scholar] [CrossRef]
- Cimini, D.; Nelson, M.; Güldner, J.; Ware, R. Forecast Indices from a Ground-Based Microwave Radiometer for Operational Meteorology. Atmos. Meas. Tech. 2015, 8, 315–333. [Google Scholar] [CrossRef]
- Gerber, D.; Balin, I.; Feist, D.G.; Kampfer, N.; Simeonov, V.; Calpini, B. Ground-Based Water Vapour Soundings by Microwave Radiometry and Raman Lidar on Jungfraujoch (Swiss Alps). Atmos. Chem. Phys. 2004, 4, 2171–2179. [Google Scholar] [CrossRef]
- Hocke, K.; Kampfer, N.; Ruffieux, D.; Froidevaux, L.; Parrish, A.; Boyd, I.; Timofeyev, Y.M.; Polyakov, A.V.; Kyrola, E. Comparison and Synergy of Stratospheric Ozone Measurements by Satellite Limb Sounders and the Ground-Based Microwave Radiometer SOMORA. Atmos. Chem. Phys. 2007, 7, 4117–4131. [Google Scholar] [CrossRef]
- John, V.O.; Buehler, S.A. Comparison of Microwave Satellite Humidity Data and Radiosonde Profiles: A Survey of European Stations. Atmos. Chem. Phys. 2005, 5, 1843–1853. [Google Scholar] [CrossRef]
- Müller, S.C.; Kämpfer, N.; Feist, D.G. Validation of Stratospheric Water Vapour Measurements from the Airborne Microwave Radiometer AMSOS. Atmos. Chem. Phys. 2008, 8, 3169–3183. [Google Scholar] [CrossRef]
- Revercomb, H.E.; Turner, D.D.; Tobin, D.C.; Knuteson, R.O.; Feltz, W.F.; Barnard, J.; Bösenberg, J.; Clough, S.; Cook, D.; Ferrare, R.; et al. The Arm Program’s Water Vapor Intensive Observation Periods: Overview, Initial Accomplishments, and Future Challenges. Bull. Am. Meteorol. Soc. 2003, 84, 217–236. [Google Scholar] [CrossRef]
- Liu, S.; Heygster, G.; Zhang, S. Comparison of CloudSat Cloud Liquid Water Paths in Arctic Summer Using Ground-Based Microwave Radiometer. J. Ocean Univ. China 2010, 9, 333–342. [Google Scholar] [CrossRef]
- Kulikov, M.Y.; Belikovich, M.V.; Skalyga, N.K.; Shatalina, M.V.; Dementyeva, S.O.; Ryskin, V.G.; Shvetsov, A.A.; Krasil’nikov, A.A.; Serov, E.A.; Feigin, A.M. Skills of Thunderstorm Prediction by Convective Indices over a Metropolitan Area: Comparison of Microwave and Radiosonde Data. Remote Sens. 2020, 12, 604. [Google Scholar] [CrossRef]
- Sun, J.; Chai, J.; Leng, L.; Xu, G. Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region. Atmosphere 2019, 10, 298. [Google Scholar] [CrossRef]
- Labriola, J.; Snook, N.; Jung, Y.; Putnam, B.; Xue, M. Ensemble Hail Prediction for the Storms of 10 May 2010 in South-Central Oklahoma Using Single- and Double-Moment Microphysical Schemes. Mon. Weather Rev. 2017, 145, 4911–4936. [Google Scholar] [CrossRef]
- Snook, N.; Xue, M.; Jung, Y. Analysis of a Tornadic Mesoscale Convective Vortex Based on Ensemble Kalman Filter Assimilation of CASA X-Band and WSR-88D Radar Data. Mon. Weather Rev. 2011, 139, 3446–3468. [Google Scholar] [CrossRef]
- Snook, N.; Xue, M.; Jung, Y. Multiscale EnKF Assimilation of Radar and Conventional Observations and Ensemble Forecasting for a Tornadic Mesoscale Convective System. Mon. Weather Rev. 2015, 143, 1035–1057. [Google Scholar] [CrossRef]
- Yussouf, N.; Kain, J.S.; Clark, A.J. Short-Term Probabilistic Forecasts of the 31 May 2013 Oklahoma Tornado and Flash Flood Event Using a Continuous-Update-Cycle Storm-Scale Ensemble System. Weather Forecast. 2016, 31, 957–983. [Google Scholar] [CrossRef]
- Yussouf, N.; Mansell, E.R.; Wicker, L.J.; Wheatley, D.M.; Stensrud, D.J. The Ensemble Kalman Filter Analyses and Forecasts of the 8 May 2003 Oklahoma City Tornadic Supercell Storm Using Single- and Double-Moment Microphysics Schemes. Mon. Weather Rev. 2013, 141, 3388–3412. [Google Scholar] [CrossRef]
- Dawson II, D.T.; Wicker, L.J.; Mansell, E.R.; Tanamachi, R.L. Impact of the Environmental Low-Level Wind Profile on Ensemble Forecasts of the 4 May 2007 Greensburg, Kansas, Tornadic Storm and Associated Mesocyclones. Mon. Weather Rev. 2012, 140, 696–716. [Google Scholar] [CrossRef]
- Hartung, D.C.; Otkin, J.A.; Petersen, R.A.; Turner, D.D.; Feltz, W.F. Assimilation of Surface-Based Boundary Layer Profiler Observations during a Cool-Season Weather Event Using an Observing System Simulation Experiment. Part II: Forecast Assessment. Mon. Weather Rev. 2011, 139, 2327–2346. [Google Scholar] [CrossRef]
- Caumont, O.; Cimini, D.; Löhnert, U.; Alados-Arboledas, L.; Bleisch, R.; Buffa, F.; Ferrario, M.E.; Haefele, A.; Huet, T.; Madonna, F.; et al. Assimilation of Humidity and Temperature Observations Retrieved from Ground-based Microwave Radiometers into a Convective-scale NWP Model. Q. J. R. Meteorol. Soc. 2016, 142, 2692–2704. [Google Scholar] [CrossRef] [Green Version]
- Otkin, J.A.; Hartung, D.C.; Turner, D.D.; Petersen, R.A.; Feltz, W.F.; Janzon, E. Assimilation of Surface-Based Boundary Layer Profiler Observations during a Cool-Season Weather Event Using an Observing System Simulation Experiment. Part I: Analysis Impact. Mon. Weather Rev. 2011, 139, 2309–2326. [Google Scholar] [CrossRef]
- He, W.; Chen, H.; Li, J. Influence of Assimilating Ground-Based Microwave Radiometer Data into the WRF Model on Precipitation. Atmos. Ocean. Sci. Lett. 2020, 13, 107–112. [Google Scholar] [CrossRef]
- Moeng, C.-H.; Dudhia, J.; Klemp, J.; Sullivan, P. Examining Two-Way Grid Nesting for Large Eddy Simulation of the PBL Using the WRF Model. Mon. Weather Rev. 2007, 135, 2295–2311. [Google Scholar] [CrossRef]
- Mirocha, J.D.; Lundquist, J.K.; Kosović, B. Implementation of a Nonlinear Subfilter Turbulence Stress Model for Large-Eddy Simulation in the Advanced Research WRF Model. Mon. Weather Rev. 2010, 138, 4212–4228. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xue, H. The Role of Initial Cloud Condensation Nuclei Concentration in Hail Using the WRF NSSL 2-Moment Microphysics Scheme. Adv. Atmos. Sci. 2017, 34, 1106–1120. [Google Scholar] [CrossRef]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A.; Blahak, U.; Ryzhkov, A. The Role of CCN in Precipitation and Hail in a Mid-Latitude Storm as Seen in Simulations Using a Spectral (Bin) Microphysics Model in a 2D Dynamic Frame. Atmos. Res. 2011, 99, 129–146. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, J.; Du, M. Parameterized Forward Operators for Simulation and Assimilation of Polarimetric Radar Data with Numerical Weather Predictions. Adv. Atmos. Sci. 2021, 38, 737–754. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M.; Venkat Ratnam, M.; Bhate, J.; Naidu, C.V. Nowcasting Severe Convective Activity over Southeast India Using Ground-Based Microwave Radiometer Observations: Thunderstorm Nowcasting Using Radiometer. J. Geophys. Res. Atmos. 2013, 118, 1–13. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Sudairawi, M.; Al-Rashidi, M.; Behbehani, W.; Al-Khayat, A. Temperature Inversion and Mixing Height: Critical Indicators for Air Pollution in Hot Arid Climate. Nat. Hazards 2019, 97, 139–155. [Google Scholar] [CrossRef]
- Güldner, J.; Spänkuch, D. Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry. J. Atmos. Ocean. Technol. 2001, 18, 925–933. [Google Scholar] [CrossRef]
- Sheng, P.; Mao, J.; Li, J.; Zhang, A.; Sang, J.; Pan, N. Atmospheric Physics, 1st ed.; Peking University Press: Beijing, China, 2003; pp. 138–154. [Google Scholar]
- Mansell, E.R. On Sedimentation and Advection in Multimoment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 3084–3094. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L. Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model. J. Atmos. Sci. 2013, 70, 2032–2050. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Snyder, J.; Carlin, J.T.; Khain, A.; Pinsky, M. What Polarimetric Weather Radars Offer to Cloud Modelers: Forward Radar Operators and Microphysical/Thermodynamic Retrievals. Atmosphere 2020, 11, 362. [Google Scholar] [CrossRef]
- Mulena, G.C.; Puliafito, S.E.; Lakkis, S.G. Application of Tropospheric Sulfate Aerosol Emissions to Mitigate Meteorological Phenomena with Extremely High Daily Temperatures. Environ. Clim. Technol. 2019, 23, 14–40. [Google Scholar] [CrossRef]
- Gascón, E.; Sánchez, J.L.; Fernández-González, S.; Hermida, L.; López, L.; García-Ortega, E.; Merino, A. Monitoring a Convective Winter Episode of the Iberian Peninsula Using a Multichannel Microwave Radiometer. J. Geophys. Res. Atmos. 2015, 120, 1565–1581. [Google Scholar] [CrossRef]
Project | Performance Metrics | ||
---|---|---|---|
Profile sampling rate | ≤2 min | ||
Detection height | ≥10 km | ||
Observation performance | Temperature profile | ≤25 m (0 m–500 m) | RMSE ≤ 1 K |
≤50 m (500 m–2 km) | RMSE ≤ 1 K | ||
≤250 m (2 km~10 km) | RMSE ≤ 1.8 K | ||
Relative humidity profiles | ≤50 m (0 m~500 m) | RMSE ≤ 15% RH | |
≤100 m (500 m~2 km) | RMSE ≤ 15% RH | ||
≤250 m (2 km~10 km) | RMSE ≤ 15% RH | ||
Data format | Temperature profile | Retain 3 decimal places | °C |
Relative humidity profiles | Retain 3 decimal places | % RH | |
Liquid water profiles | Retain 3 decimal places | g/m3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Li, X. Sounding Data from Ground-Based Microwave Radiometers for a Hailstorm Case: Analyzing Spatiotemporal Differences and Initializing an Idealized Model for Prediction. Atmosphere 2022, 13, 1535. https://doi.org/10.3390/atmos13101535
Ma R, Li X. Sounding Data from Ground-Based Microwave Radiometers for a Hailstorm Case: Analyzing Spatiotemporal Differences and Initializing an Idealized Model for Prediction. Atmosphere. 2022; 13(10):1535. https://doi.org/10.3390/atmos13101535
Chicago/Turabian StyleMa, Rongjun, and Xiaofei Li. 2022. "Sounding Data from Ground-Based Microwave Radiometers for a Hailstorm Case: Analyzing Spatiotemporal Differences and Initializing an Idealized Model for Prediction" Atmosphere 13, no. 10: 1535. https://doi.org/10.3390/atmos13101535
APA StyleMa, R., & Li, X. (2022). Sounding Data from Ground-Based Microwave Radiometers for a Hailstorm Case: Analyzing Spatiotemporal Differences and Initializing an Idealized Model for Prediction. Atmosphere, 13(10), 1535. https://doi.org/10.3390/atmos13101535