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Abstract: Ground-based multi-channel microwave radiometers (MWRs) can continuously detect
atmospheric profiles in the tropospheric atmosphere. This makes MWR an ideal tool to supplement
radiosonde and satellite observations in monitoring the thermodynamic evolution of the atmosphere
and improving numerical weather prediction (NWP) through data assimilation. The analysis of prod-
uct characteristics of MWR is the basis for applying its data to real-time monitoring and assimilation.
In this paper, observations from the latest generation of ground-based multi-channel MWR RPG-
HATPRO-G5 installed in Shanghai, China, are compared with the radiosonde observations (RAOB)
observed in the same location. The detection performance, characteristics of various channels, and
the accuracy of the retrieval profile products of the MWR RPG are comprehensively evaluated during
various weather conditions. The results show that the brightness temperatures (BTs) observed by
the ground-based MWR RPG during precipitation conditions were high, which affected its detection
performance. The bias and the standard deviation (SD) between the BT observed by MWR RPG and
the simulated BT during clear and cloudy sky conditions were slight and large, respectively, and the
coefficient of determination (R2) was high and low, respectively. However, when the cloud liquid
water (CLW) information was added when simulating BT, the bias and the SD of the observed BT and
the simulated BT during cloudy days were reduced and the R2 value improved, which indicated that
CLW information should be taken into account when simulating BT during cloudy conditions. The
temperature profiles of the MWR retrieval had the same accuracy of RMSEs (root-mean-square error)
with heights during both clear-sky and cloudy sky conditions, where the RMSEs were below 2 K
when the heights were below 4 km. In addition, the MWR RPG has the potential ability to retrieve
the temperature inversion in the boundary layer, which has important application value for fog and
air pollution monitoring.

Keywords: ground-based microwave radiometer; accuracy evaluation; brightness temperature; cloud
liquid water; temperature profile; temperature inversion

1. Introduction

High spatial and temporal resolution atmospheric profiles are important for under-
standing the thermal and dynamical structure of weather processes at various scales [1]. At
present, radiosonde observations (RAOB) can provide highly precise vertical atmospheric
profiles. However, due to the high observation cost, the low spatial resolution, the distance
between weather stations of about 300 km or more, and the low temporal resolution (12 h),
radiosonde observations are not sufficient to provide fine variations of vertical atmospheric
profiles [2]. Meteorological satellites are affected by the complex surface, resulting in
atmospheric profiles near the ground that are not very good. The ground-based microwave
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radiometer (MWR) is a new type of detection equipment belonging to passive remote
sensing, and mainly measures the downward radiance from the Earth’s atmosphere. It
can continuously detect temperature and humidity profiles of the atmosphere at 0–10 km
altitude near the ground, which is a useful supplement to radiosonde data and satellite
data [3]. Meanwhile, ground-based MWRs represent important areas for the development
of atmospheric sounding operations, given the great potential of ground-based vertical
sounding information in improving small-scale and medium-scale forecast operations [4].
At present, ground-based MWR is mainly dominated by RPG-HATPRO and MP-3000, but
ground-based MWR has developed rapidly in China in recent years. The main devices
include QFW-6000, MWP967KV, and HT-GMWR. The related profile products are widely
used in the fields of artificial weather impact, meteorological protection services for major
events, aviation meteorology, urban pollution monitoring, etc.

With the significant increase in the application of multi-channel ground-based MWRs
in meteorological operations, it is important to examine the detection performance of this
remote sensing equipment. Monitoring the observed brightness temperature (BT) minus
the background simulated BT is critical to detect and possibly eliminate any systematic
errors in MWR measurements, radiative transfer models, or NWP model predictions [5].
De Angelis et al. [5] and Liu [6] analyzed ground-based MWR BT detection and compared
it with simulated BT during clear sky conditions. Ahn et al. [7] compared the simulated BT
and the observed BT of MWR during all sky and clear sky conditions. It was found that
liquid water in clouds caused a large bias between the observed and the simulated data. It
was considered that the cloudy data were not suitable for evaluating the performance of
the radiometer, and it was necessary to use the cloudy detection instrument to screen the
BT data of the radiometer when there was cloud. However, what has not been considered
in the existing research is the effect of adding cloud liquid water (CLW) information
to the simulated BT on the observed BT evaluation and the reliability of observed BT
during precipitation.

The MWR receives the radiation emitted from the atmosphere in the microwave band
of the spectrum and retrieves it into variables such as temperature, relative humidity,
and absolute humidity. A lot of research has been conducted on the retrieval methods
of ground-based MWRs. The common methods include Bayesian maximum probabil-
ity estimation algorithm [8], one-dimensional variational retrieval method [9], statistical
regression method [10], and neural network method [11]. Li et al. [12] and Li et al. [13]
improved the temperature and humidity profiles retrieval during clear-sky and cloudy-sky
conditions. Tan et al. [14] established an atmospheric profile retrieval method based on
principal component analysis and stepwise regression. It was found that the retrieved
profiles captured the evolution of atmospheric conditions very well. Moreover, there are
many studies evaluating the accuracy of MWR retrieval profiles. For example, Liu [6] com-
pared the temperature profiles measured by the MWR with sounding temperature profiles.
The study explored the effects of altitudes, seasons, and precipitation conditions on the
performance of ground-based MWR retrieval temperature profiles. Chan [15] studied the
application of ground-based MWR retrieval profiles in strong convective weather. It was
found that the radiometer could provide effective information for precipitation forecasting,
though there were some differences between ground-based MWR data and RAOB data.
Xu et al. [16] compared MWR retrievals and RAOB data during clear-sky and cloudy-sky
conditions, and analyzed MWR retrieval accuracies under low, middle, and high clouds
identified by IRT. It was found that the accuracy of the retrieval profiles in the lower levels
were better than those in the upper levels, and the cloudy profiles were better than those in
the clear-sky. Both the temperature profile under high cloud and the vapor density profile
under middle cloud had high accuracy. Bedoya-Velásquez et al. [17] used RAOB data to
analyze the seasonal periodicity of temperature profiles, relative humidity profiles, and
integrated water vapor measured by MWRs. It was found that the biases of the radiometer
were small during clear sky and dry conditions, but they were very large during cloudy
sky conditions.
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MWR soundings are found to be equivalent in accuracy to radiosonde soundings
when used for NWP [18]. Several studies using MWR retrieval profiles have shown that
they have the potential to improve the forecasting of local weather processes. For example,
Olivier et al. [19] used the 3DVAR data assimilation system of Arome-WMed to assimilate
the temperature and the humidity profiles of 13 ground-based MWRs. It was found that,
in addition to limited improvement in the prediction of large accumulated rainfall, the
prediction impact on other upper air and surface meteorological elements was usually
neutral. He et al. [20] used WRFDA to assimilate the temperature and humidity profiles of
two ground-based MWRs for a heavy rainfall event in Beijing, China. The results showed
that the assimilation of ground-based MWR data improved the forecast of precipitation
intensity and distribution in the early stage of precipitation, while the assimilation of two
ground-based MWRs improved the forecast of a large area heavy precipitation system less
as the storm system developed. Qi et al. [21] and Qi et al. [22] used the rapid-refresh multi-
scale analysis and prediction system-short term to predict the intensity and distribution of
precipitation over a large area using the 3DVAR assimilation technique in the Beijing area.
The level-2 products of five ground-based MWRs were assimilated to improve precipitation
and echo forecasting, and accurately forecast the band echo splitting and precipitation
enhancement process in Beijing. Wave et al. [18] described an example of improving fog
prediction based on variational assimilation of radiometric soundings. Temimi et al. [23]
evaluated the potential of MWR for nowcasting of fog formation and dissipation in hyper-
arid environments by analyzing its profiles.

In this paper, the 2017–2019 observations of HATPRO-G5, the latest generation of RPG
ground-based multi-channel MWR installed in Shanghai, China (31.39◦ N, 121.44◦ E, 5.5 m
above sea level), are compared with the RAOB data to comprehensively evaluate its detec-
tion performance, operational stability, and the performance of the temperature retrieval
profiles during various weather conditions. The study aims to lay the foundation for the
application of this ground-based MWR BT data and temperature profile retrieval product.

The article has been organized in the following way. Section 2 presents the data and
methods used in the study, including the ground-based MWR data, data pre-processing
process, and the methods of statistical analysis. The analysis of the observed BT charac-
teristics during various weather conditions is described in Section 3. Section 4 discusses
the effect of CLW on BT simulations. Section 5 describes the accuracy of temperature
retrieval profiles and the performance of temperature inversion retrieval. Finally, Section 6
summarizes the conclusions.

2. Data and Methods
2.1. Data Description

The output data of the new generation of MWR RPG includes level-1 data (BTs) and
level-2 data (retrieved products). For level-1 data, seven channels of the RPG humidity
profiler were selected with frequencies respectively centered at 22.24, 23.04, 23.84, 25.44,
26.24, 27.84, and 31.40 GHz and seven channels of the RPG temperature profiler were
selected with frequencies respectively centered at 51.26, 52.28, 53.86, 54.94, 56.66, 57.30, and
58.00 GHz. For the remote sensing mechanism of the MWR, when it is observed at the
zenith, the BT at different heights is related to the molecular density and the temperature
of its corresponding layer. Since the spectral center position of any given channel is
different, the individual transparency for each channel is, thus, different and the microwave
signals reaching the ground reflect the temperature and humidity information at different
altitudes [4]. Therefore, MWR can continuously detect the temperature, humidity, and
CLW profiles in the atmospheric boundary layer and troposphere in the vertical range of
0–10 km in real time. In this work, the products using MWR RPG level-2 data included
atmospheric temperature profile retrieval products, all of which contained 93 altitude
layers. In this paper, observations from the latest generation of ground-based multichannel
MWR RPG-HATPRO-G5, installed in Shanghai, China, are compared with the RAOB data
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observed in the same location. To ensure data quality, liquid nitrogen calibration was
carried out once every six months.

2.2. Data Pre-Processing

To evaluate the performance of profile products, the atmospheric temperature profiles
of MWR RPG and RAOB data were processed as follows: the time of the two types of tem-
perature profiles was kept consistent; the data of instrument detection anomalies (e.g., the
missing RAOB data below 10 km) was eliminated to avoid large errors in interpolation;
the two types of temperature profile information were kept highly unified. According
to the functional specifications formulated by the China Meteorological Administration
to regulate the standards of ground-based MWRs, the vertical height of the atmospheric
temperature profiles was uniformly interpolated into 83 layers of the national standard.
In addition, the temperature profiles had vertical resolutions of 25 m from the surface to
500 m, 50 m from 500 m to 2000 m, and 250 m from 2000 m to 10,000 m.

In addition, since the BT information detected by the ground-based MWR is the basis
for its profile retrieval and assimilation, the quality and the stability of various channels
of BT data directly affect the retrieval and assimilation performance. The Monochromatic
Radiative Transfer Model (MonoRTM) has been commonly used for BT simulation in
microwave bands with high accuracy [7,14]. Its BT simulation requires information on
atmospheric temperature, humidity, and liquid water content at different altitudes as input.
It can achieve higher accuracy for BT simulation in the presence of cloud coverage. In
our work, the temperature and humidity profiles from RAOB and the CLW from ERA5
reanalysis data were used as input data sets for BT simulation calculations, and the same
14 channels of BT as for MWR RPG were taken as outputs for comparison.

This work also classified the BT data and the temperature profiles into “Clear-Sky”,
“No-precipitating Cloud” and “Precipitating Cloud”, according to various weather condi-
tions. Specifically, conditions with precipitation were classified as “Precipitating Cloud”,
and those without precipitation were classified as “Clear-Sky” or “No-precipitating Cloud”,
according to the relative humidity. The condition of “Clear-Sky” related to relative humid-
ity of the RAOB being less than 85% in all altitude layers, and that of “No-precipitating
Cloud” to relative humidity of one or more layers of the RAOB data being greater than, or
equal to, 85%.

2.3. Methods of Statistical Analysis

The characteristics of the MWR RPG observed BT were analyzed by comparing the
bias and standard deviation (SD) of the MWR RPG observed BT with the MonoRTM
simulated BT. The coefficient of determination (R2) was used to describe the degree of fit of
the observed BT to the simulated BT. Let n be the size of the sample used for comparison.
bias, SD, and R2 are given by:

bias =
1
n ∑n

i=1(Oi − Bi) (1)

SD =

√
∑n

i=1
(
Xi − X

)2

n
(2)

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (3)

In the above three equations, Oi (with i being the label of the sample) is the MWR RPG
observed BT, Bi represents the MonoRTM simulated BT, Xi the calculation of the observed
BT minus simulated BT (OMB), X means the average value of OMB, yi stands for the true
value of the observed BT, yi denotes the average value of yi, and ŷi gives the MWR RPG
observed BT predicted by linear fitting equation.
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The performance of the temperature profiles retrieved by MWR RPG was evaluated by
comparing the bias and RMSE calculated by radiosonde data. Let n be the size of the sample
used for comparison. The profile retrieved by MWR RPG was taken as Oi. The profile
detected by radiosonde was taken as Bi. The calculation of bias is shown in Equation (1),
and the RMSE is given by:

RMSE =

√
∑n

i=1(Oi − Bi)
2

n
(4)

3. Brightness Temperature Characteristics Analysis during Various Weather Conditions

First of all, we analyzed the all-sky BT data of MWR RPG observations that included
precipitation epochs, followed by analyzing the observed BT of non-precipitation epochs.
In addition, when analyzing the observed BT performance of the no-precipitating cloud, the
influence of whether or not to add CLW information for BT simulation on the evaluation of
BT performance was analyzed.

3.1. Characteristics Analysis of All-Sky Brightness Temperature Data

All successfully matched BT data were compared and analyzed. There were 1749 BTs
for each channel, and 335 of them were measured during precipitation conditions. The
OMB of 14 channels was plotted over time (Figure 1). The left column of Figure 1 shows the
time series plots of OMB for the seven humidity channels and the right column shows the
time series plots of OMB for the seven temperature channels. It can be seen that the OMB of
the humidity channels was larger than that of the temperature channels, overall. Moreover,
we can see that the overall change trend of OMB before and after each MWR calibration
was the same, indicating that there was no significant change in the BT detection of each
channel before and after the MWR calibration and the detection performance was more
stable. Besides, for the all-sky BT data, except for precipitation times, OMB was mostly
around zero and precipitation times of the observed BT had a large positive bias. The water
vapor channels were mainly used to detect the water vapor information in the atmosphere
near the ground. There was water on the waterproof cover of the equipment during
precipitation, resulting in a large difference between the observed BT and the simulated BT
(without considering the water accumulation). This suggested that the high BT measured
by the ground-based MWR RPG during precipitation conditions affected the performance
of the observation.

3.2. Characteristics Analysis of Clear-Sky Brightness Temperature Data

For the performance analysis of the BT of MWR RPG observations during non-
precipitation conditions, there were 368 BTs for each channel during clear-sky conditions
without clouds and the time series of their OMB are shown in Figure 2. It can be seen that
the range of OMB for each channel during clear-sky conditions was significantly reduced,
as compared with Figure 1, where the ranges of OMB values for various channels showed
discrepancies within 10 K. There were obvious positive biases for all humidity channels in
the left columns and the 51.26 and the 53.86 GHz temperature channels in the right columns,
i.e., the observed values were large. In addition, there was some seasonal variation in
the OMB of the near-surface temperature channel during clear-sky conditions. That is,
a systematic bias with time dependence was seen with larger values of OMB in winter
and spring and smaller values of OMB in summer and autumn. The systematic deviation
characteristic was obviously related to the ambient temperature. Since the microwave
radiometer required very high thermal stability for the receiver, which should not exceed
0.02 k, it needed a temperature controller to adjust the receiver temperature through heating
control. Its working performance in winter and summer should be different to some extent,
which might have led to this seasonal variation characteristic. However, the exact cause
needs further confirmation.
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To further evaluate the difference between the observed BT of MWR RPG and the
simulated BT of MonoRTM during clear-sky conditions, the bias, SD, linear fit equation,
and R2 of the observed BTs and the simulated BTs at clear-sky times were calculated, and
scatter plots were made for each channel (Figure 3). It can be seen that, except for the 52.28,
56.66, 57.3, and 58 GHz channels, all other channels had small positive biases with the
highest bias (1.55 K) located at the 51.26 GHz channel. The bias of each channel showed
that there was a systematic bias for further validation. The channel of 22.24–23.84 GHz
had a larger SD (>2 K) as compared with the other channels, where the data were more
discrete with a larger difference between the observed BT and simulated BT. In addition,
the fit coefficients of all channels were high, with the R2 values above 0.99. Especially for
the 54.94–58 GHz channels, the R2 reached 1, implying that the observed BTs of MWR RPG
during clear-sky conditions were in good agreement with the simulated BTs of MonoRTM.
It should be noted that the overall fitting coefficients varied somewhat among channels,
which was related to the absorption lines of each channel. For the water vapor and oxygen
absorption peak regions in the K and V bands, the corresponding detection heights were
low and the fitting coefficients were high, especially for the 54.94–58 GHz channel in the
V band. However, for the absorption valley area, due to the high detection height, weak
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energy signal, and low R2, the difference and fluctuation of measured and simulated BTs
were large. Overall, the observed BT performance of the temperature channels was better
than that of the humidity channels in terms of the bias, SD, and R2 of the observed BTs.
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3.3. Characteristics Analysis No-Precipitating Cloudy Brightness Temperature Data

For the performance analysis during non-precipitation conditions, there were 1046 BTs
for each channel during no-precipitating cloudy conditions. The time series plots of OMB
are shown in Figure 4. It can be seen that the range of OMB for each channel during
no-precipitating cloudy conditions was significantly smaller as compared with the all-sky
BT (Figure 1), but most of the channels had a larger range of OMB as compared with the
clear-sky BT (Figure 2). The OMB value ranges of various channels were slightly different.
All channels, except for 56.66–58 GHz, had obvious positive biases, and most of their
OMB values were concentrated within ±10 K. The OMB values of 56.66–58 GHz channels
were concentrated within ±1 K. In addition, consistent with the clear sky, there was some
seasonal variation in the OMB of the near-surface temperature sounding channels during
cloudy conditions.
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In order to accurately analyze discrepancies between the observed BT of MWR RPG
and the simulated BT of MonoRTM during no-precipitating cloudy conditions, the bias,
SD, linear fit equation, and R2 of the observed BTs and the simulated BTs during cloudy
conditions were calculated and scatter plots were made for each channel (Figure 5). It can
be seen that, except for the 56.66–58 GHz channels, the scatter distributions of the other
channels were more discrete and all of them had positive biases. Furthermore, the bias and
SD were larger than the values during clear-sky conditions, where the largest bias and SD
occurring at the 51.26 GHz channel were 5.2994 K and 7.3139 K, respectively. In addition,
the R2 values of all channels were above 0.9. Especially, the R2 values of the 54.94–58 GHz
channels reached one. As compared with the clear-sky conditions, the R2 values of some
channels were slightly lower but still remained at a high level. Overall, the systematic bias
of the BTs observed by MWR RPG during the no-precipitating cloud was larger and the
correlation with the simulated BTs was lower compared with clear-sky.
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Figure 5. Scatter diagrams of observed BTs and simulated BTs in the no-precipitating cloudy
weather (the red dashed lines are fitting straight lines). (a) 22.24 GHz, (b) 23.04 GHz, (c) 23.84 GHz,
(d) 25.44 GHz, (e) 26.24 GHz, (f) 27.84 GHz, (g) 31.40 GHz, (h) 51.26 GHz, (i) 52.28 GHz, (j) 53.86 GHz,
(k) 54.94 GHz, (l) 56.66 GHz, (m) 57.30 GHz, and (n) 58.00 GHz.
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4. Effect of Cloud Liquid Water on Brightness Temperature Simulation

The radiative transfer model includes a parameterization of CLW absorption that
can be selectively used for non-scattering microwave simulations. The implementation of
calculating the optical depths based on the input CLW mass mixing ratio follows Turner,
Kneifel, and Cadeddu [24]. For the no-precipitating cloudy conditions, since there are large
differences between the observed BT of the MWR RPG and the simulated BT of MonoRTM,
our work compared these two types of BT with the addition of CLW. Figure 6 shows the
sequences of the differences between the observed and simulated BTs (with CLW). Except
for the 54.94–58 GHz channel, Figure 6 shows that the positive biases of OMBs decreased,
and OMBs with CLW were closer to 0 than OMBs without CLW. It shows that adding
liquid water information could significantly reduce the biases caused by cloud influence. In
addition, the addition of CLW information could make the seasonal variation of the OMB
of the near-surface temperature sounding channels more obvious.
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weather (the red dashed lines are the dates of MWR calibration).

In the presence of clouds, to accurately tell the differences between the observed BT
of MWR RPG and the simulated BT with the addition of CLW information, the bias, SD,
linear fit equation, and R2 between the observed and the simulated BTs were calculated,
and scatter plots were made for each channel (Figure 7). By comparing Figure 7 with
Figure 5, both bias and SD for the 25.44–52.28 GHz channel were reduced after adding CLW
information, the systematic bias was reduced, and the dispersion was weakened as well.
The largest bias and SD at the 51.26 GHz channel were 3.2023 K and 5.8595 K, respectively.
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For both the 31.4 GHz and 51.26 GHz channels, the biases of the observed BT and the
simulated BT were reduced by about 2 K and their SDs were reduced by more than 1 K
after adding CLW to the simulated BT. Moreover, the R2 of each channel was above 0.95,
indicating better matches between the observed and the simulated BTs with the addition of
CLW information. Overall, the addition of CLW information could reduce the bias between
the observed and the simulated BTs of MWR RPG during the no-precipitating cloud, and
the correlation between the two was higher.
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It should be noted that the outlier data points were removed using the pauta criterion
in the scatter plot of no-precipitating cloudy weather conditions. It was found that the
near-surface relative humidity of the sounding data at the time of removal was mostly
above 90%, where fog might have occurred. This feature might provide some references for
subsequent quality control before the application of MWR RPG products.

5. Accuracy of Temperature Retrieval Profiles and Performance of Temperature
Inversion Retrieval

The performance of MWR RPG temperature profile retrieval products during various
weather conditions was studied using sounding data. The pre-processed sample data
were divided into three categories: clear-sky, no-precipitating cloud, and precipitating
cloud, and their numbers were 302, 1038 and 189, respectively. The statistical analysis
and the temperature inversion retrieval cases analysis were performed during various
weather conditions.

5.1. Accuracy of Temperature Retrieval Profiles

Figure 8 shows the Bias and RMSE of temperature profiles with heights, respectively,
for the clear-sky, no-precipitating cloud, and precipitating cloud. As can be seen from
Figure 8, the trends of Bias and RMSE of the temperature profiles were consistent for the
three weather conditions. Among them, the atmospheric temperature profiles retrieved
by MWR RPG with precipitation had obvious positive biases at all heights, and RMSE
values were all within 4 K. The biases of the other two atmospheric temperature profiles
were around zero below 2 km height, and the RMSEs were below 2 K when the heights
were below 4 km. In addition, the overall RMSE of the temperature profiles for all three
weather conditions increased with height, so the retrieval accuracy of the MWR decreased
with height. From the statistical analysis, the MWR had almost the same temperature
profile retrieval accuracy during clear-sky and no-precipitating cloudy conditions, but the
retrieval accuracy decreased significantly during precipitation. Therefore, the temperature
profiles of MWR RPG retrieval, except for precipitation conditions, could be applied to the
assimilation system with high reliability.
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5.2. Performance of the Temperature Inversion Retrieval

In the retrieval of temperature profiles, the temperature inversion characteristic is
not easy to be retrieved. The study selected temperature profiles with temperature in-
versions during clear-sky and no-precipitating cloudy weather conditions to explore the
performance of MWR RPG temperature retrievals. Figure 9 shows the comparison of the
atmospheric temperature profiles of MWR RPG and RAOB for three cases of clear-sky
conditions (Figure 9a–c) and no-precipitating cloudy conditions (Figure 9d–f). In Figure 9,
the correlation coefficients (r) between the temperature profiles from the RPG retrieval and
RAOB data were above 0.9, which indicated good agreements overall between these two
profiles for these studied time periods. MWR RPG retrieval of the temperature inversions
below 1 km (Figure 9a,e), had smoothed out amplitude and sharpness. When the atmo-
spheric layer where the temperature inversion occurred was shallow (Figure 9b), or there
was a double-layer temperature inversion (Figure 9d), the temperature inversions could
not be well retrieved by MWR RPG. MWR RPG had limited retrieval ability for temper-
ature inversion characteristics above 1 km, which even increased the error of retrieval of
temperatures in the middle and upper troposphere (Figure 9c,f). Overall, MWR RPG had
the potential ability to retrieve the temperature inversions in the boundary layer, which has
important application value in fog and air pollution monitoring.
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2019 (e), and 1200 UTC on 18 September 2019 (f).
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6. Conclusions

This study compared the 2017–2019 observations of RPG-HATPRO-G5 (the latest
generation of ground-based multi-channel MWR installed in Shanghai, China) with the
RAOB. The goal of this study was twofold. First of all, we compared the simulated BT of
RAOB and the observed BT of MWR RPG during all-sky conditions, including precipitation
times, followed by comparing them during non-precipitation conditions. In addition,
when analyzing the observed BT performance during no-precipitating cloudy conditions,
the impact of adding CLW information to BT simulation on evaluating BT performance
was analyzed. Secondly, the accuracy of MWR RPG temperature profiles during various
weather conditions was studied using RAOB data. For this purpose, this study carried out
statistical analysis and temperature inversion retrieval cases analysis.

There was no significant change in the BT of each channel before and after the MWR
calibration, so MWR RPG can operate stably. The detection performance of the near-
surface temperature detection channels (56.66–58 GHz) was excellent compared with other
channels, but the long-term time series analysis of these channels could reveal the seasonal
variation bias characteristics. In addition, MWR RPG observed BTs were significantly
higher during precipitation conditions. The simulated BTs and the observed BTs of MWR
RPG matched well when clear-sky conditions were taken into account, but they did not
match well in conditions of no-precipitating cloud. With the CLW added into the simulated
BTs the discrepancies were reduced, as compared to RPG observed BTs, making both
observed and simulated BTs more consistent. Specifically, by adding CLW information to
the simulated BT, the bias and the SD of the observed BT and the simulated BT reduced
and the R2 value improved.

Regarding the retrieved temperature profiles from MWR RPG observed BT data, the
statistical analysis showed that the performances for the clear-sky and no-precipitation
conditions were better, as compared with RAOB, while the performance was worse for
the case of precipitating cloudy conditions. The temperature profiles of the MWR RPG
retrieval had the same accuracy of RMSEs with heights during both clear-sky and cloudy-
sky conditions, where the RMSEs were below 2 K when the heights were below 4 km. The
r between the temperature profiles from the MWR RPG retrievals and the RAOB profiles
were above 0.9. Moreover, the MWR RPG can retrieve temperature inversions, which are
below 1km, single layer and not shallow.

The ground-based MWR can provide BT observation data with high temporal resolu-
tion throughout the day as well as atmospheric profile retrieval products. Therefore, it plays
an important role in monitoring the occurrence and development of important weather
processes. This study can lay a certain foundation for the retrieval and the assimilation
applications of ground-based MWR observations.
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