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Abstract: Ozone (O3) pollution is one of the predominant environmental problems, and exposure to
high O3 concentrations has a significant negative influence on both human health and ecosystems.
Therefore, it is essential to analyze spatio-temporal characteristics of O3 distribution and to evaluate
O3 exposure levels. In this study, O3 monitoring and satellite data were used to estimate O3 daily,
seasonal and one-year exposure levels based on the Bayesian maximum entropy (BME) model
with a spatial resolution of 1 km × 1 km in the Beijing-Tianjin-Hebei (BTH) region, China. Leave-
one-out cross-validation (LOOCV) results showed that R2 for daily and one-year exposure levels
were 0.81 and 0.69, respectively, and the corresponding values for RMSE were 19.58 µg/m3 and
4.40 µg/m3, respectively. The simulation results showed that the heavily polluted areas included
Tianjin, Cangzhou, Hengshui, Xingtai, and Handan, while the clean areas were mainly located in
Chengde, Qinhuangdao, Baoding, and Zhangjiakou. O3 pollution in summer was the most severe
with an average concentration of 134.5 µg/m3. In summer, O3 concentrations in 87.7% of the grids
were more than 100 µg/m3. In contrast, winter was the cleanest season in the BTH region, with an
average concentration of 51.1 µg/m3.

Keywords: O3; OMI; Bayesian maximum entropy; exposure level; BTH region

1. Introduction

Ozone (O3) is a secondary pollutant generated during photochemical reactions of
precursors such as nitrogen oxides (NOx) and volatile organic compounds (VOCs) emitted
by human activities [1]. High concentrations of ground-level O3 may affect the ecological
environment, public health, as well as the growth of plants and animals. O3 absorbs solar
ultraviolet radiation, leading to global warming and climate change, and then affects the bal-
ance of the ecological environment [2]. Epidemiological research has proved that exposure
to high O3 concentration may increase the risk of death from cardiovascular, respiratory,
and nervous system diseases. Cardiovascular diseases caused by O3 exposure mainly in-
clude arrhythmias, vascular endothelial dysfunction, brachial artery vasoconstriction, and
hypertension [3–5]. Respiratory diseases caused by O3 exposure are mainly allergic rhinitis,
bronchitis, asthma, and lung function decrements [6–9]. Additionally, O3 exposure has been
associated with nervous system diseases, such as memory loss and mental abnormalities,
eventually leading to dementias [10–12]. Liu et al. [13] estimated the premature deaths
of chronic obstructive pulmonary disease (COPD) in 2015 caused by O3 exposure were
between 56,000 and 80,000 cases. In 2015, premature deaths in China associated with cardio-
vascular diseases owing to O3 long-term exposure were approximately 129,000 cases [14].
For animals and plants, increased O3 pollution can lead to reduced biodiversity and crop
production, as well as plant leaves necrosis and shedding [15,16]. The National Ambient
Air Quality Standard (NAAQS) has defined threshold values (100 µg/m3 and 160 µg/m3,
respectively for Class I and Class II) for daily maximum 8-h average O3 concentration. The
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monitoring results released by the Ministry of Ecology and Environment of China indicated
that the national mean O3 concentration in China in 2020 was 138 µg/m3, which decreased
by 8.6% compared with 2018. But this level still exceeded 38% above the Class I standard
set by NAAQS [17,18]. Therefore, O3 is still the main pollutant affecting the ambient air
quality in China.

Several methods are used to simulate O3 exposure levels, including spatial interpola-
tion of monitoring data, remote sensing image retrieval, chemical transport models (CTMs),
and other statistical models. Although O3 concentrations are regularly monitored, the
monitoring sites are relatively dense in eastern China and sparse in western China [19].
CTMs predict atmospheric pollutant concentrations based on emission inventories and
meteorological conditions. However, it is difficult to obtain emission inventories with high
spatio-temporal resolution [20–22]. The land use regression (LUR) model is an efficient
method that estimates pollutant exposure levels and predicts the pollutant concentrations
at unmeasured sites with a high spatial resolution based on predictor variables, such as
land use, topography, population, and traffic [23]. Therefore, the LUR model can be used
to simulate the spatial variations of pollutants at fine spatial resolution. However, land
use and topography have few variances in a short period, making it difficult to simulate
short-term exposure levels of pollutants [24–27]. Machine learning algorithms, for example,
random forest models and neural network models, provide nonlinear mapping tools for
large datasets. However, the accuracy of the model may be reduced due to the over-fitting
effect [28,29]. Multivariate adaptive regression splines (MARS) are advantageous in ex-
ploring a large amount of complex nonlinear relationships and detecting their interactions
quickly, but it takes a very long time [30,31]. M5 model tree (M5MT) efficiently deals
with datasets that have different attributes, but when there are fewer training points, a
smoothing process is required to make up for the lack of continuity in the adjacent linear
models [32,33]. The dynamic evolutionary neuro-fuzzy inference system (DENFIS) is suit-
able for both online and offline learning, but the main drawback is its black-box structure,
which does not provide any formulas [34]. In addition, interpolation methods can be used
to interpolate pollutant concentrations. However, the traditional interpolation methods
require normally distributed data and may ignore prior information [35,36]. Satellite data
could be used for large spatial scale and long-term observation. Zhang and Zhang [37] dis-
cussed the spatio-temporal distribution characteristics of O3 concentration in China based
on Ozone Monitoring Instrument (OMI) retrievals and found good consistency between
satellite and surface observations.

The Bayesian maximum entropy (BME) model is a modern geostatistical method
that improves prediction accuracy by combining information from various sources [38–42].
Prior information is an important constituent in BME. Using prior information could greatly
save research time and the cost of data acquisition and analysis [43]. BME model consists of
a general knowledge base (G-KB) and a site-specific knowledge base (S-KB). G-KB contains
physical laws and scientific theories such as the BME covariance function, while S-KB
contains hard data (HD) and soft data (SD). HD is relatively accurate and complete, such
as the monitoring data. However, SD is relatively incomplete and may have various forms
such as interval value, Gaussian distribution, and uniform distribution [44–46]. In addition,
the analysis of BME has two objectives, one is to maximize the information of general
knowledge, and another is to maximize the probability of specific knowledge [47]. Bogaert
et al. [48] simulated monthly O3 concentration in California over 15 years based on the BME
model, and the results were consistent with California’s climate characteristics. De Nazelle
et al. [49] predicted O3 concentration in North Carolina using a BME framework, combined
with air pollution from different information sources and found that the simulated results
by the BME were more accurate than the values predicted by the spatial interpolation
method. Chen et al. [50] simulated O3 exposure level based on a hybrid LUR-BME model
in mainland China, then they compared the LUR-BME performance with the ordinary
spatio-temporal kriging analysis. A hybrid LUR-BME model showed better performance
than the ordinary spatio-temporal kriging model at all time points. Mei et al. [51] developed
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a hybrid model which combined a generalized linear model with a BME model to predict
the ground-level O3 concentration. The hybrid model had better performance than the
statistical models when predicting the high-resolution O3 concentration.

In this study, we combined O3 monitoring data with satellite data to estimate daily,
seasonal and one-year exposure levels of O3 at a higher spatio-temporal resolution in
the BTH region, China in 2020 based on the BME model. Additionally, we evaluated the
accuracy of simulation results for O3 exposure levels.

2. Materials and Methods
2.1. Study Area

The BTH region is located in the northern part of China (113◦04′–119◦53′ E,
36◦01′–42◦37′ N), including Beijing, Tianjin, along with Hebei Province (Figure 1). The
topography of the northwestern BTH region is primarily mountains and plateaus, while the
southeastern part is mainly plain. The altitude ranges from −50 m to 2835 m. The climate
is a typical warm temperate continental monsoon, with an annual mean temperature of
about 15 °C and annual mean precipitation of about 560 mm. The population density is
high and O3 pollution is relatively serious. In addition, there are enough O3 concentration
monitoring stations to establish the BME model, and the stations are distributed in each
city in the BTH region. Therefore, the BTH region was chosen as the study area.
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2.2. O3 Monitoring Data

The hourly O3 monitoring data from 1 January 2020 to 31 December 2020 were down-
loaded from the air pollution monitoring network, which belongs to China National
Environmental Monitoring Centre (CNEMC) (https://air.cnemc.cn:18007/ (accessed on
27 July 2022)). Daily maximum 8-h average O3 concentrations were calculated when there
are at least 20 maximum 8-h O3 concentration values for one day (see the Supplementary
Materials). There were 86 monitoring sites in the BTH region in 2020. Figure 1 shows the
topography and distribution of O3 monitoring sites.

2.3. O3 Satellite Data

OMI aboard NASA’s Earth Observing System’s (EOS) Aura satellite collects informa-
tion by observing backscattered radiation in the earth’s atmosphere and surface. In this

https://air.cnemc.cn:18007/
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study, O3 satellite data were obtained from OMI. Level 0, Level 1B, Level 2, and Level 3
are the four processing levels of OMI data products. The spatial resolution of OMI is
13 × 24 km. It can measure O3 vertical profile, O3 vertical column concentration, aerosols,
clouds, and other gas concentrations [52].

The level 2 O3 profile product used in this study has a total of 18 layers in the vertical
altitude of the atmosphere from the ground to 0.3 hPa (about 60 km altitude). The ground-
level O3 concentration values could be obtained at the lowest layer (from the surface to an
altitude of 3 km). The concentration unit for each O3 column is Dobson Unit (DU), which
could be converted to µg/m3 using the following formula [53]:

Vi = 1.2672Ni/∆Pi × 2× 1000 (1)

where Vi is the O3 column concentration of each layer (DU), ∆Pi is the pressure difference
between the top and bottom layers (hPa), and Vi is the ground-level O3 concentration which
is measured in µg/m3.

2.4. BME Analysis

Daily, seasonal, and one-year exposure levels of O3 were simulated based on the
BME model. BME analysis was based on MATLAB R2012a and Spatio-temporal Epis-
temic Knowledge Synthesis Graphical User Interface (SEKS-GUI) software library. The
Exponential model, Gaussian model, Cosine Hole model, Sine Hole model, Mexican Hat
model, Nugget model, and Spherical model are the seven covariance functions that are
available in the BME model. The spatio-temporal variations of O3 residual concentration
were characterized by space-time random field (S/TRF). Z represents a random variable of
S/TRF, and Z(p) = Z(s,t), where p = (s,t) represents the space/time coordinate, and s and t
are the spatial and time position, respectively. The generation of HD and SD in this study
were based on O3 residual concentrations, which were calculated as follows:

HD(s,t) = VO(s,t) − OMI(s,t) (2)

SD(s,t) = NO(s,t) − OMI(s,t) (3)

Z(s,t) = OMI(s,t) + ZBME(s,t) (4)

where VO(s,t) is the O3 monitoring data that meets valid data criteria. According to NAAQS,
a daily maximum 8-h average O3 concentration is valid if there are at least 20 maximum
8-h O3 concentration values for one day. Annual maximum 8-h average O3 concentration is
considered valid if at least 324 days in a year are available [54]. NO(s,t) is the O3 monitoring
data that does not meet valid data criteria and is the distribution of the maximum daily 8-h
average O3 concentration at the monitoring site described by a Gaussian probability density
function (PDF). OMI(s,t) is the daily O3 satellite data, which is resampled to 1 km × 1 km
grid cells by Arcgis 10.3. Since the coordinate points of O3 satellite data and monitoring
data in this study were not exactly consistent, the coordinate point of O3 satellite data
which was nearest to the monitoring site was selected as the corresponding point of the
O3 monitoring data to calculate O3 residual concentrations. Z(s,t) is the estimated result
of daily and annual maximum 8-h average O3 concentration at position s and time t, and
ZBME(s,t) is O3 residual concentration estimated based on BME at position s and time t.

The analysis of the BME model consists of three main stages, which are the prior stage,
meta-prior stage, and posterior stage, respectively.

Prior stage The maximum entropy principle is used to obtain the prior probability den-
sity function (PDF) fG which contains the most information about G-KB and is consistent
with the actual situation. The G-KB consists of the mean trend function mx(p) = E[X(p)],
and the covariance function cx(p, p′) = E[X(p)−mx(p)][(X(p′)−mx(p′)]. fG is obtained
by Equation (5).

fG
(
χmap

)
= eµ0+µT g (5)
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where χmap = [χdata, χk], χdata =
[
χhard, χso f t

]
. χhard =

[
χ1 . . . χmh

]T and χso f t =[
χmh+1 . . . χm

]T represent the HD values at their mapping points pn, n = 1, . . . , mh and SD
values at the mapping points pn, n = mh+1, . . . , m. χk is the simulated value at position vk.
µ0 is the constant term of normalized constraint. µ is the vector of a coefficient related to g,
and g is mathematically a vector of the variable G-KB.

Meta-prior stage: The most appropriate expression form is selected for the S-KB, includ-
ing HD and SD. In this study, O3 residual concentrations were used to generate HD and SD.
HD was calculated based on valid O3 monitoring data and satellite data. SD was calculated
by using O3 monitoring data which did not meet the criteria and satellite data.

Posterior stage: The prior PDF is transformed into a posterior PDF, which provides the
basis for analysis and prediction. The posterior PDF fK is calculated based on Bayesian con-
ditionalization rules by Equation (6). Then, Equation (7) is used to calculate the simulated
mean x̂k,mean of each simulated point.

fK(χk)= A−1
∫

fG(χk)dχso f t (6)

χ̂k,mean=
∫

χk fK(χk)dχk (7)

where A is the normalization parameter.

2.5. Validation

Leave-one-out cross-validation (LOOCV) and leave-city-out validation were used to
evaluate the predictive accuracy of BME. O3 monitoring data from one monitoring site
was selected as a testing set, and data of the remaining monitoring sites combined with
satellite data were incorporated into BME in the form of residuals as a training set to
train the model. Repeating this process until the O3 monitoring data of all the monitoring
sites were used once. For leave-city-out validation, O3 monitoring data from one city was
selected as a testing set, and data from the remaining cities were selected as a training set
to train the model. Repeating this process until the O3 monitoring data of all the cities were
used once. The coefficient of determination (R2), the root mean square error (RMSE), the
mean absolute error (MAE), the mean prediction error (MPE), and the mean error (ME)
between the observed and simulated O3 concentrations were used to evaluate the model
performance. R2 can clearly indicate the model performance, and its value should be close
to one for accurate estimation [55]. RMSE, MAE, MPE, and ME can reflect the deviation
between the observed and simulated O3 concentrations, and their values should be as small
as possible.

2.6. Uncertainty Analysis of O3 Concentration Estimations

The mean absolute percentage error (MAPE) between the observed and simulated
O3 concentrations was used to quantify the uncertainty of the output results, and the less
variation of its value, the more stable the output. It was calculated from Equation (8).

MAPE =
1
n ∑n

i=1
|yi − ŷi|

yi
× 100% (8)

where yi is the observed O3 concentration, ŷi is the simulated O3 concentration, and n is
the number of samples for each monitoring site.

3. Results
3.1. Descriptive Statistics

In 2020, the hourly, daily, seasonal, and annual variation characteristics of observed O3
concentrations in the BTH region were shown in Figure 2. Hourly observed O3 concentra-
tions were low at night. The levels of O3 gradually increased after 8:00 a.m. (33.8 µg/m3),
peaked at 4:00 p.m. (96.7 µg/m3), and then gradually decreased. The variation curve of the
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observed daily maximum 8-h average O3 concentration presented an inverted “V” shape.
The highest daily O3 concentration was recorded on 7 June, with a value of 215.9 µg/m3,
while the lowest O3 concentration was 17.2 µg/m3 on 5 January. The observed O3 concen-
trations were the highest in summer and the lowest in winter, ranging from 49.9 µg/m3

to 140.5 µg/m3. Among 13 cities, the lowest observed annual maximum 8-h average O3
concentration was concentrated in Chengde (82.7 µg/m3), while the highest observed O3
concentration was presented in Hengshui (98.4 µg/m3). The O3 concentration in other cities
such as Cangzhou and Handan was also higher, which was 96.9 µg/m3 and 94.5 µg/m3,
respectively.
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3.2. Correlation Analysis between O3 Monitoring and Satellite Data

The correlation between the daily concentrations of O3 monitoring and satellite data is
shown in Figure 3. It could be seen that there was a significant positive correlation between
the monitoring and satellite data, and Pearson’s correlation coefficient (R) was 0.73. The
value for MAE was 30.29 µg/m3, and it reflected the actual situation of the errors between
monitoring data and satellite data.
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3.3. O3 Daily Exposure
3.3.1. Covariance Model Fitting

Figure 4 shows the covariance function of O3 daily exposure, which provides the
spatio-temporal variation information of the O3 residual concentration. The Exponential
model for the spatial component and the Gaussian model for the temporal component fitted
the best. The fitting effect was better at the position close to the origin, but with the increase
in distance and time, the fitting effect gradually decreased. O3 residual concentrations
estimated based on the BME model were obtained by using these covariance models.
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3.3.2. Validation Results

Figure 5 and Table 1 show the comparison between observed and simulated daily
maximum 8-h average O3 concentration in the BTH region based on LOOCV and leave-city-
out validation. The values of performance metrics, including R2, RMSE, MAE, MPE, and
ME are listed in Table 1. The LOOCV R2 of the simulation results for daily exposure level
was 0.81, and the corresponding values for RMSE, MAE, MPE, and ME were 19.58, 14.38,
−0.031, and −1.682 µg/m3, respectively. The leave-city-out validation R2 of the simulation
results for daily exposure level was 0.83, and the corresponding value for RMSE, MAE,
MPE, and ME were 17.12, 12.48, −0.023, and −2.685 µg/m3, respectively.
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Table 1. LOOCV and leave-city-out validation results of BME estimations of daily O3 concentrations.

Validation Method R2 RMSE MAE MPE ME

Leave-one-out 0.81 19.58 14.38 −0.031 −1.682
Leave-city-out 0.83 17.12 12.48 −0.023 −2.685

3.3.3. O3 Daily Exposure Level

Taking the first day of each month as an example, the spatial distributions of the daily
maximum 8-h average O3 concentration in the BTH region in 2020 were shown in Figure 6.
The lowest simulated daily maximum 8-h average O3 concentration value was on 1 January
(21.2 µg/m3) and the highest value was obtained on 7 June (206.3 µg/m3). O3 concentration
values in Handan, Hengshui, Cangzhou, and Xingtai were at high levels, while the O3
concentration values in Chengde and Shijiazhuang were low.
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3.4. O3 One-Year Exposure
3.4.1. Covariance Model Fitting

Figure 7 shows the covariance function of O3 one-year exposure, which provides the
spatio-temporal variation information of the O3 residual concentration. The covariance
model of BME was composed of a nested model consisting of an Exponential model and a
Sine Hole model.
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3.4.2. Validation Results

Figure 8 and Table 2 show the comparison between observed and simulated annual
maximum 8-h average O3 concentration in the BTH region based on LOOCV and leave-city-
out validation. The values of performance metrics are listed in Table 2. The LOOCV R2 of the
simulation results for the one-year exposure level was 0.69, and the corresponding values



Atmosphere 2022, 13, 1568 13 of 21

for RMSE, MAE, MPE, and ME were 4.40, 2.60, −0.005, and −0.505 µg/m3, respectively.
The leave-city-out validation R2 of the simulation results for the one-year exposure level
was 0.61, and the corresponding values for RMSE, MAE, MPE, and ME were 2.54, 2.14,
−0.002, and −0.191 µg/m3, respectively. The LOOCV R2 value for the BME model without
satellite data was 0.59, and the corresponding values for RMSE, MAE, MPE, and ME were
4.56, 2.83, −0.004, and −0.403 µg/m3, respectively. Therefore, the results simulated by the
BME model with satellite data performed better than those without satellite data.
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Table 2. LOOCV and leave-city-out validation results of BME estimations of annual O3 concentrations.

Validation Method R2 RMSE MAE MPE ME

Leave-one-out 0.69 4.40 2.60 −0.005 −0.505
Leave-city-out 0.61 2.54 2.14 −0.002 −0.191

3.4.3. O3 One-Year Exposure Level

In 2020, the simulated annual maximum 8-h average O3 concentrations for each grid
cell varied from 79.5 µg/m3 to 97.5 µg/m3 in the BTH region. Figure 9 shows O3 one-year
exposure level based on the BME model. High O3 concentrations were presented in the
southeastern BTH region while low O3 concentrations were mainly concentrated in the
northwest. The high-value center of O3 concentration was around the southeast of Hebei
Province, especially Cangzhou and Hengshui. The O3 concentration was also higher in the
northeast of Handan, Xingtai, and the east of Tianjin. The lowest O3 concentration was in
Chengde. Other cities including Qinhuangdao, Baoding, and Zhangjiakou also had low
O3 concentrations.

Figure 10 presents the seasonal distributions of O3 concentration in 2020. The high-
est average O3 concentration value was in summer (134.5 µg/m3), followed by spring
(100.9 µg/m3) and autumn (65.3 µg/m3), and the lowest average O3 concentration value
was in winter (51.1 µg/m3). Generally, O3 concentrations in the southeastern part of the
BTH region were significantly higher than those in the northwestern part of the BTH region.
Tianjin, Cangzhou, Hengshui, Xingtai, and Handan had always been the relatively high
concentration areas in four seasons. Compared with other cities, the O3 concentration in
Chengde was the lowest in all the seasons. For Baoding and Shijiazhuang, the O3 concen-
tration in summer was high and then decreased rapidly in winter. There were significant
seasonal and regional differences in O3 concentration in the BTH region. The simulation
results of O3 concentration in this study were similar to the published studies [56,57].
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3.5. Uncertainty Analysis and Comparisons with NAAQS

Based on Equation (8), the uncertainty analysis of the predicted daily maximum 8-h
average O3 concentrations was quantified with values ranging from 15% to 44%. Figure 11
shows the percentages of grids with the daily maximum 8-h average O3 concentrations
in the BTH region. As shown in the figure, O3 concentrations in 34.7% of grid-days were
more than 100 µg/m3, and 6.8% of these grid-days had serious ozone pollution with O3
concentrations of more than 160 µg/m3 in 2020. In January, February, March, October,
November, and December, grid-days with O3 concentrations below 160 µg/m3 and above
100 µg/m3 accounted for less than 7% of the total grid-days, and the highest percentage was
in March, with a value of 6.2%. From April to September, daily maximum 8-h average O3
concentrations were higher than 100 µg/m3 on most grid-days. For seasons, the percentage
of grids with daily maximum 8-h average O3 concentrations below 100 µg/m3 was 99.2%
in winter, while in summer, daily maximum 8-h average O3 concentrations in 87.7% of the
grids were higher than 100 µg/m3.
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4. Discussion

Liu et al. [58] estimated O3 concentration in China from 2005 to 2017 by a machine
learning model, which was based on the eXtreme Gradient Boosting (XGBoost) algorithm,
with R2 ranging from 0.61 to 0.78. Qian et al. [59] proposed a hybrid model that integrated
multiple variables to estimate ground-level O3 concentration in the continental United
States, and the correlation coefficient between the real and simulated values of O3 was
0.76. Lyu et al. [60] predicted daily O3 concentration in the BTH region based on Decision
tree (DT) regression, with an R2 value of 0.73. Compared with other research, the BME
model used in this study achieved high prediction accuracy in estimating O3 concentration,
and LOOCV R2 for the daily and one-year exposure levels were 0.81 and 0.69, respectively.
According to the results of estimating O3 concentrations in the BTH region based on an
artificial neural network (R2 = 0.8299) and Stepwise regression analysis (R2 = 0.7324) in our
research group, the R2 between observed O3 concentration and O3 concentration simulated
by the BME model was comparable to the results simulated by the artificial neural network
and were higher than the results simulated by the stepwise regression analysis. Huang
et al. [61] predicted the annual average O3 concentration in Nanjing based on the LUR
model. Fan et al. [62] proposed a spatio-temporal geostatistical kriging interpolation to
simulate average monthly O3 concentration based on the composite space/time mean
trend (CSTM) model. Compared to these studies, the temporal resolutions of simulated
O3 exposure levels in our study were daily, seasonal, and annually, respectively. Zhan
et al. [63] predicted the daily maximum 8-h average O3 concentration in mainland China at
a resolution of 0.1◦ × 0.1◦ based on the random forest model. Zhang et al. [64] used the
ordinary kriging (OK) and spatial-temporal kriging (STK) models to simulate the daily
maximum 8-h average O3 concentration with a spatial resolution of 2 km × 2 km in the
Pearl River Delta (PRD) region, China. However, in this study, we attempted to predict O3
concentration with a high spatial resolution of 1 km × 1 km.

The empirical covariances of O3 exposure reflected the distribution and variation of
O3 concentrations in different spatio-temporal coordinates. In this study, the covariance of
each month was different, and some months appeared to have poor fitting performance,
mainly due to the spatio-temporal dependence of O3 concentrations. Lower covariance
values represented greater variability in O3 concentrations and weaker spatio-temporal de-
pendence of O3 concentrations, which increased the difficulty of capturing spatio-temporal
features and made the O3 concentration estimations less accurate.

The monitoring data offers the most accurate O3 concentration information, while the
satellite data has a wider coverage and can provide more comprehensive information for
the estimation of O3 concentrations, and we try to combine the two data to take advantage
of their strengths, which improves the accuracy of the simulations. In this study, the BME
model with satellite data is effective in improving the accuracy of the O3 exposure level
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simulations with a 14% increase in the value of LOOCV R2 compared to the BME model
without satellite data. We should combine monitoring data with multiple satellite data
which has a higher spatio-temporal resolution to simulate O3 exposure levels in the future.

We used LOOCV and leave-city-out validation to evaluate the performance of the BME
model in estimating daily and annual maximum 8-h average O3 concentrations. The results
showed that for daily exposure levels, the LOOCV R2 was 0.81, while the corresponding
value based on leave-city-out validation was 0.83, which was slightly higher than the value
based on LOOCV. For the one-year exposure level, the LOOCV R2 was higher than the
corresponding value based on the leave-city-out validation. The LOOCV was probably
suitable for estimating predictions for representative points near monitors, but leave-city-
out validation was more useful to evaluate the performance of the model when predicting
unsampled sites which were far from monitors. In this study, the number of monitoring
sites that met the valid data criteria varied on each day, resulting in different sizes of
training sets for each day to train the model based on LOOCV and leave-city-out validation,
respectively, which might lead to a slightly higher value for R2 based on leave-city-out
validation than that based on LOOCV.

In terms of spatial distribution, O3 concentrations in the southeastern part of the BTH
region were high throughout the year, while O3 concentrations were low in the northwest-
ern part of the BTH region. The high value was mainly located in the southeast of the
Hebei Province, especially in Cangzhou, Hengshui, Handan, Xingtai, and Tianjin. The
pillar industries in these cities are mainly heavy industries, which produced large amounts
of precursors such as VOCs and NOx in the atmosphere that may ultimately affect O3
concentration [65,66]. Compared with 2019, the number of civil vehicles owned in Beijing,
Tianjin, and Hebei in 2020 increased by 3.2%, 6.9%, and 5.8%, respectively [67–69]. The
photochemical reaction of NOx emitted by vehicles would also increase the concentration
of O3. The area with the lowest O3 concentration was located in Chengde. Chengde priori-
tized the development of tourism as the first leading industry and gradually adjusted the
industrial structure of heavy and chemical industries, so the pollutant emissions gradually
decreased, which might explain the reason why O3 concentration was low in most areas
of Chengde.

The diurnal variation of O3 concentration was closely related to the photochemical
reaction. The photochemical reaction was weak at night, so O3 concentration gradually
decreased, reaching the lowest value at 8:00 a.m. The increase in solar radiation and tem-
perature intensified the photochemical reaction, and O3 concentration reached the highest
value at 4:00 p.m., then gradually decreased. The seasonal variation of O3 concentration
was significantly associated with meteorological factors such as wind speed, temperature,
relative humidity, as well as solar radiation. Several studies showed that O3 concentration
was positively associated with wind speed and temperature and was negatively associated
with relative humidity [70–72]. In spring, a dry climate, less precipitation, and strong solar
radiation were conducive to O3 generation. Meanwhile, wind speed reflected the turbulent
movement of the boundary layer. Increased wind speed accelerates atmospheric mixing
and promotes the exchange between the air with higher O3 concentration in the upper
boundary layer and the air with lower O3 concentration in the lower layer. As a result, the
higher O3 concentration air might intrude from the upper boundary layer to the lower layer,
thus increasing the ground-level O3 concentration [73]. In summer, intense solar radiation
and sustained high temperature led to increased photochemical reactions produced by
NOx and VOCs in the atmosphere, and relative humidity was low, which exacerbated O3
pollution [74,75]. The atmosphere was relatively stable in autumn and winter, which was
not conducive to the dilution, diffusion, and local transport of pollutants, thus inhibiting O3
generation [76]. At the same time, the solar radiation was weak, and the temperature was
low, which was not conducive to photochemical reactions, so O3 concentration was low.

There are a few limitations in our study. Firstly, the low spatial resolution of the OMI
O3 profile may affect the accuracy of the model prediction. With the gradual development
of satellites, satellite data with more details and higher resolutions could be used to get
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more accurate results. Secondly, we used one model to estimate the O3 exposure level. In
future studies, multiple models could be combined and compared to estimate pollutant
exposure levels with higher resolution and accuracy.

5. Conclusions

The daily, seasonal, and annual maximum 8-h average O3 concentrations in the BTH
region at a 1 km × 1 km resolution were estimated based on the BME model. The BME
model with satellite data can significantly improve the simulation of O3 exposure levels,
with LOOCV R2 being 0.10 higher than the corresponding value simulated by the BME
model without satellite data, and the values for RMSE, MAE, MPE, and ME simulated by
BME model were 0.16, 0.23, 0.001, and 0.102 µg/m3 lower, respectively than the values
simulated by BME model without satellite data. The results indicate that the BME model
with satellite data performs better than the model without satellite data in simulating O3
concentrations. The spatio-temporal maps of O3 concentrations generated by BME could be
used to characterize the variability of O3 concentrations. The BME is capable of simulating
O3 exposure levels with high spatio-temporal resolution. The simulated O3 concentrations
provide valuable information, which has the potential to improve health risk assessment,
provide assistance for future epidemiological studies, and inform reference for the choice
of appropriate modeling methods in future related studies.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/atmos13101568/s1, Daily maximum 8-h average O3 concentrations in the BTH region, China
in 2020.
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