Present and Future Changes in Winter Cyclonic Activity in the Mediterranean–Black Sea Region in the 21st Century Based on an Ensemble of CMIP6 Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Cyclone Identification and Tracking Method
2.2. Model Scaling and Comparison
- The Pearson’s linear correlation coefficient, according to Equation (2):
- The root mean square error of the model relative to reanalysis (RMSE), according to Equation (3):
2.3. Subregions for Boxplots
3. Results
3.1. Comparison with Reanalyses
3.2. Ensemble Fields
3.3. Area-Averaged Cyclone Numbers
3.4. Average Cyclone Tracks
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Khromov, S.P.; Petrosyants, M.A. Meteorology and Climatology, 5th ed.; MSU: Moscow, Russia, 2001; 528p. [Google Scholar]
- Lionello, P.; Bhend, J.; Buzzi, A.; Della-Marta, P.; Krichak, S.; Jansà, A.; Maheras, P.; Sanna, A.; Trigo, I.; Trigo, R. Cyclones in the Mediterranean region: Climatology and effects on the environment. In Mediterranean Climate Variability; Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 325–372. [Google Scholar] [CrossRef]
- Sinclair, V.A.; Rantanen, M.; Haapanala, P.; Räisänen, J.; Järvinen, H. The characteristics and structure of extra-tropical cyclones in a warmer climate. Weather Clim. Dyn. 2020, 1, 1–25. [Google Scholar] [CrossRef]
- Löptien, U.; Zolina, O.; Gulev, S.; Latif, M.; Soloviov, V. Cyclone life cycle characteristics over the Northern Hemisphere in coupled GCMs. Clim. Dyn. 2008, 31, 507–532. [Google Scholar] [CrossRef]
- Raible, C.C.; Pinto, J.G.; Ludwig, P.; Messmer, M. A review of past changes in extratropical cyclones in the northern hemisphere and what can be learned for the future. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e680. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Sousa, P.M.; Ramos, A.M.; Raible, C.C.; Messmer, M.; Tomé, R.; Pinto, J.G.; Trigo, R.M. North Atlantic integrated water vapor transport—From 850 to 2100 CE: Impacts on western European rainfall. J. Clim. 2020, 33, 263–279. [Google Scholar] [CrossRef]
- Zappa, G.; Shaffrey, L.C.; Hodges, K.I.; Sansom, P.G.; Stephenson, D.B. A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Clim. 2013, 26, 5846–5862. [Google Scholar] [CrossRef]
- Yettella, V.; Kay, J.E. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Clim. Dyn. 2017, 49, 1765–1781. [Google Scholar] [CrossRef]
- Raible, C.C.; Messmer, M.; Lehner, F.; Stocker, T.F.; Blender, R. Extratropical cyclone statistics during the last millennium and the 21st century. Clim. Past 2018, 14, 1499–1514. [Google Scholar] [CrossRef] [Green Version]
- Hawcroft, M.; Walsh, E.; Hodges, K.; Zappa, G. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett. 2018, 13, 124006. [Google Scholar] [CrossRef]
- Zappa, G.; Shepherd, T.G. Storylines of atmospheric circulation change for European regional climate impact assessment. J. Clim. 2017, 30, 6561–6577. [Google Scholar] [CrossRef]
- Hochman, A.; Alpert, P.; Kunin, P.; Rostkier-Edelstein, D.; Harpaz, T.; Saaroni, H.; Messori, G. The dynamics of cyclones in the twentyfirst century: The Eastern Mediterranean as an example. Clim. Dyn. 2020, 54, 561–574. [Google Scholar] [CrossRef]
- Seidel, D.J.; Fu, Q.; Randel, W.J.; Reichler, T.J. Widening of the tropical belt in a changing climate. Nat. Geosci. 2008, 1, 21–24. [Google Scholar] [CrossRef]
- Fischer-Bruns, I.; Storch, H.V.; González-Rouco, J.F.; Zorita, E. Modelling the variability of midlatitude storm activity on decadal to century time scales. Clim. Dyn. 2005, 25, 461–476. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef]
- Chang, E.K.; Guo, Y.; Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos. 2012, 117, D23118. [Google Scholar] [CrossRef]
- Black, E.; Brayshaw, D.J.; Rambeau, C.M. Past, present and future precipitation in the Middle East: Insights from models and observations. Philos. Trans. R. Soc. A 2010, 368, 5173–5184. [Google Scholar] [CrossRef]
- Harvey, B.J.; Shaffrey, L.C.; Woollings, T.J. Equator-topole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 2014, 43, 1171–1182. [Google Scholar] [CrossRef]
- Nissen, K.M.; Leckebusch, G.C.; Pinto, J.G.; Renggli, D.; Ulbrich, S.; Ulbrich, U. Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst. Sci. 2010, 10, 1379–1391. [Google Scholar] [CrossRef]
- Voskresenskaya, E.N.; Maslova, V.N. Winter-spring cyclonic variability in the Mediterranean-Black Sea region associated with global processes in the ocean-atmosphere system. Adv. Sci. Res. 2011, 6, 237–243. [Google Scholar] [CrossRef]
- Black, E. The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. Int. J. Climatol. 2012, 32, 1654–1664. [Google Scholar] [CrossRef]
- Maslova, V.N.; Voskresenskaya, E.N.; Lubkov, A.S.; Yurovsky, A.V. Temporal variability and predictability of intense cyclones in the Western and Eastern Mediterranean. Atmosphere 2021, 12, 1218. [Google Scholar] [CrossRef]
- Gagen, M.H.; Zorita, E.; McCarroll, D.; Zahn, M.; Young, G.H.; Robertson, I. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 2016, 9, 630–635. [Google Scholar] [CrossRef]
- Nissen, K.M.; Leckebusch, G.C.; Pinto, J.G.; Ulbrich, U. Mediterranean cyclones and windstorms in a changing climate. Reg. Environ. Chang. 2014, 14, 1873–1890. [Google Scholar] [CrossRef]
- Priestley, M.D.; Catto, J.L. Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure. Weather Clim. Dyn. 2022, 3, 337–360. [Google Scholar] [CrossRef]
- Eichler, T.P.; Gaggini, N.; Pan, Z. Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J. Geophys. Res. Atmos. 2013, 118, 3919–3932. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M.; Krueger, O.; Schenk, F.; Weisse, R.; Xia, L. Storminess over the North Atlantic and northwestern Europe—A review. Q. J. R. Meteorol. Soc. 2015, 141, 350–382. [Google Scholar] [CrossRef]
- Michaelis, A.C.; Willison, J.; Lackmann, G.M.; Robinson, W.A. Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo–global warming simulations. J. Clim. 2017, 30, 6905–6925. [Google Scholar] [CrossRef]
- Harvey, B.J.; Cook, P.; Shaffrey, L.C.; Schiemann, R. The response of the northern hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos. 2020, 125, e2020JD032701. [Google Scholar] [CrossRef]
- Lionello, P.; Dalan, F.; Elvini, E. Cyclones in the Mediterranean region: The present and the doubled CO2 climate scenarios. Clim. Res. 2002, 22, 147–159. [Google Scholar] [CrossRef]
- Zappa, G.; Hawcroft, M.K.; Shaffrey, L.; Black, E.; Brayshaw, D.J. Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim. Dyn. 2015, 45, 1727–1738. [Google Scholar] [CrossRef]
- Trigo, I.F.; Davies, T.D.; Bigg, G.R. Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys. Res. Lett. 2000, 27, 2913–2916. [Google Scholar] [CrossRef]
- Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Hatzaki, M.; Bricolas, V.; Asimakopoulos, D. On cyclonic tracks over the Eastern Mediterranean. J. Clim. 2010, 23, 5243–5257. [Google Scholar] [CrossRef]
- Maslova, V.N.; Voskresenskaya, E.N.; Lubkov, A.S.; Yurovsky, A.V.; Zhuravskiy, V.Y.; Evstigneev, V.P. Intense cyclones in the Black Sea region: Change, variability, predictability and manifestations in the storm activity. Sustainability 2020, 12, 4468. [Google Scholar] [CrossRef]
- Lionello, P.; Trigo, I.F.; Gil, V.; Liberato, M.L.; Nissen, K.M.; Pinto, J.G.; Raible, C.C.; Reale, M.; Tanzarella, A.; Trigo, R.M.; et al. Objective climatology of cyclones in the Mediterranean region: A consensus view among methods with different system identification and tracking criteria. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 29391. [Google Scholar] [CrossRef]
- Enzel, Y.; Bookman, R.; Sharon, D.; Gvirtzman, H.; Dayan, U.; Ziv, B.; Stein, M. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 2003, 60, 263–273. [Google Scholar] [CrossRef]
- Reale, M.; Narvaez, W.D.C.; Cavicchia, L.; Conte, D.; Coppola, E.; Flaounas, E.; Giorgi, F.; Gualdi, S.; Hochman, A.; Li, L.; et al. Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Clim. Dyn. 2022, 58, 2501–2524. [Google Scholar] [CrossRef]
- Lionello, P.; Giorgi, F. Winter precipitation and cyclones in the Mediterranean region: Future climate scenarios in a regional simulation. Adv. Geosci. 2007, 12, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Peleg, N.; Bartov, M.; Morin, E. CMIP5-predicted climate shifts over the East Mediterranean: Implications for the transition region between Mediterranean and semi-arid climates. Int. J. Climatol. 2015, 35, 2144–2153. [Google Scholar] [CrossRef]
- Hochman, A.; Harpaz, T.; Saaroni, H.; Alpert, P. Synoptic classification in 21st century CMIP5 predictions over the Eastern Mediterranean with focus on cyclones. Int. J. Climatol. 2018, 38, 1476–1483. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R.; Zwiers, F.W. Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP/NCAR reanalysis for 1958–2001. J. Clim. 2006, 19, 3145–3166. [Google Scholar] [CrossRef]
- Sinclair, M.R. An objective cyclone climatology for the Southern Hemisphere. Mon. Weather Rev. 1994, 122, 2239–2256. [Google Scholar] [CrossRef]
- Sinclair, M.R. Objective identification of cyclones and their circulation intensity, and climatology. Weather Forecast. 1997, 12, 591–608. [Google Scholar] [CrossRef]
- Serreze, M.C. Climatological aspects of cyclone development and decay in the Arctic. Atmos.-Ocean 1995, 33, 1–23. [Google Scholar] [CrossRef]
- Simmonds, I.; Burke, C.; Keay, K. Arctic climate change as manifest in cyclone behavior. J. Clim. 2008, 21, 5777–5796. [Google Scholar] [CrossRef]
- Pinto, J.G.; Spangehl, T.; Ulbrich, U.; Speth, P. Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z. 2005, 14, 823–838. [Google Scholar] [CrossRef]
- Raible, C.C.; Della-Marta, P.M.; Schwierz, C.; Wernli, H.; Blender, R. Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Weather Rev. 2008, 136, 880–897. [Google Scholar] [CrossRef]
- Hodges, K.I.; Hoskins, B.J.; Boyle, J.; Thorncroft, C. A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Weather Rev. 2003, 131, 2012–2037. [Google Scholar] [CrossRef]
- Bardin, M.Y.; Polonsky, A.B. North Atlantic oscillation and synoptic variability in the European-Atlantic region in winter. Izv. Atmos. Ocean. Phys. 2005, 41, 127–136. [Google Scholar]
- Rudeva, I.; Gulev, S.K. Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Weather Rev. 2007, 135, 2568–2587. [Google Scholar] [CrossRef]
- Zhuravsky, V.Y.; Voskresenskaya, E.N. Technology of cyclones sepaparion from global reanalyes data seta on meteorological fields. Monit. Syst. Environ. 2018, 1, 74–78. [Google Scholar] [CrossRef]
- Grist, J.P.; Josey, S.A.; Sinha, B.; Catto, J.L.; Roberts, M.J.; Coward, A.C. Future evolution of an eddy rich ocean associated with enhanced East Atlantic storminess in a coupled model projection. Geophys. Res. Lett. 2021, 48, e2021GL092719. [Google Scholar] [CrossRef]
- Muskulus, M.; Jacob, D. Tracking cyclones in regional model data: The future of Mediterranean storms. Adv. Geosci. 2005, 2, 13–19. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The coupled model intercomparison project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; McAvaney, B.; Latif, M.; Stouffer, R.J. Overview of the coupled model intercomparison project. Bull. Am. Meteorol. Soc. 2005, 86, 89–93. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Priestley, M.D.; Ackerley, D.; Catto, J.L.; Hodges, K.I.; McDonald, R.E.; Lee, R.W. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 2020, 33, 6315–6343. [Google Scholar] [CrossRef]
- Fernandez-Granja, J.A.; Casanueva, A.; Bedia, J.; Fernandez, J. Improved atmospheric circulation over Europe by the new generation of CMIP6 earth system models. Clim. Dyn. 2021, 56, 3527–3540. [Google Scholar] [CrossRef]
- Zappa, G.; Shaffrey, L.C.; Hodges, K.I. The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Clim. 2013, 26, 5379–5396. [Google Scholar] [CrossRef]
- Akperov, M.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Parfenova, M.R.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dembitskaya, M.A.; et al. Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Glob. Planet. Change 2019, 182, 103005. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. 2018, 11, 185–209. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model 2019, 11, 998–1038. [Google Scholar] [CrossRef]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.-C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Lee, W.-L.; Wang, Y.-C.; Shiu, C.-J.; Tsai, I.; Tu, C.-Y.; Lan, Y.-Y.; Chen, J.-P.; Pan, H.-L.; Hsu, H.-H. Taiwan Earth System Model: Description and evaluation of mean. Geosci. Model Dev. 2020, 13, 3887–3904. [Google Scholar] [CrossRef]
- IPCC SRES: Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Nakićenović, N.; Swart, R. (Eds.) Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- IPCC: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergov-ernmental Panel on Climate Change; Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; 881p. [Google Scholar]
- IPCC: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K.; Reisinger, A. (Eds.) IPCC: Geneva, Switzerland, 2007; 104p. [Google Scholar]
- IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.S.; Allen, K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Pekarnikova, M.; Polonsky, A. Anthropogenic climate change and international-juridical activity on climate mitigation. Part 2. Implementation of climate legal acts at the present stage and their prospects. Gosudarstvo i pravo 2021, 5, 118–124. [Google Scholar] [CrossRef]
- Polonsky, A.; Pekarnikova, M.E. Anthropogenic climate change and international-juridical activity on climate mitigation. Part 1. From the UN Framework Convention to the Paris Agreement. Gosudarstvo i pravo 2021, 4, 104–113. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ziv, B.; Harpaz, T.; Saaroni, H.; Blender, R. A new methodology for identifying daughter cyclogenesis: Application for the Mediterranean Basin. Int. J. Climatol. 2015, 35, 3847–3861. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Harvey, B.J.; Shaffrey, L.C.; Woollings, T.J.; Zappa, G.; Hodges, K.I. How large are projected 21st century storm track changes? Geophys. Res. Lett. 2012, 39, L18707. [Google Scholar] [CrossRef]
- Chylek, P.; Dubey, M.K.; Lesins, G.; Li, J.; Hengartner, N. Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation on southwestern US climate: Past, present, and future. Clim. Dyn. 2014, 43, 119–129. [Google Scholar] [CrossRef]
- Chylek, P.; Klett, J.D.; Dubey, M.K.; Hengartner, N. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability. Clim. Dyn. 2016, 47, 3271–3279. [Google Scholar] [CrossRef]
- Kumar, S.; Kinter, J.; Dirmeyer, P.A.; Pan, Z.; Adams, J. Multidecadal climate variability and the “warming hole” in North America: Results from CMIP5 twentieth-and twenty-first-century climate simulations. J. Clim. 2013, 26, 3511–3527. [Google Scholar] [CrossRef]
- Lv, Y.; Guo, J.; Li, J.; Han, Y.; Xu, H.; Guo, X.; Cao, L.; Gao, W. Increased Turbulence in the Eurasian Upper-Level Jet Stream in Winter: Past and Future. Earth Space Sci. 2021, 8, e2020EA001556. [Google Scholar] [CrossRef]
- Masato, G.; Hoskins, B.J.; Woollings, T. Winter and Summer Northern Hemisphere Blocking in CMIP5 Models, J. Clim. 2013, 26, 7044–7059. [Google Scholar] [CrossRef]
- Pinto, J.G.; Ulbrich, U.; Leckebusch, G.C.; Spangehl, T.; Reyers, M.; Zacharias, S. Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim. Dyn. 2007, 29, 195–210. [Google Scholar] [CrossRef]
- Bardin, M.Y.; Platova, T.V.; Samokhina, O.F. Specific features of variability of cyclone activity in northern extratropics associated with leading atmospheric circulation modes in Atlantic-European sector. Fundam Appl. Climatol. 2015, 2, 14–40. [Google Scholar]
- Maslova, V.; Voskresenskaya, E.; Yurovsky, A.; Bardin, M. Winter cyclone regimes over the North Atlantic region. Theor. Appl. Climatol. 2022, 148, 1689–1711. [Google Scholar] [CrossRef]
Model | Developer, Country | Resolution |
---|---|---|
CMCC-CM2-SR5 [64] | Euro-Mediterranean Center on Climate Change, Italy | 1.25 × 0.94 |
CMCC-ESM2 [65] | 1.25 × 0.94 | |
IPSL-CM6A-LR [66] | Institut Pierre Simon Laplace, France | 2.5 × 1.27 |
MPI-ESM1-2-HR [67] | Max Planck Institute for Meteorology, Germany | 0.94 × 0.93 |
MPI-ESM1-2-LR [68] | 1.88 × 1.85 | |
NorESM2-LM [69] | Norwegian Climate Centre, Norway | 2.5 × 1.89 |
NorESM2-MM [69] | 1.25 × 0.94 | |
TaiESM1 [70] | Research Center for Environmental Changes, Academia Sinica, Taiwan | 1.25 × 0.94 |
CMIP6 Model | Parameter | October | November | December | January | February | March |
---|---|---|---|---|---|---|---|
CMCC-CM2-SR5 | r | 0.14 | 0.34 | 0.26 | 0.38 | 0.32 | 0.21 |
RMSE | 7.03 | 6.36 | 6.52 | 6.76 | 5.75 | 6.39 | |
CMCC-ESM2 | r | 0.19 | 0.24 | 0.31 | 0.38 | 0.21 | 0.21 |
RMSE | 7.2 | 7.02 | 6.19 | 6.21 | 6.23 | 6.51 | |
IPSL-CM6A-LR | r | 0.28 | 0.14 | 0.32 | 0.26 | 0.28 | 0.33 |
RMSE | 5.48 | 6.18 | 5.44 | 6.08 | 4.97 | 6.02 | |
MPI-ESM1-2-HR | r | 0.04 | 0.21 | 0.29 | 0.44 | 0.29 | 0.2 |
RMSE | 14.71 | 9.19 | 10.04 | 9.55 | 11.28 | 13.08 | |
MPI-ESM1-2-LR | r | 0.32 | 0.34 | 0.4 | 0.37 | 0.45 | 0.33 |
RMSE | 4.61 | 5.93 | 5.6 | 5.82 | 4.57 | 5.18 | |
NorESM2-LM | r | 0.34 | 0.27 | 0.22 | 0.18 | 0.34 | 0.2 |
RMSE | 4.42 | 5.01 | 5.46 | 6.11 | 4.72 | 4.9 | |
NorESM2-LM | r | 0.22 | 0.19 | 0.31 | 0.35 | 0.31 | 0.18 |
RMSE | 7.74 | 8.23 | 7.81 | 8.38 | 7.48 | 8.09 | |
TaiESM1 | r | 0.18 | 0.3 | 0.33 | 0.35 | 0.17 | 0.16 |
RMSE | 7.57 | 6.46 | 6.02 | 7.01 | 6.54 | 7.22 |
CMIP6 Model | Parameter | October | November | December | January | February | March |
---|---|---|---|---|---|---|---|
CMCC-CM2-SR5 | r | 0.19 | 0.44 | 0.45 | 0.41 | 0.35 | 0.2 |
RMSE | 6.95 | 5.79 | 5.51 | 6.09 | 5.8 | 6.88 | |
CMCC-ESM2 | r | 0.26 | 0.39 | 0.47 | 0.46 | 0.36 | 0.29 |
RMSE | 6.78 | 6.08 | 5.28 | 5.41 | 5.7 | 6.13 | |
IPSL-CM6A-LR | r | 0.33 | 0.27 | 0.44 | 0.37 | 0.28 | 0.35 |
RMSE | 5.58 | 5.88 | 4.94 | 5.33 | 5.54 | 5.93 | |
MPI-ESM1-2-HR | r | 0.1 | 0.23 | 0.23 | 0.35 | 0.19 | 0.11 |
RMSE | 14.71 | 9.19 | 10.04 | 9.55 | 11.28 | 13.08 | |
MPI-ESM1-2-LR | r | 0.31 | 0.22 | 0.33 | 0.32 | 0.26 | 0.31 |
RMSE | 5.62 | 6.57 | 5.81 | 6.01 | 6.01 | 5.9 | |
NorESM2-LM | r | 0.36 | 0.42 | 0.41 | 0.38 | 0.34 | 0.29 |
RMSE | 5.6 | 5.24 | 5.01 | 5.53 | 5.68 | 5.89 | |
NorESM2-LM | r | 0.32 | 0.39 | 0.51 | 0.52 | 0.42 | 0.27 |
RMSE | 6.81 | 6.83 | 6.28 | 6.72 | 6.41 | 7.41 | |
TaiESM1 | r | 0.21 | 0.42 | 0.46 | 0.47 | 0.36 | 0.21 |
RMSE | 7.3 | 5.74 | 5.17 | 5.8 | 5.82 | 6.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voskresenskaya, E.N.; Maslova, V.N.; Lubkov, A.S.; Zhuravskiy, V.Y. Present and Future Changes in Winter Cyclonic Activity in the Mediterranean–Black Sea Region in the 21st Century Based on an Ensemble of CMIP6 Models. Atmosphere 2022, 13, 1573. https://doi.org/10.3390/atmos13101573
Voskresenskaya EN, Maslova VN, Lubkov AS, Zhuravskiy VY. Present and Future Changes in Winter Cyclonic Activity in the Mediterranean–Black Sea Region in the 21st Century Based on an Ensemble of CMIP6 Models. Atmosphere. 2022; 13(10):1573. https://doi.org/10.3390/atmos13101573
Chicago/Turabian StyleVoskresenskaya, Elena N., Veronika N. Maslova, Andrey S. Lubkov, and Viktor Y. Zhuravskiy. 2022. "Present and Future Changes in Winter Cyclonic Activity in the Mediterranean–Black Sea Region in the 21st Century Based on an Ensemble of CMIP6 Models" Atmosphere 13, no. 10: 1573. https://doi.org/10.3390/atmos13101573
APA StyleVoskresenskaya, E. N., Maslova, V. N., Lubkov, A. S., & Zhuravskiy, V. Y. (2022). Present and Future Changes in Winter Cyclonic Activity in the Mediterranean–Black Sea Region in the 21st Century Based on an Ensemble of CMIP6 Models. Atmosphere, 13(10), 1573. https://doi.org/10.3390/atmos13101573