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Abstract: Students’ exposure to air pollution during active commuting between home and school has
been linked with numerous adverse health outcomes. An accurate assessment of cycling students’
dose of air pollution during commutes could help mitigate the adverse health effect of exposure.
However, up to date, it is still challenging to fill this research gap. In this study, we proposed a
modeling framework to estimate cycling students’ terrain-based dosage of ambient nitrogen dioxide
(NOy) during home-school commutes for the very first time. The approach was further applied to
compare the benefit and costs of different route choices and examine exposure justice issues during
students’ cycling from home to school in Auckland, New Zealand. Results show that most of the
cycling students could find an alternative lowest-dose route, and for around 25% of them, a 1%
increase in route length was associated with a more than 1% decrease in NO, dosage. Evidence
demonstrates that exposure inequalities existed to some extent during students’ cycling commutes.
This study could deepen our understanding of cyclists” exposure, and some recommendations were
also provided to optimize students’ daily active commute routes.

Keywords: cycling students; air pollution dose; GIS modeling; route choices; exposure justice

1. Introduction

Air pollution has been a global issue in recent years, and its associated adverse health
effects have been identified in many previous studies [1,2]. Commuting is an essential part
of our daily life, and recent studies have shown that exposure to air pollution in commuting
microenvironments is linked with various adverse health outcomes [3,4]. Some studies have
shown that commuting only takes up a small amount of time in our daily life. However,
the exposure during commuting explains a higher proportion of total diurnal exposure,
which is disproportionate [5-7]. Therefore, air pollution exposure during commuting is
worth our attention and research.

School children are considered to be more vulnerable than adults, and their exposure
to air pollution can lead to severe health issues. Early studies have found associations
between exposure to NO; pollution and numerous respiratory diseases such as asthma,
cough, pneumonia, and lung cancer [8]. More recent studies have further identified that
students’ exposure to NO, during their home-school commutes is linked with cognitive
development issues [9]. Therefore, investigating air pollution exposure during their daily
commute to school is of great importance to their health benefits. Recently active commut-
ing is being promoted by the government as it is environmentally friendly and beneficial
to personal health [10]. Many students respond to the call of the government and choose
active transportation during their daily commutes between home and school. Therefore, un-
derstanding air pollution exposure and its health risks during students’” active commuting
is beneficial for the wider promotion of active commuting.
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Walking and cycling are the most popular active transportation modes among students.
Previous studies have fully explored students” exposure to air pollution during walking to
school, and documents on this topic are abundant. For instance, the study [11] measured
36 schoolchildren’s PM; 5 exposures during walking commutes between home and school
using portable devices and identified that the exposure level during walking is lower than
that of other commute modes (e.g., private car and school bus). The study [1] modeled
14,091 students’ dosage of NO, during walking commutes between home and school and
found that walking along the lowest-dose route could significantly reduce a proportion
of students’ exposure level compared with using the shortest-distance route. However,
students’ air pollution exposure during cycling to school has not been widely explored yet,
and there are also limited documents. A few studies related to this topic include: (1) the
study [12] directly measured cyclists” dose exposure to particulate matters (PM;, PM; 5,
PMjp) in urban using mobile monitoring techniques; (2) the study [13] developed an agent-
based modeling framework for estimating cyclists” dose exposure to on-road air pollution;
(3) the study [14] proposed a methodology to estimate students” dose exposure of PM; 5
during cycling to school based on respiration rates and modeled ambient concentrations.
A common limitation in these studies is that they both used a hypothesis that people
ride bicycles at a fixed speed with a certain inhale rate. However, in the real world, the
speed and inhale rate change with the variations of the ground slope. Modeling dose
exposure to air pollution without accounting for the factor of terrain variation could lead
to extensive uncertainties in the results. Therefore, there is an urgent need to develop a
terrain-based dose exposure modeling framework that accounts for the dynamic nature of
the topography, riding speed, inhale rate, and ambient concentrations.

To fill the above-mentioned research gap, in this study, we proposed a terrain-based
modeling framework for estimating students” dose exposure to air pollution during cycling
from home to school. Our approach is based on the hypothesis that cycling students’ riding
speed, energy expenditure, and ventilation rate during the cycling commute change with
the spatial variations of terrains (e.g., the ground slope), and they can be physiologically
linked to terrain changes in each road segment. In the framework, the ambient concentra-
tions of air pollutants are first predicted by the land use regression (LUR) approach; the
dosage of air pollution is then modeled using a self-developed workflow that accounts
for terrain-related riding speed, energy expenditure, and ventilation rate; geographic in-
formation system (GIS)-based road network analysis is finally implemented to calculate
students’ dosage of air pollution during cycling commutes. We also applied this approach
to compare students’ dosage during cycling along with (a) the shortest-distance route and
(b) the lowest-dose route between home and school and examined the potential for air
pollution exposure reduction if students use alternative cleaner routes. Exposure (in)justice
during students’ cycling from home to school was also studied. This study aimed to answer
the following three research questions: (1) Can a student reduce the dose of air pollutants
by riding along an alternative route? (2) What is the trade-off between the shortest-distance
route and the alternative lowest-dose route? and (3) Do exposure inequalities exist during
students’ cycling commutes? To our best knowledge, this study is the very first one that
models students’” dose exposure during cycling, accounting for the change of terrain.

2. Materials and Methods
2.1. Study Area and Data Used

We choose Auckland as the study area since it is the largest and most populous city in
New Zealand [15]. Auckland has a volcanic topography, and the terrain is hilly [1,15]. Air
quality in Auckland is relatively good compared with that in cities in developing countries,
but in recent years, with the increase in population and number of private vehicles, traffic-
related air pollution (TRAP) has inevitably become a serious issue [16]. NO; is identified as
an indicator for TRAP and has been widely used in previous studies [17-19]. Therefore, in
this study, students’ dosage of NO, during cycling from home to school was investigated.
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Cycling students” information (e.g., home address and the school attended) was
derived from the “Travelwise’ database. The intention and details of the “Travelwise’ project
undertaken by Auckland Transport (AT) can be found in documents [1,20]. According to
the statistical analysis of the ‘Travelwise” data, among all survey samples, only 2.61% of
students are cycling commuters. We randomly selected 10 high schools and intermediate
schools (primary students are less likely to bike to school at a young age due to safety
concerns) across Auckland to study 332 cycling students’ air pollution exposure during
their daily commute from home to school. Table 1 shows the general information of the 10
schools and the number of cycling students in each school. Figure 1a shows the locations of
the 10 schools on the map, and Figure 1b is an example demonstrating the location of a
school and the cycling students” home addresses.

Table 1. General information of schools involved in the study.

No. School Name Type of School Location No. of Cycling Students
1 Western Spring College High School Central Auckland 58
2 Mount Roskill Grammar School High School Central Auckland 20
3 Rosehill College High School South Auckland 8
4 Westlake Boys High School High School North Auckland 31
5 Takapuna Grammar School High School North Auckland 107
6 Massey High School High School West Auckland 16
7 Avondale College High School West Auckland 19
8 Kowhai Intermediate School Intermediate School Central Auckland 19
9 Remuera Intermediate School Intermediate School Central Auckland 47
10 Manurewa Intermediate School Intermediate School South Auckland 7
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Figure 1. Maps demonstrating the study area and cycling student samples: (a) locations of the
10 schools involved in the study and the map of annual ambient NO; concentrations of Auckland;
(b) an example showing the location of a school and the cycling students” home addresses (Note:
The legends were deliberately drawn at a rather large size to prevent the identification of the
exact addresses).
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2.2. Modeling Ambient NO, Concentration

In this study, we used the LUR approach to estimate spatial variations of NO, in Auck-
land. LUR models construct mathematical relationships between air pollution measure-
ments and selected predictor variables reflecting driving factors of surrounding geographic
features. Then, they can be used for prediction at unobserved locations. The LUR model
developed by Ma et al. (2019) in study [15] was used in our study to estimate ambient
NO; concentrations in the study area. Briefly, this model was developed based on annual
NO, observations collected by 107 sites of passive samplers across Auckland (34, 30, and
43 sites in CBD, urban, and suburban, respectively). In the model development, more than
150 potential predictor variables were considered, and the supervised forward stepwise
regression method proposed in the ESCAPE project was used to construct the model [16].
The authors report that the model had an R? 0f 0.68, 0.90, and 0.79 at the CBD, urban, and
suburban, respectively. Then, this model was further rescaled (the rescaling approach can
be found in the study [1]) for estimating annual mean NO, concentrations during morning
peak hours (7:00—9:00 a.m.) as students’ cycling from home to school usually occurs during
this time.

2.3. Determine the Cycling Network

A road network layer downloaded from the Auckland Transport website was used
in this study to determine the cycling network. In the layer shapefile, there are more than
60,000 line features that can be categorized into 16 groups, such as motorways, major roads,
and footpaths. Since this study only considered cycling commutes, motorway, motorway
links, and train tracks were excluded from the network layer. The local trails and footpaths
going through parks and open spaces were included in the network as cyclists are usually
allowed to traverse them. ArcGIS 10.5 was used to form a redesigned cycling network for
the subsequent procedures: (1) the entire network was segmented at crossings, converting
each road feature into several line segments; (2) if any segment was longer than 20 m, it
was then divided into several 20 m sub-segments.

2.4. Determine the Terrain-Based Dosage

Auckland’s hilly topography leads to dramatic variations in cycling speed and ventila-
tion rate with changes in travel gradients [21,22]. Therefore, in this study, we developed
a method to estimate the terrain-based respiratory dosage of air pollution during cycling
along a certain route that accounts for variable cycling speed and ventilation rate related to
topography. In brief, a commute route was split into several 20 m-interval road segments,
and NO, concentration at each segment was estimated by the LUR model. The workflow
for estimating NO, dosage while traversing each road segment is explained below.

Step 1: calculate gradient-related cycling speed for the road segment:

15 <= s < =30
1+2x 4 xs+ 7 xs? < -30<s<0
slopefactor ) = 1+ () <0<s5<20 .
8(s1) T
10 ~<=3s>20

4 <«10<s<13AI>15
45 «<=8<s<10A1>30
g(s,1)=145 =5<s<8AI>60 (2)
6 <3<s<5AI1>120
< otherwise
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To obtain gradient-related cycling speed, we need to first calculate a slope factor,
which is determined by the slope and length of the road segment traversed [23]. In
Equations (1)—(3), where s represents the direction-related slope of the road segment, ex-
pressed in %; I represents the length of the road segment (unit: m). By extracting elevations
from the two endpoints of the segment, the slope can be calculated for each road segment.

Oflat
V=
slopefactor

4)

We assume a constant flat speed of 15 km/h for all cycling students, and the gradient-
related cycling speed v can be calculated through Equation (4).

Step 2: calculate energy expenditure related to cycling speed, gradient, and gross mass
of the cycling student:

_ v s 2
W= o [Mg(Cr+ 155 ) +05CoAp(0 + Cu)?| 5)
Ey = VO, = 450.00 + 9.7067 x W ©)

First, the output power of cycling (W) is calculated using Equation (5), where M, g,
Wmechr Crr Cp, A, p, Cy are the gross mass (bicycle + student), gravitational acceleration,
mechanical efficiency of the bicycle, rolling resistance coefficient, aerodynamic drag co-
efficient, frontal area (bicycle + student), the density of air, and headwind; for simplicity,
standard values used in other relevant studies are also applied in our study, and they are
assumed to be 75 (15 + 60) kg, 9.81 m/s?, 95%, 0.008, 1.2, 0.616 m?, 1.226 kg/m?, and 0 m/s,
respectively [24,25]. Second, the energy expenditure (E;) or oxygen consumption rate
(VO,) is calculated using Equation (6). It is noticed that the VO, here is a relative VO,, and
the unit is mL/(kg-min). We need to convert it to an absolute VO, (unit: L/min) for later
use [26].

Step 3: calculate ventilation rate V. (unit: L/min) based on energy expenditure E,
(unit: L/min) obtained from Step 2 [27]:

In % = 4.4329 + 1.0864 - In Eﬁw —0.2829 - In A 4+ 0.0513X + ¢ @)

where A is the age of the student (average age of 14 was used); € obeys N (0, 0.1444). As
the sex (X, male = 1 and female = 0) was unknown, the ventilation rate was calculated by
averaging results derived from a male student and a female student, respectively.

Step 4: Determine the dosage (Dsg) while traversing the road segment:

L
Dseg = ;eg X CNOZ X Ve (8)

where Lgeq is the length of the road segment (20 m), Cyo, denotes the NO; concentration at
the center of the road segment estimated by the LUR model. The total dose of a route can
be calculated by summing the dosage in all road segments along the route.

2.5. Spatial Analysis and Route Generation

To investigate students” air pollution exposure in different commute route choices,
two kinds of cycling routes from home to school (the shortest-distance and the lowest-dose
routes) were generated for each student using road network analysis in ArcGIS 10.5. The
shortest-distance route was studied as it is most students” preference during the home-
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school commute [1]. The lowest-dose route (with the least cumulative dosage) was studied
as it is an alternative route to reduce the exposure risk. The configuration of the network
analysis was set as follows: (1) universal connectivity was selected since the network had
been modified for cycling travel; (2) no restrictions were set for turning and one-way; (3) to
consider the pollution inhaled during waiting for traffic signals at road crossings, cost
barrier functions were applied in the dosage estimations (e.g., 40 s of the wait at a major
crossing and 20 s at a minor crossing, both at a resting ventilation rate of 6 L-min~! [1]);
(4) length and dosage were selected as impedances, respectively; and (5) they were also
selected as accumulation attributes. The output of the road network analysis included: the
origin, destination, total route length, and total NO, dosage for each home-school route.
Given that some students may not be willing to use the alternative lowest-dose route if it
were disproportionately longer, a restriction was set up to allow for the additional cycling
distance up to 1000 m.

2.6. Exposure Justice during Cycling

Exposure justice (E]J) was also studied to examine the hypotheses: (1) cycling students
from families of higher socioeconomic status are associated with a lower level of air
pollution exposure, and (2) cycling students from families of lower socioeconomic status
are associated with a higher level of air pollution exposure. In this study, cycling students’
socioeconomic status was represented by annual family income. In brief, each student’s
annual family income value was extracted from a meshblock-level median annual family
income map of Auckland (Figure 1b), and more details can be found in the study [1].
The annual family income values ranged from 10,000 to 150,000 NZD and, therefore,
80,000 NZD per annum was used as the determination between low (10,000-80,000) and
high (80,000-150,000) levels of income. To fairly compare students” exposure levels on
different routes, the Unit Dosage Index (UDI) was introduced to represent the dosage
someone inhaled per meter traversed and calculated by dividing the total dosage by the
route length. Previous studies have identified that most students prefer to select the
shortest-distance route for their home-school cycling commutes. Therefore, UDIs were
derived for the 332 cycling students studied based on their shortest-distance routes between
home and school. The median value of all UDIs was used as a determination to group the
students with higher exposure (anyone’s UDI > the median value was determined as a
higher exposure case). From the perspective of socioeconomic status, all cycling students
were categorized into two groups (lower/higher income) based on their annual family
incomes; from the perspective of exposure risks, all cycling students were also categorized
into two groups (lower/higher exposure) based on their calculated UDIs. The portion of
students at each income level and each exposure level were calculated, respectively. Then,
the portion of students at the higher (lower) income level was compared accordingly with
the portion of higher exposure students from the higher (lower) income level group to test
the predefined hypothesis. All statistical results were calculated using R (version 3.3.0).

3. Results and Discussion
3.1. Descriptive Statistics

The highest, lowest, and mean NO; concentrations of the pollution map derived
from the rescaled LUR model (adjusted to morning peak hours 7:00-9:00 a.m.) were
85.37 ug-m~>,9.82 pg-m 3, and 25.64 ug-m 3, respectively. For the cycling network, there
were altogether 535,327 features (road segments). The terrain-based slope of each road
segment was derived by dividing the rise (the height of the slope) by the run (the distance of
the slope), and the percentage of the slope was obtained by multiplying 100. This resulted
in travel gradients of the cycling network ranging from —24.80% to +24.80%. The gradient-
related cycling speed (a flat speed of 15 km/h was assumed) varied from 1.30 km/h
(0.36 m/s) to 50.00 km/h (13.89 m/s) with the mean value of 17.51 km/h (4.82 m/s). The
modeled energy expenditures varied from 0.45 L Oy /min to 1.75 L O, /min. The varying
ventilation rates were distributed around a mean of 12.02 L/min with a maximum value
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of 20.41 L/min (i.e., riding uphill with a steep slope) and a minimum value of 6.00 L/min
(i.e., waiting at the road crossing).

3.2. Dosage during Cycling Commutes along Different Routes

For all of the 332 cycling students in the 10 schools, we modeled and estimated
their inhaled NO, dosage during commutes from home to school along with (a) the
shortest-distance route and (b) the lowest-dosage route. Figure 2 visualizes and demon-
strates different route choices (shortest distance vs. lowest dose) for each student in the
school of (a) Avondale College; (b) Takapuna Grammar School; (c) Western Spring College;
(d) Remuera Intermediate School; (e) Rosehill College.

NO, Legends ~
wom High : 8537 ug/m’
— Low : 9.82 pg/m?
® School Location
® Home Locations
Shortest distance routes
= | owest dosage routes
|:] Akl _Urban_Boundary

Cycling networks

Figure 2. Visualization of route choices (shortest distance vs. lowest dose) for students in each school:
(a) Avondale College; (b) Takapuna Grammar School; (c¢) Western Spring College; (d) Remuera
Intermediate School; (e) Rosehill College.

Table 2 shows the statistical results of route length and inhaled dosage for all 332 students
cycling along different routes. The mean dosage was 4.08 and 3.82 g per trip for the
shortest-distance and lowest-dose routes, respectively. Accordingly, the mean route length
for the two route choices was 2666.88 and 2837.17 m, respectively. On average, one cycling
student could reduce 6.37% of NO, dosage with 6.39% additional route length if a lowest-
dose route was used during the home-school commute. For any home-school pair (one
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sample of a cycling student), its lowest-dosage route is identified as an alternative lowest-
dosage route (ALDR) if it is different from its corresponding shortest-distance route.

Table 2. Statistical results for all students cycling along different routes.

Route Types Statistics Length (m) Dosage (ug)
Max 8814.40 13.38
Min 707.60 0.79
All shortest-distance routes
Mean 2666.88 4.08
Std 1162.08 2.04
Max 8865.34 13.25
Min 707.60 0.79
All lowest-dose routes
Mean 2837.17 3.82
Std 1272.36 1.89
Max 8865.34 13.25
Alternative lowest-dose routes Min 824.33 1.13
(those differ from their shortest-distance routes) Mean 3072.63 4.05
Std 1258.39 1.91

As the goal of our study was to examine the potential for air pollution exposure
reduction if students use alternative cleaner routes during daily school commutes, we
analyzed all ALDRs and compared them with the corresponding shortest-distance route in
more depth.

Table 3 shows the proportion of ALDRs found for students in each school. Varying
from 28.57% to 89.47% between schools, the general proportion was 76.81%. These results
indicate that most students could find an alternative, cleaner route (e.g., ALDR) during
their daily commute from home to school that differs from the routine shortest-distance
route. The factors that determine the proportion of ALDRs found for students in each
school may include: (1) the connectivity of the road network around a school, (2) the
variations of travel gradients of the road network around a school, (3) the variations of air
pollutant concentrations in the region around a school, and (4) the distance between home
and the school. Kodwhai Intermediate School had the highest proportion of 89.47% among
the 10 investigated schools due to its location in central Auckland (near the central business
district). On the one hand, the road network connectivity in this area is significantly better
than that of other places (the road network in suburban Auckland was largely designed
after 1950 mostly for private vehicles), and a network with better connectivity tends to have
a higher chance to find an alternative route between home and school; on the other hand,
the central Auckland is a relatively heavily polluted area with large spatial gradients of air
pollutant concentrations varying between streets and this also makes it easier to form an
alternative cleaner route. Takapuna Grammar School had the second highest proportion of
81.31% among them, probably due to distinct spatial variations of terrain gradients around
the school. In the North Head region (lower right of Figure 2b), its volcanic topography
is generally hilly, and cycling speeds, energy expenditure, and ventilation rates tend to
vary dramatically between different road segments. This makes it easy to form an ALDR.
Manurewa Intermediate School had the lowest proportion of 28.57%, largely due to the
short distance between students” homes and the school. The mean length of the shortest-
distance route for those students is 1867.52 m, which is 29.97% shorter than the mean route
length of all the students (2666.88 m). As we know, it is less likely to have an alternative
route for a short trip.
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Table 3. The proportion of ALDRs found for students in each school.

No. School Name No. of Students No. of ALDRs Proportion
1 Western Spring College 58 45 77.59%
2 Mount Roskill Grammar School 20 15 75.00%
3 Rosehill College 8 6 75.00%
4 Westlake Boys High School 31 22 70.97%
5 Takapuna Grammar School 107 87 81.31%
6 Massey High School 16 10 62.50%
7 Avondale College 19 13 68.42%
8 Kowhai Intermediate School 19 17 89.47%
9 Remuera Intermediate School 47 38 80.85%
10 Manurewa Intermediate School 7 2 28.57%

Sum 332 255 76.81%

3.3. Trade-Off between Different Route Choices

The trade-off between different route choices (the routine shortest-distance route vs.
ALDR) was analyzed for those 255 students that had ALDRs from home to school. Figure 3
shows the scatterplot of relative change in route length (expressed in %) vs. relative change
in dosage (expressed in %) for the studied 255 samples (the red squares).

'
a

N
o

Relative change in dosage (%)
o

-20
251 " ", —regression line
. ==1:1 line
. = samples
-30 : : > : : N
0 10 20 30 40 50 60

Relative change in length (%)

Figure 3. Scatterplot of relative change in route length vs. relative change in dosage.

Averagely, ALDRs (3072.63 m) were 7.78% longer than their corresponding shortest-
distance route (2850.92 m) in terms of mean route length, and the mean NO, dosage of
ALDRs (4.06 ng) was 7.79% lower than that of its counterpart (4.40 pg). Statistically, the
benefit (e.g., reducing inhaled NO, dose) of using an ALDR equaled (or marginally out-
weighed) the corresponding cost (e.g., riding more route length). However, the regression
line (blue) in Figure 3 was on the right side of the 1:1 line (black), which indicates that for
a large part of students 1% decrease in NO, dosage was associated with a more than 1%
increase in route length from the perspective of a scatter plot. To further investigate the
trade-off between these two route choices, quantile regression for the 255 samples was
carried out to illustrate the conditional quantiles of relative change in dosage as a linear
function of per 1% increase in route length. Figure 4 shows the quantile regression plot of
relative change in dosage per 1% increase in route length. Generally, the cost significantly
outweighed the benefit for most individuals. For example, for 50% of ALDRs, a 1% increase
in route length was associated with only a 0.50% decrease in NO, dosage. In other words,
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the relative decrease in dosage of riding along an ALDR was smaller than the relative
increase in route length. However, for many students, using an ALDR also had a positive
side as for 20% (15%, 10%, 5%) of the routes, a 1% increase in route length was associated
with a >1.4% (1.7%, 2.3%, 3.2%) decrease in NO, dosage. For example, in Figure 3, a cycling
student achieved a 26.47% reduction in NO, dosage with riding only a 2.91% additional
route length.

o

-0.5

35" ===:OLS regression coefficient = -0.5025
' ==% decrease in dosage = % increase in length
—-Quantile regression coefficients

0.05 0.25 0.50 0.75 0.95
Quantile

% change in dosage per 1% increase in length
R
o

Figure 4. Quantile regression plot of relative change in dosage per 1% increase in route length.

3.4. Exposure (In)Justice

EJ during students’ cycling from home to school was also studied in this study. Table 4
shows the portion of students from an income level vs. their portion of a higher UDI.
Among all 332 students, 80 and 252 students were from families of low income and high
income, which took up 24.10% and 75.90% of the whole sample, respectively. While in
the 166 students of high exposure cases (with a higher UDI), 45 and 121 students were
from families of low income and high income, which took up 27.11% and 72.89% of
the high exposure group, respectively. In other words, students from families of low
income accounted for 24.10% of the population, but they contributed 27.11% (>24.10%) of
high exposure cases (bold fonts were used to emphasize the fact that the high exposure
proportion was higher than the population proportion in Table 4). This indicates that
cycling students from families of lower socioeconomic status are associated with a higher
level of air pollution exposure. In contrast, students from families of high income accounted
for 75.90% of the population, but they only contributed 72.89% (<75.90%) of high exposure
cases. This indicates that cycling students from families of higher socioeconomic status
are associated with a lower level of air pollution exposure. These results verified the
existence of exposure injustices (or exposure inequalities) during students’ cycling from
home to school.

Table 4. The portion of students from an income level vs. their portion of a higher UDIL

Income Level Income Ranges Populat}on High Exp9sure
Proportion Proportion
Low income 10-80 K 24.10% 27.11%

High income 80-150 K 75.90% 72.89%
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3.5. General Discussion

In this study, we modeled students’ terrain-based dosage of ambient NO, during
cycling from home to school for the very first time and further compared the benefit and
costs of different route choices. Moreover, EJ during students’ cycling commutes was
examined as well.

A few previous studies also estimated cyclists” dose of air pollution during daily
cycling commutes. Studies [12-14] estimated cyclists” dosages of particulate matter, NO,,
CO, and SO,, using different modeling frameworks. However, a common shortcoming in
these studies is that they both assumed a fixed ventilation rate in the dose estimation, as, in
reality, nobody rides a bicycle at a fixed speed with a constant inhale rate. The study [28]
improved this issue by introducing the term heart rate in the equation to estimate the
dynamic ventilation rate during the route as one’s ventilation rate is dependent on physical
activities, and the heart rate can be physiologically linked to ventilation. However, this
method requires the direct measure of each cyclist’s heart rate during his/her cycling
commutes. Therefore, this approach cannot be applied to estimate cyclists” dose of air
pollution during commutes on a population scale. The modeling framework proposed
in our study is based on the assumption that riding speed is associated with the varying
terrain-related travel gradients and the dynamic energy expenditure, and ventilation rate
is physiologically linked with the estimated gradient-related cycling speed. Finally, the
estimated cyclist’s dose of air pollution can account for terrain-related riding speed, energy
expenditure, and ventilation rate during the route. Logically, our approach could be applied
to estimate cyclists” dose of any air pollutant at a population scale in any other study area
as long as the air pollutant concentration map, terrain information, and road network data
are provided.

In our study, 76.81% of cycling students can find an ALDR. This proportion is signifi-
cantly higher than that of the 17.48% found in a previous study also conducted in Auckland
that focused on students” dose of NO, while walking from home to school [1]. This dif-
ference and the higher proportion in our study could be caused by two reasons: (1) in
general, cycling students (2667 m) had a longer commute distance than walking students
(1129 m), and as aforementioned analysis, a longer trip tends to have more chance to find
an ALDR; (2) the range and variation of ventilation rate during cycling (6.0-20.4 L/min) is
greater than walking (6.0-17.3 L/min), and this could also increase the chance of generating
an ALDR. In joint consideration of statistics of the mean dosage of cycling (4.08 ug) and
walking (6.36 pg) commutes in these two studies, cyclists tend to inhale less dose of NO,
during home-school commutes. This founding is consistent with the result of a previous
case study conducted in Hamilton, Ontario, Canada [29].

Previous studies [30-33] have identified the existence of exposure inequalities in stu-
dents” homes and at school. Our study further explored cycling students” E] issues during
their riding from home to school, and the results demonstrate that exposure inequalities
existed to some extent during cycling commutes. Further studies are needed to explore the
pathway to mitigate the inequalities.

The findings in this study could deepen our understanding of cycling students’ expo-
sure to air pollution and provide scientific advice for policymakers to optimize students’
daily active commuting routes. Some recommendations include: (1) for active commuting,
cycling tends to be a better option as it results in a significantly lower dose of air pollution
than walking; (2) for a short trip, cycling students can simply use the shortest-distance
route to school; (3) for a long trip, cycling students could try to find an ALDR if benefit
beat cost; (4) as shown in Figure 5, an ALDR could be found by riding along a local road
parallel with or a pathway in the park/greenspace close to the major road, or using a
distant less-polluted road parallel with the heavily polluted motorway.
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Figure 5. Examples illustrate the generation of the lowest-dose route compared with the routine
shortest-distance route. (a) riding along a local road parallel with the major road; (b) using the
pathway in a park or greenspace close to the major road; (c) using a distant less-polluted road parallel
with the heavily polluted motorway.

4. Conclusions

The commuting activities account for a disproportionately high amount of people’s
total diurnal exposure. Accurate measuring of students’ dose of air pollution during their
daily commutes could advance our knowledge of mitigating the adverse effect of exposure
to air pollution. In this study, we proposed a modeling framework to estimate cycling
students’ terrain-based dosage of ambient NO, during home-school commutes for the
very first time and further compared the benefit and costs of different route choices. Our
study advances in the relevant field as it accounts for terrain-related riding speed, energy
expenditure, and ventilation rate; furthermore, the approach is scalable and applicable
to any other place where required data exist. The results show that for parts of cycling
students, they can find an ALDR to reduce the inhaled dose of air pollution with a sacrifice
of riding cost-effectively additional route lengths. The findings in our study could deepen
our understanding of cyclists” exposure and provide scientific advice for policymakers
to optimize students’ daily active commute routes. The limitations of our study include:
(1) we used averaged values for parameters (e.g., age, weight, etc.) in the estimation of
each student’s energy expenditure and ventilation rate, the accuracy of this estimation can
be further improved if the exact values are known; (2) we used the shortest-distance route
from home to school as a surrogate of a student’s real home-school commute route, this
may also introduce biases and uncertainties into the analysis. In future work, we could
compare the results generated based on modeling with direct measurements to further
assess the accuracy of our approach. Our study suggests that local governments could
mitigate the adverse health effects of students” exposure to air pollution during commuting
by (1) developing an online website or smartphone APP to optimize students’ commute



Atmosphere 2022, 13, 1612 13 of 14

routes in a short-term view; (2) considering reduction in air pollution exposure in future
urban construction planning in a long-term view.
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