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Abstract: Nowcasting of clouds is a challenging spatiotemporal task due to the dynamic nature of
the atmosphere. In this study, the use of convolutional gated recurrent unit networks (ConvGRUs)
to produce short-term cloudiness forecasts for the next 3 h over Europe is proposed, along with an
optimisation criterion able to preserve image structure across the predicted sequences. This approach
is compared against state-of-the-art optical flow algorithms using over two and a half years of
observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard
the Meteosat Second Generation satellite. We show that the ConvGRU trained using our structure-
preserving loss function significantly outperforms the optical flow algorithms with an average change
in R2, mean absolute error and structural similarity of 12.43%, −8.75% and 9.68%, respectively, across
all time steps. We also confirm that merging multiple optical flow algorithms into an ensemble yields
significant short-term performance increases (<1 h), and that nowcast skill can vary significantly
across different European regions. Furthermore, our results show that blurry images resulting from
using globally oriented loss functions can be avoided by optimising for structural similarity when
producing nowcasts. We thus showcase that deep-learning-based models using locally oriented
loss functions present a powerful new way to produce accurate cloud nowcasts, with important
applications to be found in solar power forecasting.
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1. Introduction

Accurately modelling the evolution of clouds remains one of the greatest uncertainties
in modern climate models today [1]. Clouds play a central role in the solar irradiation
balance of the earth, being responsible for a net cloud radiative forcing effect of −20 W/m2

at the top of our atmosphere [2], and thus are major drivers of global hydrological and
energy cycles. Being able to accurately predict cloud evolution in the short term will aid
forecast potentially hazardous events such as severe convective weather, precipitation,
and enable better operational planning for solar photovoltaic power plants. Nowcasting
lends itself well to the short-term prediction of cloudiness, as its focus is on forecasting
how the atmosphere will evolve within a time frame of 0 up to 6 h as defined by the World
Meteorological Organisation [3].

Nowcasting methods have been employed since the 1970s to predict convective ini-
tiation from radar data and satellite imagery [4], as these types of mesoscale phenomena
have often been linked to high precipitation rates and thunderstorm development, and are
thus of great importance to society. Current mesoscale nowcasting methods often rely on
multispectral satellite data for cloud nowcasting. This firstly involves determining what
pixels inside of a scene represent clouds, resulting in the creation of a cloud mask layer [5].
Such cloud masks are computed from a combination of visible and infrared data from
orbiting geostationary satellites [6] and can be further processed to classify clouds into their
respective cloud types, such as low-level liquid water clouds or high-altitude ice clouds
which can be identified through their different cloud optical properties.

Atmosphere 2022, 13, 1632. https://doi.org/10.3390/atmos13101632 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13101632
https://doi.org/10.3390/atmos13101632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos13101632
https://www.mdpi.com/journal/atmosphere
http://www.mdpi.com/2073-4433/13/10/1632?type=check_update&version=2


Atmosphere 2022, 13, 1632 2 of 21

Currently, the most well established technique to nowcast cloud evolution is the
computation of cloud motion vectors (CMV) using optical flow (OF) methods such as
the Lucas–Kanade algorithm [7,8]. This pixel-based methodology calculates a motion
vector field from two or more consecutive images, with the resulting motion vector field
being used to warp the last image into the direction of computed pixel motion, with the
resulting image being the forecast. This optical flow method is particularly widespread
for operational precipitation nowcasting systems such as the Hong Kong Observatory’s
SWIRLS system or the UK Met Office’s STEPS system [9,10]. Increasingly, optical flow
methods have also been applied in the cloud nowcasting domain, specifically for the
purpose of forecasting solar radiation at photovoltaic power plants, which is one of the
main motivations of this study [11].

However, a potential pitfall of the optical flow approach is that it can only predict
the movement of features currently found within a given image and does not take into
account longer-term time dependencies between multiple consecutive observations within
the data. Furthermore, other physical processes leading to cloud formation such as oro-
graphic lifting, convergence and frontal lifting may not be adequately captured by this
method. With today’s advances in communication protocols, computing power and a
vast increase in remote sensing data, cloud nowcasting approaches have now been able
to diversify greatly beyond the CMV estimation approach. Other methods have included
enhancing CMVs with voxel-carving-based approaches [12], which enable tracking indi-
vidual clouds in voxel space, and the creation of a subsequent irradiance map to be used
for solar radiation nowcasting. More traditional time series forecasting methods such as
autoregressive integrated moving average (ARIMA) models [13] have also been used for
solar radiation nowcasting, using an on-site pyranometer to measure changes in the direct
normal irradiance (DNI) at the site, which is directly affected by passing clouds.

Some of the most recent approaches to nowcasting solar radiation and clouds make
use of deep neural networks (DNNs) and data collected by all sky imagers at photovoltaic
power plants [14]. For example, a range of attention-based convolutional neural networks
(CNN) were trained on historical photovoltaic power values and sky images to estimate
photovoltaic power. However, these approaches are limited to covering a small geographic
area and are not able to extrapolate to larger areas as would be possible with the usage
of satellite data making these methods limited and expensive to roll out across a larger
operational nowcasting context. In contrast, using high-resolution satellite data enables the
covering of a large nowcasting extent in an efficient manner, with multiple years of available
historical observations providing a large amount of information for a deep learning model
to learn how to represent short-term cloud dynamics.

To take advantage of this growing quantity of data, deep-learning-based models
present novel and efficient ways of learning patterns in historical atmospheric observations.
In particular it has been shown that model architectures which combine autoencoders
with recurrent units outperform state-of-the-art optical flow algorithms in precipitation
nowcasting, which like cloud nowcasting, aims at forecasting the future positions of moving
objects, whilst considering time series of images as both inputs and targets of the model in
consideration [15–20]. Autoencoder architectures enable a model to learn a compressed
representation of an input (for example a sequence of cloud fields), whilst recurrent units
such as long short-term memory (LSTM) or gated-recurrent units (GRU) capture the
complex dynamics within the temporal ordering of input sequences. Furthermore, they
enable models once trained to work with a variable length of input sequences and thus
make for a flexible nowcasting system.

Thus, the goal of this study was to apply recent advances in the nowcasting of precipi-
tation to the cloud nowcasting task, whilst validating our approach across large portions
of Western Europe and improving on the shortcomings found in recent cloud nowcasting
studies. To our best knowledge, cloud nowcasting using deep learning has so far only been
explored by a small number of studies, and within a limited spatial and temporal scope.
Knol et al. trained a convolutional autoencoder network using 486 days of EUMETSAT
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normalised irradiance data from the Netherlands and evaluated their model on 75 days
of unseen test data. Although they showed that their model outperformed optical flow
forecasts on average by 8% in mean absolute error (MAE) they reported that their gener-
ated forecasts rapidly degraded in structural quality and became blurry [21]. Furthermore,
Berthomier et al. showed that deep-learning-based models (U-Net, CNN) were able to out-
perform the AROME numerical weather prediction model for cloud cover predictions over
France in terms of mean squared error (MSE), but also reported that predictions by their
model produced blurry edges [20]. Similar findings highlighting blurred forecasts by deep
learning models were also reported by Ioenscu et al. who nowcasted a series of EUMETSAT
satellite products over Southeast Europe [22] as well as Yang and Mehrkanoon [23], who
proposed that one of the reasons for the blurring may be due to the use of MSE as the
objective function for training the models, which all other mentioned studies with blurry
forecasts also used as their loss function.

In light of these recent findings, we propose a solution to the blurry image problem
encountered in previous cloud nowcasting research, by developing a deep-learning-based
cloud nowcasting model which is optimised to preserve the structural integrity of its
nowcasts. This is important as for operational nowcasting, blurry predictions reduce the
spatial accuracy of the forecasts, which is an important forecast attribute to retain, especially
for applications in the solar energy industry. To achieve this, we develop a convolutional
autoencoder model which is optimised using a combination of locally and globally oriented
loss functions, which optimise for structural similarity between the input and target cloud
sequences, and we compare its nowcasting performance to state-of-the-art optical flow
models to produce blur-free nowcasts. We validate our approach across a large portion of
Western Europe, and set our nowcasting lead times to 3 h, enabling our nowcasting models
to be deployed as part of short-term forecasting systems, as we envision this system to
operate in a blended context, with longer timescale predictions from 3 to 6 h being handled
by a numerical weather prediction model such as the Icosahedral Nonhydrostatic Weather
and Climate Model (ICON).

2. Materials and Methods
Data Source

The primary dataset for this study consisted of over two and a half years of daily
outputs from the Meteosat Second Generation Cloud Physical Properties (MSG-CPP) algo-
rithm (1 January 2018–18 October 2020) developed at the Royal Netherlands Meteorological
Institute (KNMI) [6]. This dataset provides derived cloud and radiation products from
the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the Me-
teosat Second Generation satellite operated by EUMETSAT with a resolution of 3 × 3 km2.
In particular, 1022 days of data with a temporal availability of 15 min were gathered in
total, constituting approximately 560 GB of raw data.

Specifically, shortwave down-welling direct radiation was extracted from this dataset,
which was derived from methods described by Greuell et al. [24], which provide a physics-
based algorithm providing direct radiation and clear sky radiation products. All radiative
transfer calculations were parametrised by the surface albedo, integrated water vapour and
cosine of the solar zenith angle, while cloud parameters included cloud optical thickness
as well as effective droplet radius (for water clouds) and effective crystal radius (for ice
clouds). Direct normal radiation assuming clear sky incorporated the aerosol optical
thickness at 500 nm, the Ångström exponent, aerosol single-scattering albedo as well as
the surface elevation. Thus, we produced a proxy field of cloudiness (representing water
and ice clouds), with values between 0 and 1, by computing the fraction of shortwave
down-welling direction radiation divided by the direct solar radiation assuming clear sky,
with this variable forming the primary sequence variable to nowcast in this study (see
Figure A1 for an example training sequence).

In order to produce geographically accurate cloud forecasts, the raw MSG-CPP satellite
imagery had to be reprojected from a geostationary satellite grid to a map projection
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corresponding to the area of interest. Furthermore, as the nowcasting methods in this study
employed displacement-vector-based calculations and convolutions when computing pixel
displacement, the transverse Mercator projection was selected, as it preserves angles to
an infinitesimal scale and has low distortion near the central meridian. After reprojection,
a total of 9 different spatial extents covering 16 different countries in Europe were extracted
from this dataset, with a visualisation of these spatial extents shown in Figure 1. The daily
sequence length extracted was 4 h (16 frames with a final output size of 192 × 192 pixels for
each image in each sequence, with a temporal granularity of 15 min each), as our models
were each fed an input sequence representing 1 h of observations (4 frames as input),
with the lead time being 3 h (12 frames as output).

This resulted in a total size of the processed dataset comprising 66 GB of sequence data.
Furthermore, it is important to note that the MSG-CPP product relies on solar backscattered
radiation, thus limiting observations to daytime (where the solar zenith angle is smaller
than 78 degrees). Thus, an algorithm was developed, which, for each day, selected the
optimal time range for a given spatial extent that satisfied the solar zenith constraint. All
data preprocessing was carried out in parallel across 48 Intel Xeon Scalable processors
(3.6 GHz) on the AWS cloud platform.
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Figure 1. Spatial extents used for nowcasting covering a total area of approximately 10.46 million km2,
including the United Kingdom and Ireland (UK), Spain and Portugal (ES), France including Andorra
and Monaco (FR), Switzerland and Austria (AT), Belgium, The Netherlands and Luxembourg (NL),
Italy (IT), Germany (DE), Poland and the Czech Republic (PL), Hungary and Slovakia (HU).

3. Methodology
3.1. Eulerian and Lagrangian Persistence

The baseline forecasting model consisted of assuming future cloud fields to be the
same as the most recent observation, also called Eulerian persistence (Equation (1)), and rep-
resenting the model expected to perform the worst [25].

Ψ̂(to + τ, x) = Ψ(to, x) (1)
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Here, Ψ represents the observed cloud field, t0 the start time of the forecast, with Ψ̂(t0 + τ, x)
being the predicted field values at a given lead time τ and at a specific position x. Building
on this notion, one can introduce Lagrangian persistence [25], which assumes that the
state of each air parcel is constant, with all future change being due to parcels moving
with the background flow (advection). Eulerian persistence can be extended to account for
this by introducing an additional term α that describes the displacement vector between
consecutive fields as shown by Equation (2).

Ψ̂(to + τ, x) = Ψ(to, x− α). (2)

In this model, the predicted field at any given timestamp is equal to advecting Ψ by
the semi-Lagrangian displacement vector α, which can also include rotational motion [25].

3.2. Computing Displacement with Optical Flow

The displacement vectors u and v dictate the motion of a point in an image in the x
and y directions, respectively, which can also be written as

(u, v) = (
δx
δt

,
δy
δt

), (3)

with x, y representing the pixel’s position, t being the time step and δ representing the
change in a given variable. Optical flow thus is a technique used to compute motion vectors
u and v from consecutive image frames, by calculating the distribution of apparent velocities
of pixel intensities in an image. The first constraint of optical flow is that pixel intensities
are constant between consecutive frames, with this assumption given by Equation (4).

I(x + δx, y + δy, t + δt) = I(x, y, t) (4)

Here, I(x, y, t) refers to the pixel intensity of a single point in the image at position
x, y at time t. As seen in this equation, pixel intensities for a tracked point are assumed
to stay constant across consecutive frames. The next assumption of optical flow is that
motion is small between consecutive frames so that the change in pixel intensities can
be linearly approximated by taking the first-order derivatives of the pixel intensities and
adding them to the initial pixel intensities as seen in Equation (5), which provides the small
motion assumption.

I(x + δx, y + δy, t + δt) = I(x, y, t) +
∂I
∂x

δx +
∂I
∂y

δy +
∂I
∂t

δt (5)

We can then subtract Equation (4) from Equation (5), dividing this result by δt to yield
the final optical flow Equation (6) with the two unknown displacement vector components
u and v.

∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

= 0 (6)

A common way to solve Equation (6) is through the Lucas–Kanade method, which
uses least squares optimization to find the displacement vectors u and v [26]. This method
is often used to track sparse features between images; however, due to the dynamic nature
of clouds and the difficulty of identifying meaningful features to track across frames, dense
optical flow algorithms were instead used according to Ayzel et al. [27], which compute
the flow at all pixel locations in an image at each time step. Overall, three different optical
flow algorithms were applied to the problem of nowcasting cloudiness.

3.2.1. Farneback

This method approximates the neighbourhood of frames using a polynomial expansion
and estimates motion by computing orientation tensors by observing how polynomials
transform under translation [28].
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3.2.2. DeepFlow

DeepFlow blends a feature-matching algorithm with a variational optical flow ap-
proach. Features between frames are matched using a descriptor matching algorithm,
which incorporates convolutions and max-pooling [29].

3.2.3. Dense Inverse Search (DIS)

This algorithm uses an inverse compositional image alignment (inverse Lucas–Kanade
algorithm) to find patch correspondences and applies a densification step to compute a
dense displacement field [30].

3.2.4. Ensemble Model

Finally, all three algorithms were merged into an ensemble model where at each time
step of the nowcast, an average of all optical flow predictions was computed as defined in
Equation (7).

ēt(x, y) =
1
K

K

∑
i=1

pt(x, y). (7)

Here, the ensemble prediction at a given lead time ēt at position x, y was computed as
the average across all K optical flow algorithm predictions (pt) for their respective lead time.
Although these aforementioned optical flow methods are representative of the current
state-of-the-art in non-deep-learning-based nowcasting models, they lack the ability to take
into account advection patterns seen across multiple time steps and across multiple cloud
evolution sequences. In order to better model such a variation, the use of a convolutional
autoencoder network with gated recurrent units (ConvGRU) is proposed, which enables us
to efficiently reconstruct the input sequences whilst also taking into account spatiotemporal
dependencies.

3.3. Convolutional Gated Recurrent Unit Network

When using a deep neural network for nowcasting, the task of the network is to
encode a sequence of past observations Ψ with input length t into a lower dimensional
representation, followed by decoding these latent features to generate the most likely
sequence of predictions Ψ̂ with length τ, resulting in an input–output sequence akin to

〈Ψ1, Ψ2, . . . , Ψt〉〈Ψ̂1, Ψ̂2, . . . , Ψ̂τ〉. (8)

The deep learning model architecture was based on an implementation of the Con-
vGRU model used for precipitation nowcasting by Shi et al. [31], which took a fixed length
input sequence (4 frames in our case) and mapped it to an output sequence (12 frames
in our case). The encoder processed a sequence of inputs (192 × 192) and downsampled
it using various convolutional layers, creating a latent feature representation, which was
upsampled in the decoder and mapped to the fixed output sequence using deconvolutions
as depicted in Figure 2.
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Figure 2. Diagram of the convolutional gated recurrent unit model (ConvGRU) with three GRU units.
Sequences are downsampled using convolutions (Conv2D), using a kernel size of 3 and a stride of 1,
2, 2 (bottom to top layer). Upsampling is done using transpose convolutions using a kernel size of 4
and a stride of 1, 2, 2, respectively, with all filter sizes being 64, 96, 96. This figure shows the model
architecture when predicting a sequence of length 2. Figure was adapted from [31].

To retain spatiotemporal information and make predictions for each corresponding
lead time, gated recurrent units (GRU) were used that are a gated version of recurrent units
and modulate how information flows through the network through the implementation
of sigmoid gates, allowing long-term temporal dependencies to be learned [32], with the
main formulas for the GRU unit defined as follows:

Zt = σ(Wxz ∗ Xt + Whz ∗ Ht−1),

Rt = σ(Wxr ∗ Xt + Whr ∗ Ht−1),

H̃t = f (Wxh ∗ Xt + Rt � (Whh ∗ Ht−1)),

Ht = (1− Zt)� H̃t + Zt � Ht−1. (9)

Here, the inputs Xt ∈ RCi×H×W , where Ci refers to the input channel and H and
W to the respective height and width of the input image with t representing the time
step. The update gate Zt controls how much information from the previous time steps
is carried forward, while the reset gate Rt determines how much information to forget
from previous time steps, which occurs by taking the Hadamard (elementwise) product
between the reset gate Rt and (Whh ∗ Ht−1) when calculating the candidate hidden state
H̃ [32]. The candidate hidden state H̃ thus determines what elements of the previous
hidden state to incorporate. Finally, H̃ is used to compute the final hidden state Ht, which
uses Zt to control how much new information is written to the final state. As the activation
function for the candidate hidden state, the Leaky rectified linear unit (ReLU) function with
a negative slope of 0.2 denoted by f was used, while for the reset and update gates, the
sigmoid activation function was applied, denoted by σ. Note that� refers to the Hadamard
product and ∗ to the convolution operation.

3.4. Sequential Loss Functions

We introduce a novel sequential and locally oriented loss function to overcome the
blurry image problem observed by previous work in the cloud nowcasting domain when
using globally oriented loss functions such as MSE and MAE in convolutional autoen-
coders [20–23,33].
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Central to our sequential loss function is the structural similarity index measure (SSIM).
The SSIM measures nonstructural distortions (luminance and contrast changes) as well as
structural changes, by computing similarity metrics between local image patches taken
from the same location across three main image statistics, repeating this across the whole
image using sliding windows, and finally averaging all local SSIM values yielding a global
value for the image [34]. This metric was chosen as Lp-based metrics such as the L1 or L2
norm, when used in the context of computing image fidelity, make the assumption that
signal fidelity is independent of temporal or spatial relationships, thus failing to take into
account image textures or patterns that occur between signal samples [34]. At a pixel level,
SSIM can be defined as

S(a, a‘) = l(a, a‘) · c(a, a‘) · s(a, a‘) =

(
2µaµa‘ + C1

µ2
a + µ2

a‘ + C1

)
·
(

2σaσa‘ + C2

σ2
a + σ2

a‘ + C2

)
·
(

σaa‘ + C3

σaσa‘ + C3

)
, (10)

where a and a‘ represent two non-negative image signals at identical locations between
two images with a window size of 11 × 11 pixels. Furthermore, µ and σ correspond
to the respective sample mean and standard deviation and σaa‘ represents the sample
cross-correlation between a and a‘. C1, C2 and C3 are constants used to stabilise terms to
prevent numerical instability [34,35]. Note that the SSIM metric was applied locally over
the images using the aforementioned sliding window (11 × 11) with the mean value of all
local computations over the two images being compared corresponding to their SSIM.

In our custom loss function, SSIM was calculated between each predicted image and
the ground truth in each input sequence, whilst obtaining an average SSIM for the given
sequence. This was repeated for all sequences in a batch, finally yielding a mean SSIM
across all sequences in a batch giving an indication on how structurally similar sequences
were to each other in a given batch. Note that as SSIM is usually a quantity to be maximised
(between 0 and 1), we subtracted our loss from 1 as the gradient descent algorithm aimed
to minimise our loss function given as:

SSIMloss = 1−
(

1
B

B

∑
b=1

1
T

T

∑
t=1

SSIM(Ψ̂bt, Ψbt)

)
(11)

where SSIMloss is our sequential SSIM loss function, B the number of batches with b
referring to the batch index. T refers to the number of timestamps within a sequence with t
representing the current timestamp and Ψ̂ and Ψ being the predicted and actual cloud field.

3.5. Model Training and Evaluation

The optical flow nowcasts were carried out in parallel across 48 Intel Xeon Scalable
processors (3.6 GHz) on the AWS cloud platform. Training of the deep learning models
was done on an Nvidia V100 GPU with 16 GB memory. All models and logic were
containerised using Docker allowing for multiple experiments to be run independently
and in a reproducible way. The ConvGRU models were trained on 817 days of data across
9 different regions, which after optimising for optimum solar zenith angles yielded a total
of 6694 three-hour sequences of length 16 (total of 107,104 observations). The models
were all trained using a batch size of 6 over 3000 epochs with 5 different loss functions,
effectively carrying out an ablation study of different loss functions. These included MAE,
MSE, The Huber loss function (combination of L1 and L2 loss), our sequential SSIM loss
and a combination of the sequential SSIM loss with MAE given as:

L = SSIMloss + MAE (12)

The length of the input sequences for both the optical flow and deep learning mod-
els were 4 frames (representing 1 h), with the nowcast lead time being 12 frames (3 h).
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The optimiser used for training was the AMSGrad variant of the Adam optimisation al-
gorithm [36] with a constant learning rate of 2× 10−4. Both the optical flow and deep
learning approaches were evaluated by comparing nowcasts made for the same set of pre-
viously unseen test data spanning 205 days, which after solar zenith processing consisted
of 1669 three-hour sequences across 9 different regions (total of 26,704 observations). Both
the training and test datasets contained records sampled evenly across all meteorological
seasons as can be seen in Figure 3. Evaluation metrics were computed by comparing actual
versus predicted cloud fields using the coefficient of determination (R2), mean absolute
error and finally also by calculating the structural similarity index.
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0 20 40 60 80

Extracted days

M
o

n
th Dataset

Training
Test

Figure 3. Distribution of the training and test sets which was selected to contain an equal distribution
across meteorological seasons to account for seasonal variation in cloud dynamics within the dataset.

4. Results and Discussion
4.1. Optical Flow vs. ConvGRU Nowcasts

Optical flow provided a viable way to nowcast clouds with a lead time of 3 h. The three
different optical flow algorithms (DeepFlow, Dense Inverse Search and Farneback) all
showed significantly better performance than the persistence baseline model, with an
on average increase in R2, MAE and SSIM across all three models of 10.75%, −10.41%
and 3.09, respectively, for all time steps. However, as can be seen in Table 1, there were
differences in the predictive power between the three individual optical flow models
(DeepFlow, DIS, Farneback). The DIS model yielded the smallest improvements across
all metrics compared to the persistence model and was the worst-performing optical flow
model overall. In addition, as can be seen in Figure 4, the SSIM of predictions made with
the DIS model degraded the fastest out of all models and in fact became worse than the
persistence model after a lead time of 75 min. DeepFlow and Farneback both outperformed
DIS; however, they showed consistently different results across metrics. Farneback yielded
predictions with a better SSIM, whilst DeepFlow based predictions showed a better R2 and
MAE throughout all time steps, however, with a SSIM worse than the persistence model
after 120 min.

Importantly, however, the ensemble of optical flow algorithms yielded an on average
increase in R2, MAE and SSIM of 17.82%, −15.61% and 9.14%, respectively across all time
steps, representing the best-performing optical flow model. As can be seen in Table 1 and
Figure 4, the ensemble model consistently outperformed all other optical flow models for
all metrics at all time steps with an average change over the persistence model at a lead
time of three hours of 19.73%, −10.67% and 5.89% for R2, MAE and SSIM, respectively. A
multiple comparison of accuracy metrics between optical flow methods using the pairwise
Wilcoxon rank sum test with a Benjamin and Hochberg adjustment confirmed that the
ensemble model displayed significantly higher scores for R2, when compared to all other
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optical flow models. This difference though was not statistically significant for SSIM
and MAE.

In comparison, we found that the ConvGRU models showed a consistently better
performance than the ensemble optical flow model. The average improvement in the best
performing ConvGRU model (trained with both the SSIM and MAE loss functions) yielded
an on average improvement in R2, MAE and SSIM over the ensemble optical flow model
of 12.43%,−8.75% and 9.68% across all time steps, respectively. Furthermore, as can be seen
in Table 2 there were large differences in predictive performance between the ConvGRU
models trained with locally oriented loss functions such as our SSIM loss function, versus
models trained with global loss functions such as MSE. The models trained with the SSIM
and SSIM + MAE loss showed a significantly higher improvement in performance over
the ensemble optical flow model in terms of MAE and SSIM. However, in terms of SSIM
alone, the ConvGRU model trained solely with the SSIM loss function yielded the highest
SSIM scores out of all models for all time steps, and consequently also produced the most
blur-free predictions as can be seen in an example prediction in Figure 5.

Table 1. Average percentage differences in accuracy metrics of optical flow predictions against the
persistence baseline, grouped by lead time (τ).

τ Model %∆R2 %∆MAE %∆SSIM

4 DeepFlow 14.36 −12.79 6.93
DIS 11.86 −10.69 2.90

Farneback 14.12 −12.50 7.68
Ensemble 18.28 −16.89 11.2

8 DeepFlow 11.24 −6.83 −0.2
DIS 9.20 −5.89 −2.7

Farneback 10.66 −6.43 0.85
Ensemble 19.28 −12.21 6.56

12 DeepFlow 8.56 −4.95 −1.9
DIS 6.86 −4.32 −3.7

Farneback 8.01 −4.54 −0.5
Ensemble 19.73 −10.67 5.89

Table 2. Average percentage differences in accuracy metrics of ConvGRU predictions against the
optical flow ensemble baseline, grouped by lead time (τ).

τ Model %∆R2 %∆MAE %∆SSIM

4 MSE 4.27 −1.78 1.42
MAE 5.95 0.12 3.69

Huber 6.33 −2.46 3.12
SSIM 8.11 −0.06 8.63

SSIM + MAE 7.63 −9.27 7.28

8 MSE 13.43 −7.42 8.86
MAE 15.17 −6.50 10.53

Huber 16.05 −2.17 9.92
SSIM 15.95 −7.65 13.61

SSIM + MAE 16.43 −11.95 13.03

12 MSE 19.23 −6.38 11.59
MAE 20.96 −7.23 12.85

Huber 22.29 −0.72 12.31
SSIM 21.10 −9.48 15.53

SSIM + MAE 22.21 −11.18 15.07
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Figure 4. A comparison of average model performance across all lead times in the test set, for all
optical flow models and the persistence baseline (left) and the ConvGRU based models with varying
loss functions (right). Results show cumulative mean accuracy metrics per lead time in minutes.
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Ground Truth

OF Ensemble

MSE

MAE

Huber

SSIM

SSIM + MAE

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1

Figure 5. An example 3 h nowcast (12 frames) over France on 17 March 2019, contrasting the ensemble
optical flow model and ConvGRU-based nowcasting models trained with different loss functions
against the ground truth sequence, with tn representing each 15 min time step. Here, the OF ensemble
is the worst performing model, with the best performing model being the SSIM model.

4.2. Regional Effects on ConvGRU Performance

In addition to a variation in predictive performance across time, a significant geo-
graphical variation in performance was observed across different ConvGRU models as
can be seen in Figure 6. We computed the standard deviation of the mean percentage
change with respect to the ensemble optical flow model and observed various levels of
variance between different regions. In particular, the highest variances were observed in
the MAE metric (where 0.1 ≤ σ ≤ 0.17), indicating that this metric was sensitive to the
geographical location and chosen loss function. In particular, the highest spread in MAE
was observed in Spain, Italy and France with σ equal to 0.17, 0.14 and 0.12, respectively,
which can be observed by the large spread in MAE across ConvGRU models for those
countries in Figure 6. Here, it can also be seen that for forecasts with a lead time under
1 h in terms of MAE, the models trained using globally oriented loss functions such as
MSE and Huber were outperformed by the optical flow ensemble model for that lead time,
except for the SSIM + MAE model, which outperformed all others after the first 15 min.

With regards to the SSIM metric, we found that it was less sensitive to geographical
variation, with σ ranging between 0.04 and 0.07 across all evaluated geographical regions.
As seen in Figure 6, the highest spread in ConvGRU model performance was observed in
Switzerland and Austria, the United Kingdom and France, indicating that here, the use of
locally oriented loss functions was particularly useful to enhancing predictive performance
for that specific metric. For this metric, the ConvGRU model trained using SSIM showed
the consistently highest improvement over the ensemble optical flow model for all time
steps across all tested regions.

R2 was not as affected by regional changes; however, it had the highest differences
within model performance found across the Netherlands, Switzerland and Austria with
variances of 0.1 each. For this metric the ConvGRU model trained with SSIM loss again
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showed the highest performance across all time steps for all regions, except for Spain. In the
case of Spain, the SSIM model performed the best for the first 30 min, followed by the
SSIM + MAE model from 30 to 105, with the MSE model finally performing the best by a
small margin between a lead time of 105 and 180 min.
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Figure 6. Regional differences in cumulative mean accuracy metrics for all lead times across all
ConvGRU based models. Results show the mean percentage change with respect to the optical flow
ensemble model for each time step.
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Key Findings

This study showed that optical flow and deep learning algorithms provided accurate
ways of nowcasting cloud motion for the next three hours. In particular, it was shown
that dense optical flow algorithms that track global pixel displacement could be used
for nowcasting of said properties with good near-term forecasting accuracy (1 h) as can
be seen in Table 1 and Figure 4. These findings were in accordance with results from
Ayzel et al. [27], who showed that dense optical flow algorithms could be successfully
applied to nowcasting precipitation fields, whereas in our case we showed that an ensemble
of optical flow models performed better than any individual model. This may have been
the case as each individual model contained built-in assumptions whose errors could
be modelled as additive independent and identically distributed noise, where a noisy
image G(x, y) consisted of the real image f (x, y) and the added noise n(x, y) with (x, y)
corresponding to the spatial image coordinates [37] as shown by:

G(x, y) = f (x, y) + n(x, y). (13)

It then followed that conventional image merging methods could be applied to effec-
tively denoise the different optical flow nowcasts to obtain more accurate predictions by
averaging out the additive noise which can be written as:

G(x, y) = f (x, y) +
1
N

N

∑
i=1

ni(x, y). (14)

When following the additive noise model, the underlying image f (x, y) stayed con-
stant whilst averaging over multiple images reduced the noise term n(x, y), as it tends
to a mean of zero if assumed to follow a standard normal distribution [37]. However,
one of the main drawbacks we observed from using optical flow, was that it could result
in image-warping artefacts along the displacement vectors that distorted the image and
reduced forecast quality as can be observed in Figures A2, A6 and A7.

Furthermore, our results also confirmed that ConvGRUs trained with a combination
of local and global loss (SSIM + MAE) outperformed optical flow at time scales larger than
15 min in terms of MAE and for all time scales for R2 and SSIM. The improvements were
particularly pronounced when using a combination of locally and globally oriented loss
functions (SSIM + MAE), as well as only SSIM, overall yielding the greatest performance
improvements, and effectively yielding a solution to the blurry image problem reported
previously when only using global loss functions as the optimisation criterion of the
nowcasting model [20–23,33]. These results were in line with similar findings in the
precipitation nowcasting domain [38], with our custom sequential loss function, which
combined a sequential structural similarity measure and mean absolute error, striking
the balance between preserving global and local loss. This resulted in the best overall
performance across our evaluation metrics with average increases over the ensemble
optical flow model at a lead time of 3 h of 22.21%, −11.18% and 15.07% for R2, MAE
and SSIM, respectively, for the SSIM + MAE model, and 21.10%, −9.48% and 15.53%
for the SSIM model (see Table 2). Finally, we showed that with the addition of locally
oriented loss functions our predictions produced nowcasts with significantly higher SSIM
scores compared to cloud nowcasts by Knol et al., who used MSE as the main optimisation
criterion [21].

We also confirmed that models trained using our custom loss functions (SSIM,
SSIM + MAE) consistently performed the best across all geographical regions in our
dataset (see Figure 6). Interestingly, we also observed a variation across geographical
regions which may be linked to varying land-surface characteristics and local weather
variability, which may contribute to the difficulty of the overall nowcasting task. Our
custom loss functions were deemed especially performant in mountainous areas, which
display a number of complex cloud formation processes such as orographic lifting and
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others, therefore making the resulting cloud fields more heterogeneous, and therefore mak-
ing SSIM a more important metric to optimise for. Conversely, in high-pressure and less
climatologically variable regions such as Spain, the observed effect of switching between
models optimised for structural similarity yielded smaller gains. In the context of other
research using deep-learning-based models such as ConvLSTMs and U-Net-based architec-
tures for precipitation nowcasting [16,18,39], we also showed that deep learning could be
applied for nowcasting cloud fields, with significantly improved forecasts made possible
by introducing an optimisation criterion which also took into account the preservation of
image structure, which thus far has not been accounted for in the cloud nowcasting liter-
ature. Structural improvements in the forecasts were also visible in generated sequences
themselves. Examples of this can be seen in Figure 7 below, as well as in Figures A2–A6.
In particular, in Figure 8, it can be clearly seen that the MSE-trained model blurred the fore-
cast to reduce the mean forecast error, whereas the SSIM-trained model better maintained
the structure of the last observed cloud field. However, although our models learned to ad-
vect cloud fields over time other cloud formation processes were not captured. In Figure 9,
convective initiation over the European Alps is observed, with none of the models able to
also grow clouds accordingly.

Figure 7. Example 3 h nowcasts over Poland on 29 September 2020.

Figure 8. Example 3 h nowcasts over the Netherlands on 9 June 2018.
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Figure 9. Example 3 h nowcasts over Austria and Switzerland on 1 July 2019.

In summary, although we provided a solution to the blurry image problem, we still
observed limitations in our model’s generalisation ability across different regions due to
their different climatic characteristics, meaning that the inclusion of additional data sources
may further improve forecasts, and potentially also across different cloud types which are
the result of cloud formation processes other than advection. In the future, we envision the
extension of our model using a multimodal training framework, incorporating a variety of
different data sources which may help the model better capture cloud microphysics and
cloud formation processes which vary by geographical region due to different local land
surface characteristics. For this, we foresee the incorporation of detailed topographical
elevation data, land surface cover, and other climate characteristics such as temperature
and wind direction. Additionally, given that our dataset currently generalises the presence
of clouds as a function of available solar radiation, we also cannot currently determine
the performance of our model across different cloud types (e.g., cirrus, cumulus, stratus),
as well as its performance on clouds at different heights in the atmosphere. Therefore, we
also foresee that our future training dataset should incorporate such discriminating features
so that the model will be able to also be evaluated on those. Furthermore, even though we
conducted an ablation study of loss functions, and thereby determined the usefulness of
locally oriented loss functions, we aim to extend this in future research. In particular, it
would be useful to vary the number of GRU units in the network, as well as the kernel size,
stride and filter sizes using hyperparameter optimisation. In addition, we also foresee the
usage of a larger spatial input data context to be useful when making longer predictions
into the future. Furthermore, it would also be beneficial to study the effect of using attention
mechanisms as this approach has shown to yield very good results for extended forecast
horizons of up to 12 h in the context of precipitation nowcasting [18,19].

5. Conclusions

In this study, the use of multiple optical flow algorithms and ConvGRUs to nowcast
clouds for the next 3 h using MSG-CPP satellite data was investigated. One of the main
contributions was to show that the introduction of a sequential loss function which took
into account both image structure and global loss significantly increased the predictive
performance of ConvGRUs when nowcasting clouds. Furthermore, it was observed that
through this approach the blurry image problem highlighted by previous research could be
overcome and as a result more structurally accurate nowcasts could be generated. With re-
gards to optical-flow-based approaches, we also showed that these could be enhanced
through the use of image-merging techniques, yielding a good nowcasting accuracy for
short timescales of up to 1 h.

Nonetheless, our study also highlighted some limitations in the application of deep
learning to cloud nowcasting. Although our ConvGRU models learned to advect cloud
fields, they were not able to thoroughly model other cloud formation processes such as
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convection and orographic lifting. Furthermore, results on our training dataset cannot be
directly extrapolated to expected cloud nowcasting performance for different cloud types at
different heights in the atmosphere, as our dataset provided a general proxy for cloudiness
by means of solar radiation. As such, in future studies, an emphasis should not only be
placed on improvements in the model architecture, but also on the curation of training data
enabling cloud nowcasting at a more granular level.

Overall, our findings pave the way to use deep learning to generate longer and more
accurate nowcasts and help operationalise deep learning based nowcasting approaches
for a variety of use cases such as for solar-power forecasting. Our deep learning model
learned to represent advection of clouds over time and was able to represent their structure.
Overall, this study shows that deep-learning-based models will be able to greatly enhance
future operational nowcasting systems, and that it is possible to apply them to a wide range
of different nowcasting problems. It is envisioned that future renewable energy generation
forecasting systems will be able to greatly benefit from the integration of deep-learning-
based nowcasting models such as the one presented here.
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Appendix A. Example Training Data

Figure A1. Example 4 h sequence from the training dataset showing direct surface solar irradiance
extracted from the MSG-CPP dataset assuming clear sky (a), and without assuming clear sky (b),
with (c) showing the normalised solar radiation used as a proxy for cloudiness (with values between
0 and 1). Darker regions show higher solar radiation while lighter regions represent lower solar
radiation. in represent the input frames used to train the models, while tn represent the target frames.

Appendix B. Example Nowcasts

Herein are presented example 3 h nowcasts (includes twelve frames with each frame
corresponding to a 15 min time step) made on the unseen test dataset covering all extracted
geographical regions in this study. The ground truth is shown along with the ConvGRU
model trained with the SSIM and MSE loss as well as the ensemble optical flow model (OF
ensemble).
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Figure A2. Example 3 h nowcasts over France on 2 May 2020.

Figure A3. Example 3 h nowcasts over Spain on 5 September 2019.

Figure A4. Example 3 h nowcasts over Germany on 6 January 2020.
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Figure A5. Example 3 h nowcasts over Italy on 31 March 2018.

Figure A6. Example 3 h nowcasts over Hungary on 28 September 2019.

Figure A7. Example 3 h nowcasts over the United Kingdom and Ireland on 20 July 2019.
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