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Abstract: Compared to the zenith hydrostatic delay (ZHD) obtained from the Saastamonien model
based on in-situ measured meteorological (IMM) data and radiosonde-derived weighted mean
temperature (Tm), the ZHD and Tm deviations of the GPT3 model have shown obvious periodic
trends. This article analyzed the seasonal variations of GPT3-ZHD and GPT3-Tm during the 2016–2020
period in the Yangtze River Delta region, and the new improved ZHD and Tm models were established
by the multi-order Fourier function. The precision of the improved-ZHD model was verified using
IMM-ZHD products from 7 GNSS stations during the 2016–2020 period. Furthermore, the precisions
of improved Tm and precipitable water vapor (PWV) were verified by radiosonde-derived Tm and
PWV in the 2016–2019 period. Compared with the IMM-ZHD and GNSS-PWV products, the mean
Bias and RMS of GPT3-ZHD are −0.5 mm and 2.1 mm, while those of GPT3-PWV are 2.7 mm and
11.1 mm. Compared to the radiosonde-derived Tm, the mean Bias and RMS of GPT3-Tm are −0.8 K
and 3.2 K. The mean Bias and RMS of the improved-ZHD model from 2019 to 2020 are −0.1 mm and
0.5 mm, respectively, decreasing by 0.4 mm and 1.6 mm compared to the GPT3-ZHD, while those
of the improved-Tm are −0.6 K and 2.7 K, respectively, decreasing by 0.2 K and 0.5 K compared to
GPT3-Tm. The mean Bias and RMS of PWV calculated by GNSS-ZTD, improved-ZHD, and improved-
Tm are 0.5 mm and 0.6 mm, respectively, compared to the GNSS-PWV, decreasing by 2.2 mm and
10.5 mm compared to the GPT3-PWV. It indicates that the improved ZHD and Tm models can be
used to obtain the high-precision PWV. It can be applied effectively in the retrieval of high-precision
PWV in real-time in the Yangtze River Delta region.

Keywords: GPT3; Fourier function; zenith hydrostatic delay (ZHD); weighted mean temperature
(Tm); precipitable water vapor (PWV)

1. Introduction

Sufficient atmospheric water vapor is one of the necessary conditions for precipitation
formation, and water vapor detection plays an important role in weather forecasting,
disaster monitoring and global climate change monitoring [1]. GNSS precipitable water
vapor (GNSS-PWV) can be used to reflect the atmospheric water vapor variations in GNSS
meteorology. It has the potential to forecast severe weather phenomena [2–4] and examine
the effects of climate change [5,6]. Previous studies [3,7–10] have shown that there will be
severe rainstorms in the downward trend process after GNSS-PWV reaches its peak value.
Benevides et al. [11] proposed that the accuracy of weather forecasting could be improved
after analyzing 3D distribution variations of PWV [12–16].

The inversion process of GNSS-PWV requires the zenith wet delay (ZWD) and the
water vapor conversion coefficient (K). ZWD can be obtained by subtracting the zenith
hydrostatic delay (ZHD) from the zenith total delay (ZTD) [17]. ZHD is the main delay for
the GNSS signals transmitted in the neutral atmosphere, accounting for more than 90%
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of ZTD. It means that the precision of ZHD will indirectly affect the precision of ZWD.
The weighted mean temperature (Tm) is one of the important parameters to calculate K
for the conversion of ZWD to PWV [18]. The ZHD and Tm play a crucial role in obtaining
high-precision real-time GNSS-PWV [19,20].

Currently, the commonly used ZHD models can be divided into two categories. One
is the empirical models based on the measured meteorological parameters, including the
Saastamonien [21], Hopfield [22], and Black [23] models. For example, the Saastamonien
model uses meteorological sensors to measure surface pressure and can calculate the ZHD
at a millimeter level. However, it is difficult to obtain the measured meteorological param-
eters in real time at any place in the world, which limits the application of tropospheric
delay models that need measured meteorological parameters with respect to GNSS meteo-
rology. In this case, the use of atmospheric data to establish regional or global real-time
tropospheric delay models has been widely concerned, such as UNB3m [24], EGNOS [1]
and GPT [25–28]. ERA-Interim [29] and ERA5 [30] are also used to interpolate surface
meteorological parameters at the GNSS stations. At the same time, a series of studies
have achieved fruitful results in this research area. Ghaffari Razin and Voosoghi [31] use
Bernese GNSS software and Saastamoinen model to calculate the ZTD and ZHD, then the
ZWD obtained by subtracting the ZHD from the ZTD is modeled by two different machine
learning methods, which can obtain PWV with high accuracy. A site-specific ZHD model
was established by collecting an atmospheric vertical profile from radiosondes stations.
It provides an error about 0.19 mm, which can be used to accurately estimate PWV [32].
Yang, et al. [33] analyzed the global performance of the three most commonly used ZHD
models, the best temperature and pressure models were established by evaluating the
influence of different modeling factors and the meteorological parameters estimated by
the above-mentioned models. Based on the ERA5 reanalysis data of the European Centre
for Medium-Range Weather Forecasts (ECMWF), Mateus, et al. [34] developed a one-hour
global air pressure and temperature model (HGPT) to provide pressure, temperature,
ZHD, and Tm. Climate studies, GNSS meteorology and other atmospheric research can
significantly benefit from it.

The Tm is a necessary parameter to calculate the K value and plays a key role in
atmospheric water vapor conversion. Among various Tm calculation methods, the accu-
racy of radiosonde-derived Tm is the highest, but it is difficult to popularize due to the
spatiotemporal limitation of radiosondes [35–37]. Therefore, Bevis used the ground surface
temperature (Ts) from the profiles of vapor partial pressure and dewpoint temperature of
North American radiosondes over a two-year period to establish a global mean temperature
model in 1992 (Tm = 0.72 Ts + 70.2) [38]. However, due to the influence of location, time,
and other factors, the regional accuracy of Bevis model is inconsistent. In general, the
systematic deviation is greater than 4.0 K, and even greater than 8.0 K in some areas [39,40].
When encountering bad weather, it may even lead to a significant deviation of GNSS-
PWV [41,42]. Considering the linear relationship between Tm and Ts, many scholars have
established different regional Tm models (RTM) based on local radiosondes [40,42–44]. The
RTM established in Hong Kong can control the deviation within 4.0 K, which is superior to
the Bevis model [45]. Singh, et al. [46] have found that the site specific Tm model is better
than the developed regional Tm model and global model at New Delhi and Patiala. Elhaty,
et al. [47] use radiosonde profiles from four stations situated in Egypt during 2015–2016 and
Bevis linear regression method to develop a new Tm model. Several RTMs using one factor
(Ts) have been established in China [45,48–50]. Li and Mao [48] deeply studied the monthly
coefficient of RTM in eastern China. Guo, et al. [51] established a good annual single factor
RTM model based on sounding data in the Yangtze River Delta region. Based on the above
research, the researchers established many multi-factor RTM models [52–54]. Considering
the influence of pressure (Ps) and water vapor pressure (es) on Tm, Gong [52] analyzed the
relationship between meteorological elements using the data of 123 radiosonde stations in
China, and established multi-factor models in different climatic regions, effectively improv-
ing the accuracy of single factor models. However, the models established by Wang, Song,
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Dai, and Cao [53] show that there is little difference in accuracy between the single factor
model and the multi-factor model in Hong Kong. According to the above linear regression
models, the precision of non-linear RTM between Tm and Ts proposed and established by
Yao, et al. [55], which is slightly better than that of linear RTM. Zhu, et al. [56] established
a non-linear Tm model for China with elevation corrections, which provides a significant
correction effect for Tm in the vertical direction. Lan, Zhang, and Geng [39] adopt the
sliding average method to calculate the correlation coefficient between Ts of the ECMWF
and Tm from the “GGOS Atmosphere”. Compared to the Tm-Ts relation of Bevis model,
the Tm Grid model shows higher precision. Most researchers will analyze its precision
comparing the PWV calculated by different ZHD and Tm models [57,58].

As mentioned above, when GNSS stations lack meteorological instruments, GPT
series models are usually used to obtain real-time meteorological parameters. Boehm,
Heinkelmann and Schuh [25] first proposed GPT in 2007, which can provide the pressure
and temperature at any geographical location on the earth surface. Lagler, Schindelegger,
Böhm, Krásná, and Nilsson [28] developed the GPT2 by combining the GPT with global
mapping function (GMF), which can provide more meteorological parameters. Böhm,
Möller, Schindelegger, Pain and Weber [26] introduced the vertical gradient of water vapor
pressure and Tm to establish GPT2w on the basis of GPT2 in 2015. The GPT3 model is the
latest version of the GPT series models, it can provide not only parameters from GPT2w, but
also empirical gradient grids and is one of the most accurate and widely used tropospheric
delay models [27]. Many studies have shown that the GPT3 model can provide high-
precision ZTD and horizontal gradient information on a global scale, however, due to
the limitation of terrain and other conditions, the GPT3 model based on European Centre
for Medium-Range Weather Forecasts (ECMWF) data cannot be perfectly applied to any
area [59–61]. Therefore, in a specific time and area, the precision of GPT3 model may not
meet the requirements of some high-precision GNSS-PWV applications

Based on the GNSS products and radiosondes data in the Yangtze River Delta region
during the 2016–2020 period, this paper analyzed the seasonal variations of the Tm and
ZHD of GPT3 model in the Section 2, and then the Fourier function was used to establish
the improved ZHD and Tm models in the Section 3. Meanwhile, the precisions of these
improved ZHD and Tm models were verified by comparing them with the GNSS and
radiosondes products in the Section 3. The Section 4 is the conclusion.

2. Data Sources and Methodology
2.1. Data Sources

Data from seven GNSS stations in the Yangtze River Delta region from 2016 to 2020 [62],
mainly including parameters such as altitude, pressure, temperature, ZTD, ZHD and
PWV (time resolution is one hour) were used to analyze the precision of corresponding
parameters from the GPT3 model. Among them, the deviation between GPT3-ZHD and
IMM-ZHD during the 2016–2018 period was used to establish the improved-ZHD model
based on the Fourier function, and IMM-ZHD from 2016 to 2020 was used to verify the
precision of the improved-ZHD model.

Data from seven radiosonde stations in the Yangtze River Delta region from 2016 to
2019 were obtained from Wyoming State University (http://weather.uwyo.edu/upperair/
sounding.html, accessed on 15 April 2022), and it include meteorological parameters such
as pressure, temperature and elevation (time resolution is 12 h). The PWV and Tm can
be obtained by the integration method, and used as a reference to analyze the precision
of GPT3-Tm and its inversion precision of PWV. The deviation of the GPT3-Tm and the
radiosonde-derived Tm obtained by the integration method during the 2016–2018 period
was used to establish an improved Tm model based on the Fourier function, and the data
from 2016 to 2019 were used to verify the precision of the improved Tm model. Figure 1 is
the location information of 7 GNSS stations and seven radiosonde stations.

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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Figure 1. Distribution map of GNSS and radiosonde stations in the Yangtze River Delta region.

2.2. Methodology
2.2.1. Tm Calculation

The Tm is calculated by the numerical integration method using the radiosondes
selected in Figure 1. The radiosonde-derived Tm has high calculation precision and is
easy to realize [63]. It will be used as the reference or true value to evaluate the precision
of GPT3-Tm.  Tm =

∫
(e/T)dz∫
(e/T2)dz

e = 6.112× e
17.62td

243.12+td

(1)

where, z is the elevation of the layer (km), e is the surface water vapor pressure (hPa), and
td is the surface dew point temperature (◦C).

2.2.2. GNSS-PWV and GPT3-PWV Calculations

GNSS has the advantages of all-weather, continuous and global coverage, it can
provide high-precision ZTD except for navigation and positioning. According to the multi-
frequency GNSS observations, the GNSS-ZTD time series can be obtained using precise
point positioning (PPP) [64]. Firstly, the real-time clock error of satellites can be obtained
by the data of GNSS reference stations and IGU orbit from IGS, then, then the time series of
real-time ZTD will be calculated by the PPP routine of RTKLib on the basis of the real-time
clock error of satellites and IGU products [3].

GNSS-ZTD consists of IMM-ZHD and GNSS-ZWD (ZTD = ZWD + ZHD), and the
IMM-ZHD can be calculated by the Saastamonien model based on the latitude, air pressure
and elevation of the sites [21], the formula is as follows.{

IMM− ZHD = 0.0022768× Pc
f (ϕc ,Hc)

f (ϕc, Hc) = 1− 0.002 66 cos 2ϕc − 0.000 28Hc
(2)

where, Pc is the pressure of the station (hPa), ϕc is the latitude of the station (◦), Hc is the
elevation of the station (km). ZWD obtained by ZTD minus ZHD and the GNSS-PWV is
determined by the following expression.{

PWV = K× ZWD
K = 105

Rv(k3/Tm+k′2)
(3)

where, K is the atmospheric water vapor conversion coefficient, Rv is the gas constant of the
water vapor ratio, Rv = 461

(
J·K·kg−1

)
; k′2 and k3 are the atmospheric refractive index con-
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stants; K3 = 3.776× 105
(

K2·hpa−1
)

; k′2 = k2− k1·(mv/md)
(

K·hpa−1
)

; k1 = 77.604 (K·hPa);

k2 = 64.79 (K·hPa); mv = 18.0152
(

g·mol−1
)

; md = 28.9644
(

g·mol−1
)

; The Tm is obtained
from the measured meteorological data according to Equation (1).

GPT3-PWV and GNSS-PWV adopt the same calculation method as Equation (3), but
the difference is that Tm and ZWD for GPT3-PWV are obtained from the GPT3 model,
which is more convenient.

2.2.3. Fourier Function

The Fourier function is a special triangular series proposed by Fourier, a French
mathematician. Its characteristics and advantages are that complex functions can be trans-
formed into linear combinations of simple trigonometric functions, which can accurately
approximate any complex function, achieving the purpose of studying complex functions
when given the appropriate orders, coefficients, and frequency [65]. The basic formula is
as follows.

y = f (x) = a0 +
m

∑
n=0

(an cos(n× x× w) + bn sin(n× x× w)) (4)

where, m is the orders, w is the frequency, and an and bn are the coefficients.

2.2.4. Statistical Method

The mean Bias and the root mean square (RMS) are used to evaluate the precision of
the meteorological parameters and improved models as follows.

Bias =
∑n

i=1(xmodel,i−xtrue,i)
n

RMS =

√
∑n

i=1(xmodel,i−xtrue,i)
2

n

(5)

where, Xmodel,i and Xtrue,i represent parameter value of the models and truth, respectively,
and the n is the number of samples.

3. Results and Discussions

The GPT series model (http://ggosatm.hg.tuwien.ac.at/DELAY/, accessed on 10
January 2022) is one of the popular open-source tropospheric delay models by adding
empirical meteorological parameters. It only needs to provide the approximate coordinates
of the station (Latitude, Longitude, Height) and day of year (DOY), and the values of
meteorological parameter at any location all over the world can be obtained. The GPT3
model, as the latest model of the GPT series, has added gradients in two directions (N
for north and E for east), and is completely consistent with the Vienna mapping function
(VMF3), which can meet various purposes for meteorological and climate research. Its
formula is as follows.

r(t) = A0 + A1 cos
(

2π
doy

365.25

)
+ B1 sin

(
2π

doy
365.25

)
+ A2 cos

(
4π

doy
365.25

)
+ B2 sin

(
4π

doy
365.25

)
(6)

where, r(t) are the values of the meteorological parameters at the grid point; A0 is the mean
value; (A1, B1), the amplitudes of the annual cycle; and (A2, B2), the amplitudes of the
semi-annual cycle. Coefficients can be obtained by combining external grid files (gpt31.grd)
with bilinear interpolation.

The GPT3 model uses the Saastamonien model to calculate ZHD as shown in Equation (1).
The Asken&Nordiuss model [66] is used to calculate the ZWD. The GPT3 model also pro-
vides some empirical meteorological parameters that are inconvenient to measure directly.
These meteorological parameters can be used to calculate GPT3-ZWD; the calculation
formula of GPT3-PWV is the same as Equation (2).

http://ggosatm.hg.tuwien.ac.at/DELAY/
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3.1. The Improved ZHD Model

The comparison of GPT3-ZHD and IMM-ZHD of four GNSS stations at Anqing,
Bengbu, Lishui and Lianyungang from 2016 to 2020 is shown in Figure 2. It can be seen that
ZHD shows obvious seasonal periodical changes, and the overall trend of the two types of
ZHD is similar. The ZHD value reaches the valley value in June, while it reaches its peak
value in December. Affected by location and altitude, the peak value (or valley value) of
ZHD at each station generally has a millimeter to centimeter deviation.
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(d) during 2016–2020.

3.1.1. The Establishment of an Improved ZHD Model

Based on the analysis of GPT3-ZHD, experiments and analysis show that the Fourier
function can be effectively used for model fitting. It will perform different fitting effects
for the deviation of GPT3-ZHD by using different orders of the Fourier function. By
comparison, the accuracy of the third order Fourier is much better than that of the first
order, which is close to the fourth order, and the coefficient of the third order is simpler
than that of the fourth order, so we chose the third order. Therefore, the third-order Fourier
function is adopted to establish an improved ZHD model in this paper. Its calculation
formula is as follows.

f (x) = a0 + a1 cos xw + b1 sin xw + a2 cos 2xw + b2 sin 2xw + a3 cos 3xw + b3 sin 3xw (7)

where, a0, a1, b1, a2, b2, a3, b3, w, represent the coefficients, x is the day of year, and f (x) is
the deviation fitting curves based on the third-order Fourier function.

The GPT3-ZHD deviations of the 7 GNSS stations in the Yangtze River Delta region
from 2016 to 2018 were used in Equation (7). It can obtain the model coefficients of the
third-order Fourier function as shown in Table 1, which is a numerical description of the
distribution characteristics of the GPT3-ZHD deviation. Figure 3 is the fitting curve of
the ZHD deviation, it can be seen that the deviation distribution of GPT3-ZHD at seven
stations is relatively small and the difference is mainly within 2 mm. The fitting curve
agrees well with the deviation of each GNSS station, and the fitting deviation is mostly
within 0.5 mm.
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Table 1. The Fourier coefficients of the GPT3-ZHD bias in the Yangtze River Delta region during
2016–2018.

Parameter a0 a1 b1 a2 b2 a3 b3 w

ZHD −0.3909 −0.2525 −2.676 −0.2953 0.3294 0.00059 −0.0097 0.01718

Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 16 
 

 

where, 𝑎, 𝑎ଵ, 𝑏ଵ, 𝑎ଶ, 𝑏ଶ, 𝑎ଷ, 𝑏ଷ, 𝑤, represent the coefficients, 𝑥 is the day of year, and 𝑓ሺ𝑥) is the deviation fitting curves based on the third-order Fourier function. 
The GPT3-ZHD deviations of the 7 GNSS stations in the Yangtze River Delta region 

from 2016 to 2018 were used in Equation (7). It can obtain the model coefficients of the 
third-order Fourier function as shown in Table 1, which is a numerical description of the 
distribution characteristics of the GPT3-ZHD deviation. Figure 3 is the fitting curve of the 
ZHD deviation, it can be seen that the deviation distribution of GPT3-ZHD at seven sta-
tions is relatively small and the difference is mainly within 2 mm. The fitting curve agrees 
well with the deviation of each GNSS station, and the fitting deviation is mostly within 
0.5 mm. 

Table 1. The Fourier coefficients of the GPT3-ZHD bias in the Yangtze River Delta region during 
2016–2018. 

Parameter 𝐚𝟎 𝐚𝟏 𝐛𝟏 𝐚𝟐 𝐛𝟐 𝐚𝟑 𝐛𝟑 𝐰 
ZHD −0.3909 −0.2525 −2.676 −0.2953 0.3294 0.00059 −0.0097 0.01718 

 
Figure 3. Bias and fitting curves of the GPT3-ZHD bias in the Yangtze River Delta region during 
2016–2018. 

3.1.2. Precision Analysis 
The improved ZHD model established in the previous section can be used to predict 

the ZHD value (improved-ZHD) at GNSS stations from 2016 to 2020. Moreover, the article 
analyzed the precision of the improved ZHD model using the IMM-ZHD as the true value, 
and verified the weakening effect of the seasonal periodic deviation in Figure 4. It is clear 
that the periodic deviation of improved-ZHD at most stations has been greatly decreased, 
but the periodic fluctuation of improved-ZHD at Bengbu Station still has a small ampli-
tude, which is related to the large gap between its GPT3-ZHD deviation and the overall 
trend of the deviation distribution. In general, most of the deviations of the improved 
ZHD model are maintained within 0.5 mm, and the precision of the improved-ZHD is 
greatly improved compared to the GPT3 model. 

  

Figure 3. Bias and fitting curves of the GPT3-ZHD bias in the Yangtze River Delta region during
2016–2018.

3.1.2. Precision Analysis

The improved ZHD model established in the previous section can be used to predict
the ZHD value (improved-ZHD) at GNSS stations from 2016 to 2020. Moreover, the article
analyzed the precision of the improved ZHD model using the IMM-ZHD as the true value,
and verified the weakening effect of the seasonal periodic deviation in Figure 4. It is clear
that the periodic deviation of improved-ZHD at most stations has been greatly decreased,
but the periodic fluctuation of improved-ZHD at Bengbu Station still has a small amplitude,
which is related to the large gap between its GPT3-ZHD deviation and the overall trend of
the deviation distribution. In general, most of the deviations of the improved ZHD model
are maintained within 0.5 mm, and the precision of the improved-ZHD is greatly improved
compared to the GPT3 model.

Table 2 shows the precision statistics of the improved ZHD model from 2016 to 2020.
It can be seen from the table that the Bias and RMS of the improved ZHD model based on
the Fourier function from 2019 to 2020 are −0.1 mm and 0.5 mm, respectively, which are
0.7 mm and 1.6 mm better than that of GPT3-ZHD, respectively. The overall precision of the
improved-ZHD is significantly improved and relatively stable at each station. Therefore,
the improved ZHD model has a higher precision and applicability than the GPT3 model in
the Yangtze River Delta region.

3.2. The Improved Tm Model

Comparisons between the GPT3-Tm and the radiosonde-derived Tm (as a true value)
at the four radiosondes in Anqing, Sheyang, Fuyang and Nanjing from 2016 to 2019 are
shown in Figure 5. It can be seen that the Tm show obvious seasonal periodic changes and
the overall change trends of the two types are similar, which are lower in spring and winter
and higher in summer and autumn.

3.2.1. The Establishment of an Improved Tm Model

Based on the analysis of GPT3-Tm, the deviations of GPT3-Tm from seven radiosondes
in the Yangtze River Delta region from 2016 to 2018 are substituted into Equation (7),
and the coefficients of third order Fourier function model of GPT3-Tm deviations can be
obtained as shown in Table 3.
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Table 2. The precision of improved ZHD in the Yangtze River Delta region during the 2016–2020
period (mm).

Sites

GPT3-ZHD Improved-ZHD

2016–2018 2019–2020 2016–2018 2019–2020

Bias RMS Bias RMS Bias RMS Bias RMS

Anqing −0.1 2.0 −0.2 2.1 0.3 0.4 0.4 0.4
Bengbu 0.1 2.2 −0.0 2.2 0.6 0.7 0.6 0.7
Jiande −0.8 2.0 −1.0 1.8 −0.4 0.5 −0.4 0.7
Lishui −0.2 2.1 −0.4 2.1 0.2 0.4 0.2 0.4

Lianyungang −0.7 2.2 −1.0 2.3 −0.4 0.4 −0.4 0.4
Shanghai −0.4 1.9 −2.2 2.3 0.0 0.4 −0.4 0.4
Wenzhou −0.9 1.9 −1.0 2.0 −0.5 0.8 −0.4 0.5
Average −0.4 2.0 −0.8 2.1 −0.0 0.5 −0.1 0.5
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Figure 4. The bias of improved-ZHD and GPT3-ZHD at Anqing (a), Bengbu (b), Lishui (c), and
Lianyungang (d) during the 2016–2020 period.

Table 3. Fourier coefficients of the GPT3-Tm bias in the Yangtze River Delta region during the
2016–2018 period.

Parameter a0 a1 b1 a2 b2 a3 b3 w

Tm −0.8249 −1.247 1.301 −0.2511 −0.2311 0.2893 −0.9035 0.01729

The bias distribution of GPT3-Tm of the seven radiosondes is shown in Figure 6. It
can be seen that the Tm deviations of nearly all radiosondes are maintained within ±10 K,
but the deviation distribution is relatively discrete and exhibits obvious periodicity. A
fitted curve has also been shown in the figure. It can describe the deviations distribution of
GPT3-Tm well.
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3.2.2. Precision Analysis

The improved Tm model established in the previous section can be used to predict the
Tm at seven radiosonde stations from 2016 to 2019. Furthermore, the article analyzed the
precision of the improved Tm model using the radiosonde-derived Tm as true value, and
verified the weakening effect of the seasonal periodic deviation of GPT3-Tm in Figure 7.
It is clearly shown that the improved-Tm and GPT3-Tm are generally similar, and their
deviations are both within ±10 K compared to the radiosonde-derived Tm. However, the
deviations of improved-Tm are more concentrated, indicating that the improvement effect
is more obvious.
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Figure 7. The bias of GPT3-Tm and improved-Tm in Anqing (a), Sheyang (b), Fuyang (c) and Nanjing
(d) during the 2016–2019 period.

Table 4 is the precision statistics of the improved-Tm and the GPT3-Tm from 2016 to
2019. It can be seen that the mean Bias and RMS of improved-Tm are −0.6 K and 2.7 K in
2019, respectively, which are improved by 0.8 K and 0.4 K, respectively, compared to that of
GPT3-Tm. Although the improvement of RMS is small, the bias of each station decreases
steadily. Therefore, the improved Tm model in the paper has a higher and more stable
precision than the GPT3 model in the Yangtze River Delta region.

Table 4. Precision of the GPT3-Tm and the improved-Tm in the Yangtze River Delta during the
2016–2019 period (K).

Sites

GPT3-Tm Improved-Tm

2016–2018 2019 2016–2018 2019

Bias RMS Bias RMS Bias RMS Bias RMS

Anqing −0.2 3.0 −1.1 2.9 0.4 2.8 −0.3 2.7
Sheyang −1.1 3.4 −1.7 3.3 −0.5 2.8 −0.9 2.7
Fuyang −0.5 3.2 −1.0 2.9 0.2 2.9 −0.3 2.7
Nanjing −0.8 3.2 −1.5 3.1 −0.2 2.8 −0.7 2.6

Hangzhou −1.0 3.4 −1.8 3.4 −0.3 2.8 −1.0 2.8
Quzhou 0.1 3.0 −0.9 2.7 0.7 2.9 −0.2 2.5
Shanghai −1.9 3.4 −1.9 3.4 −0.4 2.8 −1.1 2.6
Average −0.8 3.2 −1.4 3.1 −0.0 2.8 −0.6 2.7

3.3. The PWV Based on Improved ZHD and Tm Models

The time series variation of GPT3-PWV and GNSS-PWV in Anqing (a), Bengbu (b),
Lishui (c), and Lianyungang (d) during the 2016–2020 period is shown in Figure 8. Both
GPT3-PWV and GNSS-PWV have obvious seasonal periodic changes, due to the influence
of the subtropical monsoon in the Yangtze River Delta region, where rain and heat are in the
same period, so the PWV is lower in spring and winter and higher in summer and autumn.
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and Lianyungang (d) during 2016–2020.

GNSS-ZTD, improved-ZHD, and improved-Tm can be used integrated to calculate the
improved-PWV at seven GNSS stations in the Yangtze River Delta region from 2016 to 2020
in the paper, the precision improvement of improved-PWV calculated as follows.{

PWV = K× (GNSSZTD − ImprovedZHD)

K = 105

Rv(k3/ImprovedT m+k′2)
(8)

where, ImprovedTm and ImprovedZHD come from the improved Tm and ZHD models based
on Fourier functions in Sections 3.1 and 3.2. GNSSZTD are obtained from GNSS, other
parameters are the same as Equation (2).

The bias of GPT3-PWV and improved-PWV in Anqing (a), Bengbu (b), Lishui (c)
and Lianyungang (d) during the 2016–2020 period is shown in Figure 9. The improved-
PWV has greatly eliminated the seasonal periodic deviation of GPT3-PWV, indicating that
the differences between the improved-PWV and GNSS-PWV are small and are highly
consistent with each other.
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The precision statistics of GPT3-PWV and improved-PWV are shown in Table 5. It
can be seen that the mean Bias and RMS of improved-PWV are 0.5 mm and 0.6 mm,
respectively, which are 2.2 mm and 10.5 mm higher than that of GPT3-PWV, and the
precision of GPT3-PWV is greatly improved. The precision of improved-PWV is very close
to that of GNSS-PWV, and it can be used for real-time high-precision inversion of PWV in
the Yangtze River Delta region.

Table 5. Precision of GPT3-PWV and improved-PWV in the Yangtze River Delta during 2016–2020
(mm).

Sites
GPT3-PWV Improved-PWV

Bias RMS Bias RMS

Anqing 2.9 11.3 0.6 0.6
Bengbu 1.3 10.2 0.5 0.6
Jiande 3.3 11.4 0.4 0.4
Lishui 1.8 11.2 0.5 0.5

Lianyungang 1.6 9.2 0.4 0.4
Shanghai 5.2 13.3 0.7 0.8
Wenzhou 3.0 11.0 0.7 0.7
Average 2.7 11.1 0.5 0.6

In order to further verify the inversion precision of improved-PWV, Anqing and
Shanghai that have co-located radiosondes and GNSS stations are selected to compare
improved-PWV and GNSS-PWV with radiosonde-derived PWV from 2016 to 2019. The bias
of GNSS-PWV and improved-PWV is shown in Figure 10. The vacancy in the Figure 10b is
caused by the lack of radiosonde and GNSS data after March 2019 in Shanghai station.
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The deviation distribution of the improved-PWV and GNSS-PWV is in good agree-
ment, and most deviations of the PWV are kept within ±10 mm, indicating that the
precision of the improved-PWV and GNSS-PWV are equivalent.
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Table 6 shows the precision statistics of improved-PWV and GNSS-PWV. Compared
with the radiosonde-derived PWV, the mean Bias and RMS of the improved-PWV are
−1.1 mm and 3.7 mm, respectively, which are 0.5 mm and 0.3 mm better than that of the
GNSS-PWV, and the precision is slightly improved. It can be seen that the precision of
PWV based on improved ZHD and Tm models is slightly better than that of GNSS-PWV,
and they are roughly equivalent on the whole, which is further verified and demonstrated
that the improved ZHD and Tm models can be used to obtain real-time high-precision PWV
comparable to the GNSS-PWV precision.

Table 6. Precision of the GNSS-PWV and the improved-PWV at the co-located GNSS and radiosonde
stations in Anqing and Shanghai during the 2016–2019 period (mm).

Sites
Improved-PWV GNSS-PWV

Bias RMS Bias RMS

Anqing −1.2 3.9 −1.8 4.2
Shanghai −1.0 3.4 −1.5 3.7
Average −1.1 3.7 −1.6 4.0

4. Conclusions

The precision of the GPT3 model (ZHD, Tm and PWV) in the Yangtze River Delta
region was first analyzed with reference to GNSS and radiosondes products. Aiming at the
problem that the ZHD and Tm from GPT3 model have obvious seasonal periodic deviations,
the third-order Fourier function was used to establish improved ZHD and Tm models, and
their precision were analyzed and verified. The main research conclusions are as follows.

The mean biases of the GPT3-ZHD, Tm and PWV are −0.5 mm, −0.8 K, and 2.7 mm,
respectively, and the mean RMS of those are 2.1 mm, 3.2 K, and 11.1 mm, respectively.
Compared to the reference values of the GNSS products and radiosondes, the ZHD and
PWV deviations have obvious seasonal variations. Specifically, the deviation of ZHD is
negative in spring and winter, but positive in summer and autumn, and the deviation of
PWV is smaller in spring and winter, but larger in summer and autumn.

Compare with the GPT3 model, the mean Bias and RMS of the improved-ZHD based
on Fourier function from 2019 to 2020 are −0.1 mm and 0.5 mm, respectively, improved by
0.7 mm and 1.6 mm, while the mean Bias and RMS of the improved-Tm in 2019 are −0.6 K
and 2.7 K, respectively, which are 0.8 K and 0.5 K better than GPT3-Tm. The precision of
two models is improved slightly.

The mean Bias and RMS of the improved-PWV based on GNSS-ZTD and the improved
ZHD and Tm models are 0.5 mm and 0.6 mm, respectively, which are 2.2 mm and 10.5
mm better than that of GPT3-PWV, and the overall precision is improved greatly. Com-
pared to the radiosonde-derived PWV, the mean Bias and RMS are −1.1 mm and 3.7 mm,
respectively, which are 0.5 mm and 0.3 mm higher than that of the GNSS-PWV, and the
precision of the two methods performs similarly. Therefore, the improved ZHD and Tm
models based on GPT3 and Fourier function established in the Yangtze River Delta region
can be used for real-time high-precision PWV inversion.

Author Contributions: Conceptualization, L.L. and Y.G.; methodology, L.L.; software, S.X.; valida-
tion, S.X. and H.L.; formal analysis, Q.H.; investigation, Y.G.; resources, L.L.; data curation, S.X. and
H.L.; writing—original draft preparation, L.L. and Y.G.; writing—review and editing, L.L. and Q.H.;
visualization, Q.H. and H.Y.; supervision, L.L. and H.Y.; project administration, L.L. and H.Y.; funding
acquisition, L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Strategic Priority Research Program of the
Chinese Academy of Sciences (CAS) under Grant XDA17010304, the China Natural Science Funds
under Grant 41904033, the CAS Pioneer Hundred Talents Program, the Natural Science Foundation
of Hunan Province under Grant 2016JJ3061.

Institutional Review Board Statement: Not applicable.



Atmosphere 2022, 13, 1648 14 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their sincere gratitude to the University of
Wyoming and Jiangsu Institute of Meteorological Sciences for the provision of radiosonde and GNSS
observations. We also thank the reviewers for their constructive comments and suggestions, which
resulted in a significant improvement in the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baker, H.C.; Dodson, A.H.; Penna, N.T.; Higgins, M.; Offiler, D. Ground-based GPS water vapour estimation: Potential for

meteorological forecasting. J. Atmos. Sol. Terr. Phys. 2001, 63, 1305–1314. [CrossRef]
2. Iwabuchi, T.; Rocken, C.; Lukes, Z.; Mervart, L.; Johnson, J.; Kanzaki, M. PPP and Network True Real-time 30 sec Estimation of

ZTD in Dense and Giant Regional GPS Network and the Application of ZTD for Nowcasting of Heavy Rainfall. In Proceedings
of the ION GNSS 19th International Technical Meeting of the Satellite Division, Fort Worth, TX, USA, 26–29 September 2006;
pp. 1902–1909.

3. Li, L.; Kuang, C.-L.; Zhu, J.-J.; Chen, W.; Chen, Y.-Q.; Long, S.-C.; Li, H.-Y. Rainstorm nowcasting based on GPS real-time precise
point positioning technology. Chin. J. Geophys. 2012, 55, 1129–1136.

4. Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qiu, C.; Zhang, S.; Zhang, J.; Xie, M.; Li, L. Development of an Improved Model for
Prediction of Short-Term Heavy Precipitation Based on GNSS-Derived PWV. Remote Sens. 2020, 12, 4101. [CrossRef]

5. Bianchi, C.E.; Mendoza, L.P.O.; Fernández, L.I.; Natali, M.P.; Meza, A.M.; Moirano, J.F. Multi-year GNSS monitoring of
atmospheric IWV over Central and South America for climate studies. Ann. Geophys. 2016, 34, 623–639. [CrossRef]

6. Kruczyk, M. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator. Rep. Geod. Geoinform. 2015, 99,
1–18. [CrossRef]

7. Wang, B.; Zhao, L.; Bai, X. The Characteristics Investigation of Ground-Based GPS/PWV During the “7.21” Extreme Rainfall
Event in Beijing. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II; Sun, J., Liu, J., Fan, S., Lu, X., Eds.;
Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2015; Volume 341, pp. 563–574.

8. Simeonov, T.; Sidorov, D.; Teferle, F.N.; Milev, G.; Guerova, G. Evaluation of IWV from the numerical weather prediction WRF
model with PPP GNSS processing for Bulgaria. Atmos. Meas. Tech. Discuss. 2016, 1–15. [CrossRef]

9. Li, H.; Wang, X.; Choy, S.; Wu, S.; Jiang, C.; Zhang, J.; Qiu, C.; Li, L.; Zhang, K. A New Cumulative Anomaly-based Model for the
Detection of Heavy Precipitation Using GNSS-derived Tropospheric Products. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4105718.
[CrossRef]

10. Li, H.; Wang, X.; Choy, S.; Jiang, C.; Wu, S.; Zhang, J.; Qiu, C.; Zhou, K.; Li, L.; Fu, E.; et al. Detecting heavy rainfall using
anomaly-based percentile thresholds of predictors derived from GNSS-PWV. Atmos. Res. 2022, 265, 105912. [CrossRef]

11. Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat.
Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [CrossRef]

12. Jiang, P.; Ye, S.; Chen, D.; Liu, Y.; Xia, P. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis
Data in China. Remote Sens. 2016, 8, 389. [CrossRef]

13. Wang, H.; He, J.; Wei, M.; Zhang, Z. Synthesis Analysis of One Severe Convection Precipitation Event in Jiangsu Using Ground-
Based GPS Technology. Atmosphere 2015, 6, 908–927. [CrossRef]

14. Song, D.-S.; Grejner-Brzezinska, D.A. Remote sensing of atmospheric water vapor variation from GPS measurements during a
severe weather event. Earth Planets Space 2009, 61, 1117–1125. [CrossRef]

15. Manning, T.; Zhang, K.; Rohm, W.; Choy, S.; Hurter, F. Detecting Severe Weather using GPS Tomography: An Australian Case
Study. J. Glob. Position. Syst. 2012, 11, 58–70. [CrossRef]

16. Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia
Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [CrossRef]

17. Huang, L.; Zhu, G.; Liu, L.; Chen, H.; Jiang, W. A global grid model for the correction of the vertical zenith total delay based on a
sliding window algorithm. GPS Solut. 2021, 25, 98. [CrossRef]

18. Huang, L.; Peng, H.; Liu, L.; Xiong, S.; Xie, S.; Chen, J.; Li, J.; He, H. GNSS Precipitable Water Vapor Retrieval with the Aid of
NWM Data for China. Earth Space Sci. 2021, 8, e2020EA001550. [CrossRef]

19. Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of
precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [CrossRef]

20. Li, L.; Wu, S.; Zhang, K.; Wang, X.; Li, W.; Shen, Z.; Zhu, D.; He, Q.; Wan, M. A new zenith hydrostatic delay model for real-time
retrievals of GNSS-PWV. Atmos. Meas. Tech. 2021, 14, 6379–6394. [CrossRef]

21. Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géodésique 1972, 105, 279–298. [CrossRef]
22. Hopfield, H.S. Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data. Radio Sci.

1971, 6, 357–367. [CrossRef]

http://doi.org/10.1016/S1364-6826(00)00249-2
http://doi.org/10.3390/rs12244101
http://doi.org/10.5194/angeo-34-623-2016
http://doi.org/10.2478/rgg-2015-0008
http://doi.org/10.5194/amt-2016-152
http://doi.org/10.1109/TGRS.2021.3137014
http://doi.org/10.1016/j.atmosres.2021.105912
http://doi.org/10.5194/nhess-15-2605-2015
http://doi.org/10.3390/rs8050389
http://doi.org/10.3390/atmos6070908
http://doi.org/10.1186/BF03352964
http://doi.org/10.5081/jgps.11.1.59
http://doi.org/10.1109/JSTARS.2015.2406313
http://doi.org/10.1007/s10291-021-01138-7
http://doi.org/10.1029/2020EA001550
http://doi.org/10.1002/2015JD024181
http://doi.org/10.5194/amt-14-6379-2021
http://doi.org/10.1007/BF02521844
http://doi.org/10.1029/RS006i003p00357


Atmosphere 2022, 13, 1648 15 of 16

23. Black, H.D.; Eisner, A. Correcting satellite Doppler data for tropospheric effects. J. Geophys. Res. Atmos. 1984, 89, 2616–2626.
[CrossRef]

24. Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques.
GPS Solut. 2008, 12, 65–70. [CrossRef]

25. Boehm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod.
2007, 81, 679–683. [CrossRef]

26. Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the
troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [CrossRef]

27. Daniel, L.; Johannes, B. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360.
28. Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic

techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [CrossRef]
29. Wang, X.; Zhang, K.; Wu, S.; He, C.; Cheng, Y.; Li, X. Determination of zenith hydrostatic delay and its impact on GNSS-derived

integrated water vapor. Atmos. Meas. Tech. 2017, 10, 2807–2820. [CrossRef]
30. Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable

water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [CrossRef]
31. Ghaffari Razin, M.-R.; Voosoghi, B. Modeling of precipitable water vapor from GPS observations using machine learning and

tomography methods. Adv. Space Res. 2022, 69, 2671–2681. [CrossRef]
32. Singh, D.; Ghosh, J.; Kashyap, D. Development of a site-specific ZHD model using radiosonde data. Acta Geod. Geophys. Hung.

2012, 47, 90–100. [CrossRef]
33. Yang, F.; Meng, X.; Guo, J.; Shi, J.; An, X.; He, Q.; Zhou, L. The Influence of Different Modelling Factors on Global Temperature

and Pressure Models and Their Performance in Different Zenith Hydrostatic Delay (ZHD) Models. Remote Sens. 2019, 12, 35.
[CrossRef]

34. Mateus, P.; Catalão, J.; Mendes, V.B.; Nico, G. An ERA5-Based Hourly Global Pressure and Temperature (HGPT) Model. Remote
Sens. 2020, 12, 1098. [CrossRef]

35. Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet
delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [CrossRef]

36. Hagemann, S.; Bengtsson, L.; Gendt, G. On the determination of atmospheric water vapor from GPS measurements. J. Geophys.
Res. Atmos. 2003, 108, 4678. [CrossRef]

37. Huang, L.; Peng, H.; Liu, L.; Li, C.; Kang, C.; Xie, S. An empirical atmospheric weighted mean temperature model considering the
lapse rate function for China. Acta Geod. Cartogr. Sin. 2020, 49, 432–442. [CrossRef]

38. Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric
water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801.

39. Lan, Z.; Zhang, B.; Geng, Y. Establishment and analysis of global gridded Tm − Ts relationship model. Geod. Geodyn. 2016, 7,
101–102. [CrossRef]

40. Mircheva, B.R. Terrestrial Water Storage Anomaly during the 2007 Heat Wave in Bulgaria. Master’s Thesis, Sofia University, Palo
Alto, CA, USA, April 2016.

41. Basili, P.; Bonafoni, S.; Ferrara, R.; Ciotti, P.; Fionda, E.; Arnbrosini, R. Atmospheric water vapor retrieval by means of both a GPS
network and a microwave radiometer during an experimental campaign in Cagliari, Italy, in 1999. IEEE Trans. Geosci. Remote
Sens. 2001, 39, 2436–2443. [CrossRef]

42. Jiang, P.; Ye, S.R.; Liu, Y.Y.; Zhang, J.J.; Xia, P.F. Near real-time water vapor tomography using ground-based GPS and meteorolog-
ical data: Long-term experiment in Hong Kong. Ann. Geophys. 2014, 32, 911–923. [CrossRef]

43. Song, D.-S.; Boutiouta, S. Determination of Algerian Weighted Mean Temperature Model for forthcoming GNSS Meteorology
Application in Algeria. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2012, 30, 615–622. [CrossRef]

44. Isioye, O.A.; Combrinck, L.; Botai, J. Modelling weighted mean temperature in the West African region: Implications for GNSS
meteorology. Meteorol. Appl. 2016, 23, 614–632. [CrossRef]

45. Liu, Y.; Chen, Y.; Liu, J. Determination of weighted mean tropospheric temperature using ground meteorological measurements.
Geo-Spat. Inf. Sci. 2001, 4, 14–18. [CrossRef]

46. Singh, D.; Ghosh, J.K.; Kashyap, D. Weighted mean temperature model for extra tropical region of India. J. Atmos. Sol.-Terr. Phys.
2014, 107, 48–53. [CrossRef]

47. Elhaty, N.M.; Abdelfatah, M.A.; Mousa, A.E.; El-Fiky, G.S. GNSS meteorology in Egypt: Modeling weighted mean temperature
from radiosonde data. Alex. Eng. J. 2019, 58, 443–450. [CrossRef]

48. Li, J.; Mao, J. The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China. J.
Meteorol. Res. 1998, 12, 450–458.

49. Yu, S.; Liu, L. Validation and Analysis of the Water-Vapor-Weighted Mean Temperature from Tm-Ts Relationship. Geomat. Inf. Sci.
Wuhan Univ. 2009, 34, 741–744.

50. Wang, Y.; Liu, L.; Hao, X.; Xiao, J.; Wang, H.; Xu, H. The application study of the GPS meteorology network in Wuhan region.
Acta Geod. Cartogr. Sin. 2007, 36, 142–145.

51. Guo, B.; Li, L.; Xie, W. Modelling of weighted mean temperature using radiosonde data in Yangtze River Delta region. J. Navig.
Position. 2019, 7, 61–67.

http://doi.org/10.1029/JD089iD02p02616
http://doi.org/10.1007/s10291-007-0077-5
http://doi.org/10.1007/s00190-007-0135-3
http://doi.org/10.1007/s10291-014-0403-7
http://doi.org/10.1002/grl.50288
http://doi.org/10.5194/amt-10-2807-2017
http://doi.org/10.1007/s00190-019-01290-6
http://doi.org/10.1016/j.asr.2022.01.003
http://doi.org/10.1556/AGeod.47.2012.1.8
http://doi.org/10.3390/rs12010035
http://doi.org/10.3390/rs12071098
http://doi.org/10.1175/1520-0450(1994)033&lt;0379:GMMZWD&gt;2.0.CO;2
http://doi.org/10.1029/2002JD003235
http://doi.org/10.11947/j.AGCS.2020.20190168
http://doi.org/10.1016/j.geog.2016.02.001
http://doi.org/10.1109/36.964980
http://doi.org/10.5194/angeo-32-911-2014
http://doi.org/10.7848/ksgpc.2012.30.6-2.615
http://doi.org/10.1002/met.1584
http://doi.org/10.1007/bf02826630
http://doi.org/10.1016/j.jastp.2013.10.016
http://doi.org/10.1016/j.aej.2019.04.001


Atmosphere 2022, 13, 1648 16 of 16

52. Gong, S. The Spatial and Temporal Variations of Weighted Mean Atmospheric Temperature and Its Models in China. J. Appl.
Meteorol. Sci. 2013, 24, 332–334.

53. Wang, X.; Song, L.; Dai, Z.; Cao, Y. Feature analysis of weighted mean temperature Tm in Hong Kong. J. Nanjing Univ. Inf. Sci.
2011, 3, 47–52.

54. Yao, Y.; Zhang, B.; Xu, C.; Yan, F. Improved one/multi-parameter models that consider seasonal and geographic variations for
estimating weighted mean temperature in ground-based GPS meteorology. J. Geod. 2013, 88, 273–282. [CrossRef]

55. Yao, Y.; Liu, J.; Zhang, B.; He, C. Nonlinear Relationships Between the Surface Temperature and the Weighted Mean Temperature.
Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 112–116.

56. Zhu, H.; Chen, K.; Huang, G. A Weighted Mean Temperature Model with Nonlinear Elevation Correction Using China as an
Example. Remote Sens. 2021, 13, 3887. [CrossRef]

57. Ma, Y.; Chen, P.; Liu, T.; Xu, G.; Lu, Z. Development and Assessment of an ALLSSA-Based Atmospheric Weighted Mean
Temperature Model with High Time Resolution for GNSS Precipitable Water Retrieval. Earth Space Sci. 2022, 9, e2021EA002089.
[CrossRef]

58. Feng, P.; Li, F.; Yan, J.; Zhang, F.; JeanPierre, B. Assessment of the Accuracy of the Saastamoinen Model and VMF1/VMF3
Mapping Functions with Respect to Ray-Tracing from Radiosonde Data in the Framework of GNSS Meteorology. Remote Sens.
2020, 12, 3337. [CrossRef]

59. Yang, F.; Guo, J.; Zhang, C.; Li, Y.; Li, J. A Regional Zenith Tropospheric Delay (ZTD) Model Based on GPT3 and ANN. Remote
Sens. 2021, 13, 838. [CrossRef]

60. Ding, J.; Chen, J. Assessment of Empirical Troposphere Model GPT3 Based on NGL’s Global Troposphere Products. Sensors 2020,
20, 3631. [CrossRef]

61. Li, S.; Xu, T.; Xu, Y.; Jiang, N.; Bastos, L. Forecasting GNSS Zenith Troposphere Delay by Improving GPT3 Model with Machine
Learning in Antarctica. Atmosphere 2022, 13, 78. [CrossRef]

62. Yu, J.; Tan, K.; Zhang, C.; Zhao, B.; Wang, D.; Li, Q. Present-day crustal movement of the Chinese mainland based on Global
Navigation Satellite System data from 1998 to 2018. Adv. Space Res. 2019, 63, 840–856. [CrossRef]

63. Li, L.; Yuan, L.; Qimin, H.; Xiaoming, W. Weighted Mean Temperature Modelling Using Regional Radiosonde Observations for
the Yangtze River Delta Region in China. Remote Sens. 2022, 14, 1909. [CrossRef]

64. Wang, K.; Khodabandeh, A.; Teunissen, P.J.G. MSE-impact of PPP-RTK ZTD estimation strategies. Adv. Space Res. 2018, 61,
2955–2971. [CrossRef]

65. Salcedo, A.C.; Recio, J.B. Fourier analysis of meteorological data to obtain a typical annual time function. Sol. Energy 1984, 32,
479–488. [CrossRef]

66. Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386.
[CrossRef]

http://doi.org/10.1007/s00190-013-0684-6
http://doi.org/10.3390/rs13193887
http://doi.org/10.1029/2021EA002089
http://doi.org/10.3390/rs12203337
http://doi.org/10.3390/rs13050838
http://doi.org/10.3390/s20133631
http://doi.org/10.3390/atmos13010078
http://doi.org/10.1016/j.asr.2018.10.001
http://doi.org/10.3390/rs14081909
http://doi.org/10.1016/j.asr.2018.04.012
http://doi.org/10.1016/0038-092X(84)90262-7
http://doi.org/10.1029/RS022i003p00379

	Introduction 
	Data Sources and Methodology 
	Data Sources 
	Methodology 
	Tm Calculation 
	GNSS-PWV and GPT3-PWV Calculations 
	Fourier Function 
	Statistical Method 


	Results and Discussions 
	The Improved ZHD Model 
	The Establishment of an Improved ZHD Model 
	Precision Analysis 

	The Improved Tm  Model 
	The Establishment of an Improved Tm  Model 
	Precision Analysis 

	The PWV Based on Improved ZHD and Tm  Models 

	Conclusions 
	References

