Atmospheric Mercury Concentrations in Guangzhou City, Measured by Spectroscopic Techniques
Abstract
:1. Introduction
2. Study Design
2.1. Mercury Monitoring Instrumentation
2.2. Measurements of Atmospheric Atomic Mercury
3. Measurements and Results
3.1. Air Concentrations Retrieved from City Traverses
3.2. Concentration Data at Selected Locations of a University Campus
3.3. Indoor Concentrations Data at Selected Locations in Two Hospitals
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Liu, G.; Cai, Y.; O’Driscoll, N.; Feng, X.; Jiang, G. Overview of mercury in the environment. Environ. Chem. Toxicol. Mercury 2012, 1–12. [Google Scholar] [CrossRef]
- Morel, F.M.; Kraepiel, A.M.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; de Liso, A.; Ferrara, R.; Maserti, B.E. Differential absorption lidar mapping of atmospheric atomic mercury in Italian geothermal fields. J. Geophys. Res. 1992, 97, 3779. [Google Scholar] [CrossRef] [Green Version]
- Svanberg, S. Geophysical gas monitoring using optical techniques: Volcanoes, geothermal fields and mines. Opt. Lasers Eng. 2002, 37, 245–266. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Streets, D.G.; Horowitz, H.M.; Jacob, D.J.; Lu, Z.; Levin, L.; Ter Schure, A.F.H.; Sunderland, E.M. Total Mercury Released to the Environment by Human Activities. Environ. Sci. Technol. 2017, 51, 5969–5977. [Google Scholar] [CrossRef]
- Mazzolai, B.; Mattioli, V.; Raffa, V.; Tripoli, G.; Dario, P.; Ferrara, R.; Lanzilotta, E.; Munthe, J.; Wängberg, I.; Barregård, L.; et al. A multidisciplinary approach to study the impact of mercury pollution on human health and environment: The EMECAP project. RMZ-Mater. Geoenvironment 2004, 51, 682. [Google Scholar]
- Grönlund, R.; Sjöholm, M.; Weibring, P.; Edner, H.; Svanberg, S. Elemental mercury emissions from chlor-alkali plants measured by lidar techniques. Atmos. Environ. 2005, 39, 7474–7480. [Google Scholar] [CrossRef]
- Lian, M.; Shang, L.H.; Duan, Z.; Li, Y.; Zhao, G.; Zhu, S.; Qiu, G.; Meng, B.; Sommar, J.; Feng, X.; et al. Lidar mapping of atmospheric atomic mercury in the Wanshan area, China. Environ. Pollut. 2018, 240, 353–358. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, L.; Zhang, S.; Ye, J.; Wang, S. Mercury pollution in automobile exhaust in Guilin. J. Ecol. 2011, 30, 944–950. [Google Scholar]
- Qian, J.; Zhang, L.; Zhang, S.; Ye, J.; Wang, S.; Li, C.; Huang, D. Study on the mercury pollution of automobile exhaust from highway air-soil-biological system in Guilin City. Geol. J. China Univ. 2013, 19, 455–456. [Google Scholar]
- Tian, Y.; Liu, H.; Wang, X.; Liu, Q.; Wang, W. Study on the distribution characteristics of elemental mercury in the air of urban roads and tunnels. Environ. Sci. Technol. 2012, 35, 64–67. [Google Scholar]
- European Community DG Environment, Science for Environmental Policy. Tackling Mercury Pollution in the EU and WORLDWIDE. In-Depth Report 15. 2017. Available online: http://ec.europa.eu/science-environment-policy (accessed on 29 September 2022).
- Travnikov, O. Atmospheric transport of mercury. In Environmental Chemistry and Toxicology of Mercury; Liu, G., Cai, Y., O’Driscoll, N., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 331–365. [Google Scholar]
- Lin, C.J.; Singhasuk, P.; Pehkonen, S.O. Atmospheric chemistry of mercury. Environ. Chem. Toxicol. Mercury 2012, 4, 113–153. [Google Scholar]
- Sass, B.M.; Salem, M.A.; Smith, L.A. Mercury Usage and Alternatives in the Electrical and Electronics Industries. Final Report; Battelle: Columbus, OH, USA, 1994. [Google Scholar]
- Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury exposure and health effects in humans: A worldwide concern. AMBIO A J. Hum. Environ. 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Díez, S. Human health effects of methylmercury exposure. Rev. Environ. Contam. Toxicol. 2008, 198, 111–132. [Google Scholar]
- Harada, M. Minamata Disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- United Nations. Minamata Convention on Mercury. 2013. Available online: http://www.mercuryconvention.org/Portals/11/documents/Booklets/Minamata%20Convention%20on%20Mercury_booklet_English.pdf (accessed on 29 September 2022).
- Streets, D.G.; Hao, J.; Wu, Y.; Jiang, J.; Chan, M.; Tian, H.; Feng, X. Anthropogenic mercury emissions in China. Atmos. Environ. 2005, 39, 7789–7806. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.B. Mercury pollution in China—An overview. In Dynamics of Mercury Pollution on Regional and Global Scales; Pirrone, N., Mahaffey, K.R., Eds.; Springer: Norwell, MA, USA, 2005; pp. 657–678. [Google Scholar]
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef]
- He, K.; Huo, H.; Zhang, Q. Urban air pollution in China: Current status, characteristics, and progress. Annu. Rev. Energy Environ. 2002, 27, 397–431. [Google Scholar] [CrossRef]
- Feng, X.; Tang, S.; Shang, L.H.; Yan, H.; Sommar, J.; Lindqvist, O. Total gaseous mercury in the atmosphere of Guiyang, PR China. Sci. Total Environ. 2003, 304, 61–72. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Wang, S.; Rothenberg, S.; Shang, L.H.; Li, Z.; Qiu, G. Temporal and spatial distributions of total gaseous mercury concentrations in ambient air in a mountainous area in southwestern China: Implications for industrial and domestic mercury emissions in remote areas in China. Sci. Total Environ. 2009, 407, 2306–2314. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Qiu, G.; Landis, M.S.; Feng, X.; Fu, X.; Shang, L.H. Atmospheric mercury species measured in Guiyang, Guizhou province, southwest China. Atmos. Res. 2011, 100, 93–102. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Sommar, J.; Wang, S. A review of studies on atmospheric mercury in China. Sci. Total Environ. 2012, 421, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, Y.; Lan, H.; Liu, L.; Fang, L. Study on pollution sources, cause of mercury pollution and its control technical roadmap in China. Environ. Chem. 2013, 6, 937–942. [Google Scholar]
- Wang, Z.; Chen, Z.; Ning, D.; Zhang, X. Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China. J. Environ. Sci. 2007, 19, 176–180. [Google Scholar] [CrossRef]
- Prokopowicz, A.; Mniszek, W. Mercury vapor determination in hospitals. Environ. Monit. Assess. 2005, 104, 147–154. [Google Scholar] [CrossRef]
- Perim, S.I.; Goldberg, A.F. Mercury in hospital dentistry. Spec. Care Dent. 1984, 4, 54–55. [Google Scholar] [CrossRef]
- Jirau-Colón, H.; González-Parrilla, L.; Martinez-Jiménez, J.; Adam, W.; Jiménez-Velez, B. Rethinking the dental amalgam dilemma: An integrated toxicological approach. Int. J. Environ. Res. Public Health 2019, 16, 1036. [Google Scholar] [CrossRef] [Green Version]
- Amir Sultan, M.M.; Goh, C.T.; Wan Puteh, S.E.; Mokhtar, M. Establishing mercury-free medical facilities: A Malaysian case study. Int. J. Health Care Qual. Assur. 2019, 32, 34–44. [Google Scholar] [CrossRef]
- Rustagi, N.; Singh, R. Mercury and health care. Indian J. Occup. Environ. Med. 2010, 14, 45. [Google Scholar] [PubMed]
- Khwaja, M.A.; Abbasi, M.S. Mercury poisoning dentistry: High-level indoor air mercury contamination at selected dental sites. Rev. Environ. Health 2014, 29, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yang, Y.; Xiong, W. Impacts of mercury pollution controls on atmospheric mercury concentration and occupational mercury exposure in a hospital. Biol. Trace Elem. Res. 2015, 168, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; Han, Y. Discussion on mercury-containing waste fuel in hospitals and countermeasures for emission reduction. Environ. Sci. Manag. 2010, 35, 10–13. [Google Scholar]
- Nimmagadda, A.; Stanley, I.; Karliner, J.; Orris, P. Global substitution of mercury-based medical devices in the health sector. In Water and Sanitation-Related Diseases and the Changing Environment: Challenges, Interventions, and Preventive Measures, 2nd ed.; Selendy, J.M.H., Farmer, P., Fawzi, W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 189–196. [Google Scholar]
- Choi-Lao, A.T.; Corte, G.; Dowd, G.; Lao, R.C. Mercury vapor as a contaminant of hospital environment. Sci. Total Environ. 1979, 11, 287–292. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Han, Y. Study on pollution emission reduction countermeasure about hospital mercury-bearing waste. Environ. Sci. Manag. 2010, 35, 10–13. [Google Scholar]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; et al. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos. Environ. 2001, 35, 3019–3025. [Google Scholar] [CrossRef]
- Svanberg, S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications, 5th ed.; Graduate Texts in Physics; Springer-Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Sholupov, S.E.; Ganeyev, A.A. Zeeman atomic absorption spectrometry using high frequency modulated light polarization. Spectrochim. Acta B 1995, 50, 1227. [Google Scholar] [CrossRef]
- Anderson, T.N.; Magnuson, J.K.; Lucht, R.P. Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury. Appl. Phys. B 2007, 87, 341–353. [Google Scholar] [CrossRef]
- Svanberg, S. Differential absorption lidar (DIAL). In Air Monitoring by Spectroscopic Techniques; Sigrist, M., Ed.; Wiley: New York, NY, USA, 1994; pp. 85–161. [Google Scholar]
- Chi, J.B.; Duan, Z.; Huang, J.W.; Li, Y.; Li, Y.Y.; Lian, M.; Lin, Y.Y.; Lu, J.C.; Sun, Y.T.; Wang, J.L.; et al. Ten years of interdisciplinary lidar applications at SCNU, Guangzhou. In Proceedings of the 30th International Laser Radar Conference, Big Sky, MT, USA, 26 June–1 July 2022; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zhao, G.; Zhang, W.; Duan, Z.; Lian, M.; Hou, N.; Li, Y.; Zhu, S.; Svanberg, S. Mercury as a geophysical tracer gas Emissions from the Emperor Qin Tomb in Xi’an studied by laser radar. Sci. Rep. 2020, 10, 10414. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A. A review of worldwide atmorpheric mercury measurements. Atmos. Chem. Phys. 2010, 10, 8245–8265. [Google Scholar] [CrossRef] [Green Version]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, R.; Weigelt, A.; et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the freamework of the GMOS network. Atmos. Chem. Phys. 2016, 16, 11915–11935. [Google Scholar] [CrossRef] [Green Version]
- Alnis, J.; Gustafsson, U.; Somesfalean, G.; Svanberg, S. Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm. Appl. Phys. Lett. 2000, 76, 1234–1236. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Lian, M.; Li, Y.; Duan, Z.; Zhu, S.; Mei, L.; Svanberg, S. Mobile lidar system for environmental monitoring. Appl. Opt. 2017, 56, 1506–1516. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wu, X.; Lian, M.; Svanberg, S. Lidar monitoring of atmospheric atomic mercury and sulfur dioxide in Guangzhou, China. In Proceedings of the PIERS, Guangzhou, China, 25–28 August 2014; Curran Assoc.: Red Hook, NY, USA, 2014; pp. 2711–2714. [Google Scholar]
- Mei, L.; Zhao, G.; Svanberg, S. Differential absorption lidar system employed for background atomic mercury vertical profiling in South China. Opt. Lasers Eng. 2014, 55, 128–135. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, G.; Zhu, S.; Lian, M.; Li, Y.; Zhang, W.; Svanberg, S. Atmospheric mercury pollution in the Xi’an area, China, studied by differential absorption lidar. Atmosphere 2021, 12, 27. [Google Scholar] [CrossRef]
- Angot, H.; Rutkowski, E.; Sargent, M.; Wofsy, S.C.; Hutyra, L.R.; Howard, D.; Obrist, D.; Selin, N.E. Atmospheric mercury sources in a costal-urban environment: A case study in Boston, Massachusetts, USA. Environ. Sci. Process. Impacts 2021, 23, 1914–1929. [Google Scholar] [CrossRef]
- McLagan, D.S.; Hussain, B.A.; Huang, H.Y.; Lei, Y.D.; Wania, F.; Mitchell, C.P.J. Identifying and evaluating urban mercury emission sources through passive sampler-based mapping of atmospheric concentrations. Environ. Res. Lett. 2018, 13, 074008. [Google Scholar] [CrossRef]
- Wohlgemuth, L.; McLagan, D.; Flückinger, B.; Vienneau, D.; Osterwalder, S. Concurrently measured concentrations of atmospheric mercury in indoor (household) and outdoor air in Basel, Switzerland. Environ. Sci. Technol. Lett. 2020, 7, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, H.M.; Jacob, D.J.; Zhang, Y.; Dibble, T.S.; Slemr, F.; Amos, H.M.; Schmidt, J.A.; Corbitt, E.S.; Marais, E.A.; Sunderland, E.M. A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget. Atmos. Chem. Phys. 2017, 17, 6353–6371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Sun, Y.; Zhang, Q.; Duan, Z.; Svanberg, S. Atmospheric Mercury Concentrations in Guangzhou City, Measured by Spectroscopic Techniques. Atmosphere 2022, 13, 1650. https://doi.org/10.3390/atmos13101650
Chen G, Sun Y, Zhang Q, Duan Z, Svanberg S. Atmospheric Mercury Concentrations in Guangzhou City, Measured by Spectroscopic Techniques. Atmosphere. 2022; 13(10):1650. https://doi.org/10.3390/atmos13101650
Chicago/Turabian StyleChen, Guoping, Yuting Sun, Qiang Zhang, Zheng Duan, and Sune Svanberg. 2022. "Atmospheric Mercury Concentrations in Guangzhou City, Measured by Spectroscopic Techniques" Atmosphere 13, no. 10: 1650. https://doi.org/10.3390/atmos13101650
APA StyleChen, G., Sun, Y., Zhang, Q., Duan, Z., & Svanberg, S. (2022). Atmospheric Mercury Concentrations in Guangzhou City, Measured by Spectroscopic Techniques. Atmosphere, 13(10), 1650. https://doi.org/10.3390/atmos13101650