Land Surface Albedo Estimation and Cross Validation Based on GF-1 WFV Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. GF-1 Data
2.3. Validation Data
2.3.1. Field Observation Data
2.3.2. Remote Sensing Data
3. Method
3.1. GF-1 WFV Albedo Estimation Method
3.2. Validation Method
3.2.1. Validation Based on Field Observation Data
3.2.2. Validation Based on Other Remote Sensing Data
3.2.3. Accuracy Evaluation
4. Result
4.1. Validation against Field Observation Data
4.2. Validation against Landsat Data
4.2.1. Study Area of Ganzhou District
4.2.2. Study Area of Sindh Province
4.3. Validation against MODIS Product
4.4. Validation against GLASS Product
5. Discussion
5.1. Errors Induced by Land Cover Types
5.2. The Effect of Aerosol Types
5.3. Errors Induced by the Radiation Calibration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dickinson, R.E. Land surface processes and climate—Surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Andrews, T.; Forster, P.M.; Gregory, J.M. A surface energy perspective on climate change. J. Clim. 2009, 22, 2557–2570. [Google Scholar] [CrossRef] [Green Version]
- Otto, A.; Otto, F.E.L.; Boucher, O.; Church, J.; Hegerl, G.; Forster, P.M.; Gillett, N.P.; Gregory, J.; Johnson, G.C.; Knutti, R.; et al. Energy budget constraints on climate response. Nat. Geosci. 2013, 6, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E. Land processes in climate models. Remote Sens. Environ. 1995, 51, 27–38. [Google Scholar] [CrossRef]
- Brovkin, V.; Boysen, L.; Raddatz, T.; Gayler, V.; Loew, A.; Claussen, M. Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J. Adv. Model. Earth Syst. 2013, 5, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Henderson-Sellers, A.; Wilson, M.F. Surface albedo data for climatic modeling. Rev. Geophys. Space Phys. 1983, 21, 1743–1778. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Ollinger, S.V.; Richardson, A.D.; Meyers, T.P.; Dail, D.B.; Martin, M.E.; Scott, N.A.; Arkebauer, T.J.; Baldocchi, D.D.; Clark, K.L.; et al. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob. Chang. Biol. 2010, 16, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, T.; Zeng, Z.; Peng, S.; Lian, X.; Piao, S. Evaluating biases in simulated land surface albedo from CMIP5 global climate models. J. Geophys. Res. Atmos. 2016, 121, 6178–6190. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Song, D.-X. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos. 2014, 119, 10281–10298. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, S.; He, T.; Chen, X. Evaluation of Four Reanalysis Surface Albedo Data Sets in Arctic Using a Satellite Product. IEEE Geosci. Remote Sens. Lett. 2016, 13, 384–388. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Lucht, W.; Tsang, T.; Feng, G.; Strugnell, N.; Chen, L.; Liu, Y.; Strahler, A.L. Prototyping the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF and albedo product. Geosci. Remote Sens. Symp. Igarss. Proc. IEEE Int. 2000, 3, 1506–1508. [Google Scholar]
- Liang, S.; Strahler, A.H.; Walthall, C. Retrieval of land surface albedo from satellite observations: A simulation study. IEEE Int. Geosci. Remote Sens. Symp. 1998, 38, 712–725. [Google Scholar] [CrossRef]
- Privette, J.L.; Eck, T.F.; Deering, D.W. Estimating spectral albedo and nadir reflectance through inversion of simple BRDF models with AVHRR/MODIS-like data. J. Geophys. Res. Atmos. 1997, 102, 29529–29542. [Google Scholar] [CrossRef]
- Maignan, F.; Bréon, F.M.; Lacaze, R. Bidirectional reflectance of Earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens. Environ. 2004, 90, 210–220. [Google Scholar] [CrossRef]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Rutan, D.; Rose, F.; Roman, M.; Manalo-Smith, N.; Schaaf, C.; Charlock, T. Development and assessment of broadband surface albedo from Clouds and the Earth’s Radiant Energy System Clouds and Radiation Swath data product. J. Geophys. Res. 2009, 114, D08125. [Google Scholar] [CrossRef] [Green Version]
- Muller, J. Algorithm Theoretical Basis Document, ATBD v1.4: BRDF/Albedo retrieval. Meris Albedomaps 2006, 1, 1–19. [Google Scholar]
- Rutan, D.; Charlock, T.; Rose, F.; Kato, S.; Zentz, S.; Coleman, L. Global surface albedo from CERES/TERRA surface and atmospheric radiation budget (SARB) data product. In Proceedings of the 12th Conference on Atmospheric Radiation (AMS), 9–10 July 2006; pp. 11–12. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.570.2225&rep=rep1&type=pdf (accessed on 3 August 2022).
- Leeuwen, W.J.D.V.; Roujean, J.L. Land surface albedo from the synergistic use of polar (EPS) and geo-stationary (MSG) observing systems. Remote Sens. Environ. 2002, 81, 273–289. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; He, T.; Yu, Y. Direct estimation of land surface albedo from VIIRS data: Algorithm improvement and preliminary validation. J. Geophys. Res. Atmos. 2013, 118, 12577–12586. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Liang, S.; Yu, Y.; He, T. Assessment of the Suomi NPP VIIRS Land Surface Albedo Data Using Station Measurements and High-Resolution Albedo Maps. Remote Sens. 2016, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B.; He, T. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge. Remote Sens. Environ. 2014, 152, 467–479. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Cao, Y.; Gao, F.; Yu, Y.; Feng, M. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sens. Environ. 2018, 204, 181–196. [Google Scholar] [CrossRef]
- Wang, Z.; Erb, A.M.; Schaaf, C.B.; Sun, Q.; Liu, Y.; Yang, Y.; Shuai, Y.; Casey, K.A.; Román, M.O. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. Remote Sens. Environ. 2016, 185, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Jia, L.; Wang, T. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products. Remote Sens. 2014, 6, 8966–8985. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Liang, S.; Wang, D.; Chen, X.; Song, D.X.; Jiang, B. Land surface albedo estimation from Chinese HJ satellite data based on the direct estimation approach. Remote Sens. 2015, 7, 5495–5510. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.-b.; Yu, Q.-y.; Liu, J.; Wu, W.-b.; Tang, H.-j. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. J. Integr. Agric. 2017, 16, 242–251. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, M.; Zhao, X.; Wang, X.; Luo, Z.; Zhao, y. Methods for automatic identification and extraction of terraces from high spatial resolution satellite data (China-GF-1). Int. Soil Water Conserv. Res. 2017, 5, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; He, Z.; Cai, Z.; Wang, C.; Wang, W.; Wang, J.; Hu, Q.; Song, Q. Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102702. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, Q.; Wen, J.; Liu, Q.; You, D.; Dou, B.; Tang, Y.; Li, X. Optimal nodes selectiveness from WSN to fit field scale Albedo observation and validation in long time series in the Foci experiment areas, Heihe. Remote Sens. 2015, 7, 14757–14780. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Che, H.; Zhang, X.; Chen, C.; Chen, X.; Gui, K.; Liang, Y.; Wang, F.; Derimian, Y.; Fuertes, D.; et al. A satellite-measured view of aerosol component content and optical property in a haze-polluted case over North China Plain. Atmos. Res. 2022, 266, 105958. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, B.; Zou, B.; Wei, W.; Lei, Y.; Li, T. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Environ. Pollut. 2022, 300, 118981. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Guo, Y.; Guo, H.; Yuan, J.; Ru, L.; Chen, H.; Du, B.; Zhang, L. An investigation of traffic density changes inside Wuhan during the COVID-19 epidemic with GF-2 time-series images. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102503. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, Z.; Ma, W.; He, T.; Wan, H.; Wang, J.; Liang, S. Land Surface Albedo Estimation With Chinese GF-1 WFV Data in Northwest China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 849–861. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Wan, H.; Wang, Q.; Fan, W.; Ma, W.; Wang, J. Identifying Spatial and Temporal Characteristics of Land Surface Albedo Using GF-1 WFV Data. Remote Sens. 2021, 13, 4070. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Yao, Y.; Tian, F.; Hu, Y. Temporal and spatial variation of oasis cold island effect in Ganzhou district of Zhangye based on landsat TM/ETM+. J. Arid. Land Resour. Environ. 2014, 28, 139–144. [Google Scholar]
- Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J. Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. Egypt. J. Remote Sens. Space Sci. 2012, 15, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Hongmin, Z.; Jindi, W.; Shunlin, L. Design of a Novel Spectral Albedometer for Validating the MODerate Resolution Imaging Spectroradiometer Spectral Albedo Product. Remote Sens. 2018, 10, 101. [Google Scholar]
- Liang, S.; Li, X.; Wang, J. Quantitative Remote Sensing: Concept and Algorithm; Science Press: Beijing, China, 2013. [Google Scholar]
- Zhenchao, L.; Jiaxi, Y.; Xiaoqing, G.; Ye, Y.; Zhiyuan, Z.; Rong, L.; Chao, W.; Xuhong, H.; Zhigang, W. The relationship between surface spectral albedo and soil moisture in an arid Gobi area. Theor. Appl. Climatol. 2018, 136, 1475–1482. [Google Scholar]
- Pang, G.; Chen, D.; Wang, X.; Lai, H.W. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau. Sci. Total Environ. 2022, 804, 150100. [Google Scholar] [PubMed]
- Shen, X.; Liu, Y.; Liu, B.; Zhang, J.; Wang, L.; Lu, X.; Jiang, M. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern Hemisphere. Agric. For. Meteorol. 2022, 320, 108943. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Henderson, M.; Wang, L.; Jiang, M.; Lu, X. Vegetation greening, extended growing seasons, and temperature feedbacks in warming temperate grasslands of China. J. Clim. 2022, 21, 1–51. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G.; et al. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Liang, S. A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 136–145. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.; Zhao, X.; Chen, X.; Pang, X. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar] [CrossRef]
Band | B1 | B2 | B3 | B4 |
---|---|---|---|---|
Spectral Resolution | 0.45–0.52 µm | 0.52–0.59 µm | 0.63–0.69 µm | 0.77–0.89 µm |
Site | Land Cover Type | Height of Radiometer (m) | Time |
---|---|---|---|
Heihe | Grassland | 1.5 | 2015001–2015365, 2016001–2016365, 2017001–2017365, 2018001–2018365 |
Bajitan | Desert | 6 | 2014001–2014365, 2015001–2015103 |
Shenshawo | Desert | 6 | 2014001–2014365, 2015001–2015102 |
Huazhaizi | Desert | 6 | 2014001–2014365, 2015001–2015365, 2016001–2016365, 2017001–2017365, 2018001–2018365 |
Zhangye | Wetland | 6 | 2014001–2014365, 2015001–2015365, 2016001–2016365, 2017001–2017365, 2018001–2018365 |
Daman | Farmland | 12 | 2014001–2014365, 2015001–2015365, 2016001–2016365, 2017001–2017365, 42018001–2018365 |
Study Area | Data | Time |
---|---|---|
Ganzhou | GF-1 WFV | 2014001–2018365 |
Field Observation | 2014001–2018365 | |
Landsat | 2015055 | |
Sindh | GF-1 WFV | 2016038, 2016042, 2016046 |
Landsat | 2016033, 2016040, 2016042, 2016047 | |
MODIS | 2016042 | |
GLASS | 2016045 |
Input Parameters | Value |
---|---|
Solar Zenith Angle | 0, 5, 10, …, 75 |
View Zenith Angle | 0, 5, 10, …, 40 |
Relative Azimuth Angle | 0, 30, 60, …, 180 |
Atmospheric Model | Tropic, Mid-latitude summer, Mid-latitude winter, Subarctic summer, Subarctic winter, United States standard |
Aerosol Optical Depth Type | Continental |
Aerosol Optical Depth | 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4 |
Parameter | k = iso | k = vol | k = geo |
---|---|---|---|
1 | −0.007574 | −1.284909 | |
0 | −0.070987 | −0.166314 | |
0 | 0.307588 | 0.041840 | |
White-sky | 1 | 0.189184 | −1.377622 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, H.; Ma, W.; Fan, W.; Wang, J. Land Surface Albedo Estimation and Cross Validation Based on GF-1 WFV Data. Atmosphere 2022, 13, 1651. https://doi.org/10.3390/atmos13101651
Wang Z, Zhou H, Ma W, Fan W, Wang J. Land Surface Albedo Estimation and Cross Validation Based on GF-1 WFV Data. Atmosphere. 2022; 13(10):1651. https://doi.org/10.3390/atmos13101651
Chicago/Turabian StyleWang, Zhe, Hongmin Zhou, Wu Ma, Wenrui Fan, and Jindi Wang. 2022. "Land Surface Albedo Estimation and Cross Validation Based on GF-1 WFV Data" Atmosphere 13, no. 10: 1651. https://doi.org/10.3390/atmos13101651
APA StyleWang, Z., Zhou, H., Ma, W., Fan, W., & Wang, J. (2022). Land Surface Albedo Estimation and Cross Validation Based on GF-1 WFV Data. Atmosphere, 13(10), 1651. https://doi.org/10.3390/atmos13101651