Analyses on the Multimodel Wind Forecasts and Error Decompositions over North China
Abstract
:1. Introduction
2. Data and Method
2.1. Data
2.2. Verification Metrics
3. Result
3.1. Evaluation of Multiple NWP Models and the MME
3.2. Error Decompositions of the Wind Forecasts
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sloughter, J.M.; Gneiting, T.; Raftery, A.E. Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Mon. Weather. Rev. 2013, 141, 2107–2119. [Google Scholar] [CrossRef] [Green Version]
- Adeyeye, K.; Ijumba, N.; Colton, J. Exploring the environmental and economic impacts of wind energy: A cost-benefit perspective. Int. J. Sustain. Dev. World Ecol. 2020, 27, 718–731. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Z. Study on the Estimation of Designed Wind Speed for Jingyue Yangtze River Highway Bridge. J. Wuhan Univ. Technol. Transp. Sci. Eng. 2010, 34, 306–309. [Google Scholar]
- Wynnyk, C.M. Wind analysis in aviation applications. In Proceedings of the 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), Williamsburg, VA, USA, 14–18 October 2012; pp. 5C2-1–5C2-10. [Google Scholar]
- Wilczak, J.; Finley, C.; Freedman, J.; Cline, J.; Bianco, L.; Olson, J.; Djalalova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; et al. The Wind Forecast Improvement Project (WFIP): A public—Private partnership addressing wind energy forecast needs. Bull. Am. Meteorol. Soc. 2015, 96, 1699–1718. [Google Scholar] [CrossRef]
- Veldkamp, S.; Whan, K.; Dirksen, S. Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon. Weather. Rev. 2021, 149, 1141–1152. [Google Scholar] [CrossRef]
- Zhu, S.; Remedio, A.R.C.; Sein, D.V.; Sielmann, F.; Ge, F.; Xu, J.; Peng, T.; Jacob, D.; Fraedrich, K.; Zhi, X. Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling. Theor. Appl. Climatol. 2020, 140, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Zhu, S.; Ge, F.; Sielmann, F.; Pan, M.; Fraedrich, K.; Remedio, A.R.C.; Sein, D.V.; Jacob, D.; Wang, H.; Zhi, X. Seasonal temperature response over the Indochina Peninsula to a worst-case high-emission forcing: A study with the regionally coupled model ROM. Theor. Appl. Climatol. 2020, 142, 613–622. [Google Scholar] [CrossRef]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Weather. Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Zhang, L.; Kim, T.; Yang, T.; Hong, Y.; Zhu, Q. Evaluation of Subseasonal-to-Seasonal (S2S) precipitation forecast from the North American Multi-Model ensemble phase II (NMME-2) over the contiguous US. J. Hydrol. 2021, 603, 127058. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhu, S.; Zhi, X.; Dong, F.; Zhu, C.; Ji, L.; Fan, Y. Subseasonal forecasts of precipitation over Maritime Continent in boreal summer and the sources of predictability. Front. Earth Sci. 2022, 10, 970791. [Google Scholar] [CrossRef]
- Louvet, S.; Sultan, B.; Janicot, S.; Kamsu-Tamo, P.H.; Ndiaye, O. Evaluation of TIGGE precipitation forecasts over West Africa at intraseasonal timescale. Clim. Dyn. 2016, 47, 31–47. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.; Fan, S. Study on the construction of initial condition perturbations for the regional ensemble prediction system of North China. Atmosphere 2019, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Schulz, B.; Lerch, S. Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Weather. Rev. 2022, 150, 235–257. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, Y. Precipitation calibration based on the frequency-matching method. Weather. Forecast. 2015, 30, 1109–1124. [Google Scholar] [CrossRef]
- Guo, R.; Yu, H.; Yu, Z.; Tang, J.; Bai, L. Application of the frequency-matching method in the probability forecast of landfalling typhoon rainfall. Front. Earth Sci. 2022, 16, 52–63. [Google Scholar] [CrossRef]
- Hacker, J.P.; Rife, D.L. A practical approach to sequential estimation of systematic error on near-surface mesoscale grids. Weather. Forecast. 2007, 22, 1257–1273. [Google Scholar] [CrossRef]
- Kim, H.M.; Ham, Y.G.; Scaife, A.A. Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction. J. Clim. 2014, 27, 5148–5162. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhi, X.; Zhu, S.; Fan, Y.; Pan, M. Statistical calibrations of surface air temperature forecasts over east Asia using pattern projection methods. Weather. Forecast. 2021, 36, 1661–1674. [Google Scholar] [CrossRef]
- Belorid, M.; Kim, K.R.; Cho, C. Bias Correction of short-range ensemble forecasts of daily maximum temperature using decaying average. Asia Pac. J. Atmos. Sci. 2020, 56, 503–514. [Google Scholar] [CrossRef]
- Han, K.; Choi, J.T.; Kim, C. Comparison of statistical post-processing methods for probabilistic wind speed forecasting. Asia Pac. J. Atmos. Sci. 2018, 54, 91–101. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Kishtawal, C.M.; LaRow, T.E.; Bachiochi, D.R.; Zhang, Z.; Williford, C.E.; Gadgil, S.; Surendran, S. Improved weather and seasonal climate forecasts from multimodel superensemble. Science 1999, 285, 1548–1550. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Kang, N.Y.; Lee, W.; Chung, Y. An alternative multi-model ensemble forecast for tropical cyclone tracks in the western North Pacific. Atmosphere 2017, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhi, X.; Zhu, S.; Fraedrich, K. Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Weather. Forecast. 2019, 34, 377–392. [Google Scholar] [CrossRef]
- Zhang, L.; Zhi, X.F. Multimodel consensus forecasting of low temperature and icy weather over central and southern China in early 2008. J. Trop. Meteorol. 2015, 21, 67–75. [Google Scholar]
- Krishnamurti, T.N.; Kishtawal, C.M.; Zhang, Z.; LaRow, T.; Bachiochi, D.; Williford, E.; Gadgil, S.; Surendran, S. Multimodel ensemble forecasts for weather and seasonal climate. J. Clim. 2000, 13, 4196–4216. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes. Rev. Geophys. 2016, 54, 336–377. [Google Scholar] [CrossRef]
- Zhi, X.; Qi, H.; Bai, Y.; Lin, C. A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data. Acta Meteorol. Sin. 2012, 26, 41–51. [Google Scholar] [CrossRef]
- Koh, T.Y.; Wang, S.; Bhatt, B.C. A diagnostic suite to assess NWP performance. J. Geophys. Res. Atmos. 2012, 117, D13. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ye, A.; Nguyen, P.; Analui, B.; Sorooshian, S.; Hsu, K. New insights into error decomposition for precipitation products. Geophys. Res. Lett. 2021, 48, e2021GL094092. [Google Scholar] [CrossRef]
- Sinha, T.; Sankarasubramanian, A.; Mazrooei, A. Decomposition of sources of errors in monthly to seasonal streamflow forecasts in a rainfall–runoff regime. J. Hydrometeorol. 2014, 15, 2470–2483. [Google Scholar] [CrossRef] [Green Version]
- Mazrooei, A.; Sinha, T.; Sankarasubramanian, A.; Kumar, S.; Peters-Lidard, C.D. Decomposition of sources of errors in seasonal streamflow forecasting over the US Sunbelt. J. Geophys. Res. Atmos. 2015, 120, 11,809–11,825. [Google Scholar] [CrossRef]
- Murphy, A.H. Skill scores based on the mean square error and their relationships to the correlationcoefficient. Mon. Weather. Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Geman, S.; Bienenstock, E.; Doursat, R. Neural networks and the bias/variance dilemma. Neural Comput. 1992, 4, 1–58. [Google Scholar] [CrossRef]
- Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T.; Wu, P.; Chen, X. Potential predictability of North China summer drought. J. Clim. 2019, 32, 7247–7264. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Z.; Zhuang, Q.; Miralles, D.G.; Teuling, A.J.; Zhang, T.; An, P.; Dong, Z.; Zhang, J.; He, D.; et al. Agriculture intensifies soil moisture decline in Northern China. Sci. Rep. 2015, 5, 11261. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Hamill, T.M.; Hagedorn, R.; Whitaker, J.S. Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Weather. Rev. 2008, 136, 2620–2632. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Large-scale analysis of global gridded precipitation and temperature datasets for climate change impact studies. J. Hydrometeorol. 2020, 21, 2623–2640. [Google Scholar] [CrossRef]
- Graham, R.M.; Hudson, S.R.; Maturilli, M. Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophys. Res. Lett. 2019, 46, 6138–6147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ma, X.; Zhu, S.; Guo, Z.; Zhi, X.; Chen, C. Analyses and applications of the precursor signals of a kind of warm sector heavy rainfall over the coast of Guangdong, China. Atmos. Res. 2022, 280, 106425. [Google Scholar] [CrossRef]
- Hagedorn, R.; Buizza, R.; Hamill, T.M.; Leutbecher, M.; Palmer, T.N. Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Q. J. R. Meteorol. Soc. 2012, 138, 1814–1827. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F.; Sun, J. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Weather. Rev. 2011, 139, 2790–2810. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Cullather, R.I.; Grumbine, R.W. An assessment of the NCEP operational global spectral model forecasts and analyses for Antarctica during FROST. Weather. Forecast. 1999, 14, 835–850. [Google Scholar] [CrossRef]
- Steinacker, R.; Ratheiser, M.; Bica, B.; Chimani, B.; Dorninger, M.; Gepp, W.; Lotteraner, C.; Schneider, S.; Tschannett, S. A mesoscale data analysis and downscaling method over complex terrain. Mon. Weather. Rev. 2006, 134, 2758–2771. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Chen, M.; Chen, K.; Chen, H.; Zhang, Y.; Lu, B.; Song, L.; Qin, R. A deep learning method for bias correction of ECMWF 24–240 h forecasts. Adv. Atmos. Sci. 2021, 38, 1444–1459. [Google Scholar] [CrossRef]
- Zhu, S.; Zhi, X.; Ge, F.; Fan, Y.; Zhang, L.; Gao, J. Subseasonal forecast of surface air temperature using superensemble approaches: Experiments over Northeast Asia for 2018. Weather. Forecast. 2021, 36, 39–51. [Google Scholar] [CrossRef]
- He, C.; Zhi, X.; You, Q.; Song, B.; Fraedrich, K. Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method. Meteorol. Atmos. Phys. 2015, 127, 467–479. [Google Scholar] [CrossRef]
- Ji, L.; Zhi, X.; Simmer, C.; Zhu, S.; Ji, Y. Multimodel ensemble forecasts of precipitation based on an object-based diagnostic evaluation. Mon. Weather. Rev. 2020, 148, 2591–2606. [Google Scholar] [CrossRef]
- Peng, T.; Zhi, X.; Ji, Y.; Ji, L.; Tian, Y. Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods. Atmosphere 2020, 11, 823. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.; Zhi, X.; Wu, H.; Zhou, H.; Kong, D.; Zhu, S.; Zhang, Y.; Hao, C. Analyses on the Multimodel Wind Forecasts and Error Decompositions over North China. Atmosphere 2022, 13, 1652. https://doi.org/10.3390/atmos13101652
Lyu Y, Zhi X, Wu H, Zhou H, Kong D, Zhu S, Zhang Y, Hao C. Analyses on the Multimodel Wind Forecasts and Error Decompositions over North China. Atmosphere. 2022; 13(10):1652. https://doi.org/10.3390/atmos13101652
Chicago/Turabian StyleLyu, Yang, Xiefei Zhi, Hong Wu, Hongmei Zhou, Dexuan Kong, Shoupeng Zhu, Yingxin Zhang, and Cui Hao. 2022. "Analyses on the Multimodel Wind Forecasts and Error Decompositions over North China" Atmosphere 13, no. 10: 1652. https://doi.org/10.3390/atmos13101652
APA StyleLyu, Y., Zhi, X., Wu, H., Zhou, H., Kong, D., Zhu, S., Zhang, Y., & Hao, C. (2022). Analyses on the Multimodel Wind Forecasts and Error Decompositions over North China. Atmosphere, 13(10), 1652. https://doi.org/10.3390/atmos13101652