The Effect of Model Resolution on the Vertical and Temporal Variation in the Simulated Martian Climate
Abstract
:1. Introduction
2. Numerical Model and Simulations
2.1. MarsWRF
2.2. Simulations
3. Results
3.1. Temporal Distribution
3.1.1. Column Dust Optical Depth
3.1.2. Time Series of Dust Lifting
3.2. Horizontal Distributions
3.2.1. Dust Lifting by Wind Stress
3.2.2. Dust Lifting by Dust Devils
3.3. Vertical Distribution
3.3.1. Dust Distribution
3.3.2. Dynamic Field
3.3.3. Thermal Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, C.E.; Lewis, S.R.; Read, P.L.; Forget, F. Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res. Planets 2002, 107, 5123. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Wilson, J.; Richardson, M.; Ingersoll, A. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res. 2006, 111, E09004. [Google Scholar] [CrossRef]
- Newman, C.E.; Richardson, M.I. The impact of surface dust source exhaustion on the Martian dust cycle, dust storms and inter-annual variability, as simulated by the MarsWRF General Circulation Model. Icarus 2015, 257, 47–87. [Google Scholar] [CrossRef]
- Gebhardt, C.; Abuelgasim, A.; Fonseca, R.M.; Martín-Torres, J.; Zorzano, M.P. Characterizing dust radiation feedback and refining the horizontal resolution of the marswrf model down to 0.5 degree. J. Geophys. Res. Planets 2021, 126, e2020JE006672. [Google Scholar] [CrossRef]
- Rafkin, S.C.R. A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms. J. Geophys. Res. 2009, 114, E01009. [Google Scholar] [CrossRef] [Green Version]
- Neary, L.; Daerden, F. The GEM-Mars General Circulation Model for Mars: Description and Evaluation. Icarus 2018, 300, 458–476. [Google Scholar] [CrossRef]
- Bertrand, T.; Wilson, R.J.; Kahre, M.A.; Urata, R.; Kling, A. Simulation of the 2018 global dust storm on Mars using the NASA Ames Mars GCM: A multitracer approach. J. Geophys. Res. Planets 2020, 125, e2019JE006122. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, H.; Jakosky, B.M.; Snyder, C.W.; Mathews, M.S. (Eds.) Mars; University of Arizona Press: Tucson, AZ, USA, 1992. [Google Scholar]
- Pollack, J.B.; Leovy, C.B.; Mintz, Y.H.; van Camp, W. Winds on Mars during the Viking season: Predictions based on a general circulation model with topography. Geophys. Res. Lett. 1976, 3, 479–482. [Google Scholar] [CrossRef]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 1999, 104, 24155–24176. [Google Scholar] [CrossRef]
- Richardson, M.I.; Toigo, A.D.; Newman, C.E. PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 2007, 112, E09001. [Google Scholar] [CrossRef]
- Toigo, A.D.; Lee, C.; Newman, C.E.; Richardson, M.I. The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the marswrf gcm. Icarus 2012, 221, 276–288. [Google Scholar] [CrossRef]
- Gebhardt, C.; Abuelgasim, A.; Fonseca, R.M.; Martín-Torres, J.; Zorzano, M.-P. Fully interactive and refined resolution simulations of the martian dust cycle by the marswrf model. J. Geophys. Res. Planets 2020, 125, e2019JE006253. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split non-hydrostatic atmospheric model for Weather Research and Forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Chow, K.-C.; Chan, K.-I.; Xiao, J. Dust activity over the Hellas basin of Mars during the period of southern spring equinox. Icarus 2018, 311, 306–316. [Google Scholar] [CrossRef]
- Chow, K.C.; Xiao, J.; Wang, Y.M. Simulation of dust activities in the southern high latitudes of Mars. Planet. Space Sci. 2022, 217, 105492. [Google Scholar] [CrossRef]
- Xiao, J.; Chow, K.-C.; Chang, K.-I. Dynamical processes of dust lifting in the northern mid-latitude region of Mars during the dust storm season. Icarus 2019, 317, 94–103. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chow, K.C.; Xiao, J.; Wong, C.F. Effect of dust particle size on the climate of Mars. Planet. Space Sci. 2021, 208, 105346. [Google Scholar] [CrossRef]
- Madeleine, J.B.; Forget, F.; Millour, E.; Montabone, L.; Wolff, M.J. Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res. Planets 2011, 116, E11. [Google Scholar] [CrossRef] [Green Version]
- Montabone, L.; Forget, F.; Millour, E.; Wilson, R.; Lewis, S.; Cantor, B.; Smith, M.J.I. Eight-year climatology of dust optical depth on Mars. Icarus 2015, 252, 65–95. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.J.; Richardson, M.I. The martian atmosphere during the viking mission, i: Infrared measurements of atmospheric temperatures revisited. Icarus 2000, 145, 555–579. [Google Scholar] [CrossRef]
- Basu, S.; Richardson, M.I.; Wilson, R.J. Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. 2004, 109, E11006. [Google Scholar] [CrossRef] [Green Version]
- McCleese, D.J.; Heavens, N.G.; Schofield, J.T.; Abdou, W.A.; Bandfield, J.L.; Calcutt, S.B.; Irwin, P.G.; Kass, D.M.; Kleinböhl, A.; Lewis, S.R.; et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. 2010, 115, E12016. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.-W.; Chow, K.-C.; Xiao, J. The Effect of Model Resolution on the Vertical and Temporal Variation in the Simulated Martian Climate. Atmosphere 2022, 13, 1736. https://doi.org/10.3390/atmos13101736
Zhou Y-W, Chow K-C, Xiao J. The Effect of Model Resolution on the Vertical and Temporal Variation in the Simulated Martian Climate. Atmosphere. 2022; 13(10):1736. https://doi.org/10.3390/atmos13101736
Chicago/Turabian StyleZhou, Yu-Wei, Kim-Chiu Chow, and Jing Xiao. 2022. "The Effect of Model Resolution on the Vertical and Temporal Variation in the Simulated Martian Climate" Atmosphere 13, no. 10: 1736. https://doi.org/10.3390/atmos13101736
APA StyleZhou, Y. -W., Chow, K. -C., & Xiao, J. (2022). The Effect of Model Resolution on the Vertical and Temporal Variation in the Simulated Martian Climate. Atmosphere, 13(10), 1736. https://doi.org/10.3390/atmos13101736