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Abstract: Greenhouse gas emissions cause many global problems. Under the strong promotion of
the government’s two-carbon goals policy, China’s petroleum industry is actively carrying out the
application of carbon capture, utilization, and storage (CCUS). The energy consumption and carbon
emissions in China are reviewed, and the importance of the petroleum industry in the process of
carbon emission reduction is clarified. The applications, advantages, and disadvantages of carbon
capture, carbon utilization, and carbon sequestration technologies in China’s petroleum industry are
summarized, respectively. The current challenges and risks faced by China’s petroleum industry
in the operation of CCUS projects are analyzed, and corresponding suggestions are provided. This
article aims to systematically provide references and help for the application of CCUS in China’s
petroleum industry.
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1. Introduction

Climate change affects human’ survival and social development, and is a global issue
that has attracted international attention. In September 2020, the Chinese government
proposed two-carbon goals at the United Nations General Assembly; that is, the goals of
“carbon peaking” in 2030 and “carbon neutrality” in 2060 [1–3]. According to the China
Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report (2021) issued by
the Environmental Planning Institute of the Ministry of Ecology and Environment of the
People’s Republic of China, by the end of 2020, about 40 CCUS demonstration projects had
been put into operation or were under construction in China [4–7]. These mainly focus on
small-scale oil capture and displacement demonstrations in petroleum, coal chemicals, and
power industries; and on the development of the carbon dioxide-enhanced oil recovery
(CO2-EOR) project. As typical energy-intensive industries, the oil, gas, and coal industries
have become the main experimental and research objects of CCUS technology when it
was first proposed. The natural storage environment of oil and gas fields also provides
new ideas for CO2 storage. CO2 injection proved to positively impact the production from
near-abandoned oil and gas wells at a lower cost than conventional refract. The research
results have also greatly stimulated the enthusiasm of the oil and gas industries to promote
the further development of CCUS technology [8]. China’s three major state-owned oil
companies (PetroChina, Sinopec, and CNOOC), which are the main controllers of China’s
petroleum industry, are also actively promoting the two-carbon goals.

China attaches great importance to the basic research and technology development
of CCUS. In 2003, China funded the first CCUS-related research funded by the National
Science and Technology Program through the National Natural Science Foundation. In
2011 alone, 36 studies were supported by the National Science and Technology Program.
By the end of the “Twelfth Five-Year Plan” period, more than 140 research projects had
been funded by the National Science and Technology Program, mainly in capture and
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storage technologies. In 2021, the National Natural Science Foundation of China launched
the research on major basic scientific problems and countermeasures for national carbon
neutrality; and will carry out special funding work for CCUS theory, technology, database,
risk assessment, and other aspects [9–14].

CCUS technology is an internationally recognized carbon emission reduction tech-
nology. The early construction and operation costs of carbon capture and storage (CCS)
were high, and only capital input had no output benefits, which limited the development
of CCS technology. Later, CCUS technology strengthened the research and development
of CO2 utilization. Converting CO2 into energy or substance has realized carbon cycle
rebalancing, increased the economic benefits of CCUS, and made it the most practical and
feasible technical solution to reduce carbon emissions on a large scale [15–17]. In China,
CCUS still has a large development space and funding gap. According to the technology
development roadmap of the Ministry of Science and Technology, it is necessary to realize
the extensive deployment of CCUS and new regional formats in 2050, with the carbon
dioxide utilization and storage capacity reaching 800 Mt/a [18,19].

This paper will first summarize China’s energy consumption and carbon emissions to
illustrate the urgency and necessity of developing CCUS technology. Then, we will talk
about the application of capture, utilization, and storage in China’s petroleum industry at
this stage; and analyze the effects, challenges, and policy prospects.

2. Energy Consumption and Carbon Emissions in China

Since China joined the WTO in 2003, as the world factory, it has produced a large num-
ber of daily necessities for most countries in the world. However, rapid economic develop-
ment and extensive industrial production have resulted in large energy use (Figure 1) [20]
and a huge amount of carbon emissions (Figure 2) [21–23]. At the same time, it can also be
seen that the growth rate of total carbon emissions in recent years has been significantly
slower than that of energy consumption, which indicates that the intensity of carbon emis-
sions has decreased significantly. The growth rate of China’s energy consumption will slow
down further and the elasticity coefficient of energy consumption will also decline, which
is lower than the level at the beginning of the 21st century. After 2035, China’s energy
consumption will enter a low growth period of about 2% [24,25]. Clean, low-carbon, and
efficient energy consumption has become an inevitable trend in China [26].
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Figure 1. China’s energy consumption over the years.
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Figure 2. China’s total apparent CO2 emissions over the years.

As China’s economic development has gradually entered a new normal stage, the
optimization and adjustment of the industrial structure, the demand for energy, and the
environmental protection requirements have promoted the development of China’s energy
in a cleaner, more efficient, more intensive, lower carbon, and more diversified direction.
At this stage, China is in an important period of energy transformation. The substitution
effect of low-carbon and clean energy on coal has been significantly enhanced, and the
policy of energy conservation and consumption reduction will continue to be promoted. In
the past, China’s economic development relied too much on the consumption of carbon
energy. Coal is a major component of China’s energy consumption [27]. Overall, the
proportion of coal consumption has gradually decreased, while the proportion of natural
gas, primary electricity, and other energy sources has gradually increased (Figure 3) [20].
Economic development plays a leading role in the growth of natural gas consumption
demand. According to this trend, natural gas use will continue to grow steadily. While the
total amount of carbon emissions increases and the emission intensity gradually decreases,
carbon capture, utilization, and storage of CO2 are important means to achieve carbon
neutrality [7,28,29].
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3. Progress of CCUS Technology in China’s Petroleum Industry

In recent years, international oil companies have actively announced the carbon peak
and carbon neutral targets under the national level of vigorously promoting greenhouse
gas emission reduction measures. Among them, the oil company alliance represented
by the Oil and Gas Industry Climate Initiative (OGCI) has set an example, and actively
set emission reduction targets and scope [30]. Some well-known international oilfield
technology service companies, such as Schlumberger, Halliburton, Baker Hughes, and
National Oilwell Varco, have carried out corresponding new energy business [31], setting
2050 as the deadline for achieving net zero carbon emissions. Chinese oil companies are
also vigorously promoting the application of CCUS.

3.1. Carbon Capture

From the perspective of the capture process, it mainly includes capture after combus-
tion, capture before combustion, and capture by oxygen-enriched combustion. In terms of
capture methods, they mainly include the chemical absorption method, physical adsorption
method, membrane separation method, low-temperature distillation method, etc. [32–34].
Among them, the chemical absorption method is the most commonly used capture method
for Chinese oil companies. For example, chemical absorption method is used for CO2
capture in the refinery tail gas capture project of Zhongyuan Oilfield and the high carbon
natural gas capture project of Songnan Gas Field.

The main reason for the high cost of carbon capture is a large amount of energy
consumption in the capture process. Therefore, reducing the energy demand in the process
of carbon capture is the main research direction of carbon capture development at this
stage [35].

3.2. Carbon Utilization

In the petroleum industry, it is mainly divided into two aspects: geological utilization
and geological storage. CO2 geological utilization refers to the technology of injecting CO2
into the reservoir to improve the recovery efficiency. It can be subdivided into the following
categories: CO2 enhanced oil recovery (CO2-EOR), CO2 enhanced coalbed methane recov-
ery (CO2-ECBM), CO2 enhanced natural gas recovery (CO2-ENGR), CO2 enhanced shale
gas recovery (CO2-ESGR), CO2 enhanced saline water recovery (CO2-ESWR), and CO2
storage in a depleted reservoir (CO2-SDR) [36–38]. CO2 geological utilization technology
can reduce the CO2 utilization cost by replacing CO2 with formation resources, which is
conducive to large-scale industrial promotion and application.

CO2-EOR can be used and stored synchronously. At present, a large number of projects
have been applied and certain economic benefits can be achieved [39]. As of 7 August 2022,
PetroChina Jidong Oilfield has applied CO2 huff and puff, and CO2 oil displacement
technology in the reservoir; in addition, it has achieved a significant production increase.
The accumulated comprehensive utilization of CO2 exceeds 108 × 104 t; a cumulative oil
increase of 98 × 104 t. On 29 August 2022, Sinopec announced that the “Qilu Petrochemical
Shengli Oilfield Million ton CCUS Project”, China’s largest demonstration base for carbon
capture, utilization, and storage of the whole industrial chain, was officially put into
operation. This marks that China’s CCUS industry has entered the middle and late stage
of technology demonstration—mature commercial operation. The project covers more
than 25 million tons of ultra-low permeability reservoir reserves and 73 injection wells are
deployed. It is estimated that the cumulative injection of more than 10 million tons in 2015
will increase oil by nearly 3 million tons and the recovery factor will increase by more than
12%. The primary storage rate of CO2 can reach 60% to 70%.

3.3. Carbon Storage

With the significant reduction of CCUS technology cost and energy consumption, CO2
storage technology is used as a supplement to CO2 geological utilization. Carbon storage
technology is mainly used to inject captured CO2 into deep salt water layers, deep coal
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seams and oilfields without commercial exploitation value, depleted natural gas fields,
etc. [40–42]. The deep salt water layer is widely distributed in the inland and marine
sedimentary basins of China. Because of its huge CO2 storage space and long CO2 injection
duration, it is conducive to the implementation of large capacity CO2 geological storage
projects. Therefore, CO2 deep salt water layer storage technology is considered as one of
the technologies with the most CO2 storage potential.

The China Shenhua Coal to Liquid Deep Salt Water Layer CO2 Capture and Storage
(CCS) Demonstration Project has accumulatively injected 3 × 105 t CO2; it is currently the
largest CO2 saline water layer storage project in Asia [43]. However, in order to ensure the
feasibility and safety of geological storage, and prevent potential environmental risks, such
as fault activation and earthquake events that may be induced, the pollution of freshwater
aquifers caused by carbon dioxide escape, and leakage endangering human health and local
ecosystems nearby, a large number of geological surveys, sampling, and analysis have been
carried out in the early stages of the project, as well as multiple fracturing treatments [44].
After injection, several sets of detection systems were installed for continuous monitoring.
These have greatly increased the project cost. China’s oil companies have also carried out
CO2 storage for many years. The storage area varies from 1.2 km2 to 60.8 km2. The total
injection amount also ranges from 1 × 104 t to 30 × 104 t.

4. Challenges and Development Countermeasures
4.1. Challenges Faced by Large-Scale Applications

China’s CCUS technology started later than that in Europe and the United States.
Capture technology: the pre-combustion capture technology is relatively mature and
some of them have commercial capabilities. The post-combustion capture technology
is at the primary application stage; especially, the post-combustion chemical absorption
method has a large gap with its international leading commercial application. The second
generation capture technology is still in the development stage [45–47]. Transportation:
land transportation and inland ship transportation technologies have been relatively mature.
However, the design of the supporting land transmission pipeline and pipe network is still
in the early stage. For the development of submarine pipeline transportation technology, it
is still in the conceptual design stage [48,49]. Utilization: CCUS-EOR and other projects
are still in the stage of industrial demonstration research and development. Storage: the
demonstration project of seabed CO2 storage has not been carried out yet. The volume
of other storage projects is significantly different from that of Europe, America, and other
regions [35].

At present, local governments and oil enterprises have shown high enthusiasm for
CCUS; however, once the project is approved or implemented, it is difficult to promote it.
The large-scale application of CCUS in China’s petroleum industry faces many challenges,
including technology, environment, capital, and policy [50–53]:

(1) High investment cost. The investment subjects of CCUS technology are basically
state-owned energy enterprises. The initial investment and maintenance costs of the whole
process are high, and the payback period is long. The high investment cost is the main
reason hindering the large-scale industrialization of CCUS.

(2) Lack of CO2 gas sources. The scale of available CO2 sources in major Chinese oil
companies is small and scattered. The lack of matching bridges between oil fields and
carbon sources also makes it difficult for oil companies to start large-scale CO2 flooding
and storage projects.

(3) The technical level of CCUS still needs to be developed. Generally speaking,
China’s CCUS technology is in the stage of industrialization and testing; and there is
still a gap between it and the international advanced level. At present, there are still a
lot of technical problems that need to be solved or improved in the application of CCUS
technology in China’s petroleum industry.

(4) Environmental safety. There are certain environmental risks in the process of CO2
capture, transportation, utilization, and storage.
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(5) Low market participation. At present, China’s CCUS applications are mainly
government-driven projects; and private enterprises are less involved in the research
and development, and promotion of this technology. Therefore, Chinese oil companies
should effectively promote diversified market players to enter the CCUS cooperation
and competition.

(6) Lack of collaborative cooperation. The application and promotion of CCUS requires
the joint cooperation of multiple industries and multiple parts. Except for a small amount of
cooperation in the power and oil industries, there is currently less cross-industry cooperation.

(7) The standards and specifications are not clear. Due to the small number of operating
projects, there is a lack of clear industry standards and operating specifications, which in
turn limits the large-scale application of CCUS.

(8) Insufficient policy coordination. The advancement of the CCUS project depends
on the government’s financial and policy support. Support should highlight not only
economic benefits, but also social benefits. At present, the policies introduced by various
departments are relatively independent and lack corresponding coordination.

4.2. Development Strategy

The development of technology is not achieved overnight. The government, society,
and enterprises need to coordinate and cooperate from various aspects. In the face of these
challenges, the following development strategies are proposed [54–56]:

(1) Strengthen key technology research. It is suggested that the government should
coordinate enterprises and research institutions to jointly tackle key problems and promote
collaborative innovation. Focusing on key links, such as carbon dioxide capture, industrial
utilization, sequestration, and carbon sink measurement, we will tackle key problems in
core technology and promote the technological upgrading of CCUS’s entire industrial chain.

(2) Methods and standard system construction. This is an important link to realize the
standardization of CCUS industrial development. CCUS standard specification systems
and management systems need to be established; establish a series of standards and
specifications covering CO2 capture, transmission, storage, monitoring and evaluation,
emission reduction verification, etc.

(3) Establish a good CCUS financial ecology. CCUS is a technology with a high
investment risk. Reasonable and effective CCUS investment and financing channels play a
vital role in industrial development. Building a good CCUS financial ecology can accelerate
the sound development of its industry.

(4) Accelerate CCUS pipeline network layout and cluster infrastructure construction;
increase the investment in relevant infrastructure and strengthen the construction of a
transport network; to form a CCUS industrial center based on pipe network facilities and
storage sites.

(5) Incorporate CCUS into the carbon emission trading system; formulate supporting
systems and methods; reasonably allocate quotas; and clarify emission reduction through-
out the life cycle. Thus, it will bring certain economic income to enterprises applying CCUS
technology and absorb some carbon sequestration costs.

(6) The government should improve the fiscal and tax incentive policies, and laws and
regulations system. CCUS should enjoy the same supporting policy support as renewable
energy and other low-carbon clean energy technologies. Industry norms, the system and
regulatory framework, and technical specifications should also be improved.

5. Summary and Recommendations

Chinese oil companies mainly use the most promising chemical absorption method
for CO2 capture. CO2 oil displacement technology can realize storage and utilization simul-
taneously; and Sinopec and PetroChina have both carried out large-scale application. CO2
storage technology has greatly improved the CO2 emission reduction capacity, which has
been carried out by Chinese oil companies for many years and has achieved good results.
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The large-scale application of CCUS in China’s petroleum industry is facing many
challenges. These include technology, environment, capital, market, standards, policies,
and other aspects. The government, enterprises, and research institutions shall make overall
plans for development and collaborative innovation; promote the development of CCUS
core technology; establish a good ecology, reasonable standards, and norms; accelerate
the construction of a CCUS pipeline network and infrastructure; incorporate CCUS into
the carbon emission trading system; improve the fiscal and tax incentive policies, and
laws and regulations system; improve the core competitiveness of CCUS technology in
an all-round way; control greenhouse gas emissions; and improve energy and resource
utilization efficiency.
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