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Abstract: The spatial range of near-surface air temperature average and trends for Southeast Brazil in
recent decades motivated us to investigate the causality of local vegetation and other geophysical
controls at the regional scale to explain the spatial variability of the average maximum and minimum
temperature (Tmax and Tmin). We used measurements from 52 weather stations between 1985 and
2010. Using linear regression, NDVI and cloud cover were significant to explain spatial variability of
Tmax and Tmin. With the Generalized Additive Model (GAM), we improved temperature-dependent
relationships with regional geophysical controls, and local scale NDVI. The modeling of Tmax and
Tmin showed non-linear and combined relationships with geographical position (lat,lon) jointly
expressing the effects of zonality and continentality, and NDVI at distances of 300 m and 3000 m. For
Tmin, geographical position and altitude responded with an amplitude of '5 °C each, and NDVI
with '3 °C. Similarly, the geographical position and altitude were significant for Tmax, with an
amplitude of '5 °C each, and cloud cover with '3.5 °C. Our findings help to clarify the local scale
controls of near-surface air temperature and stress the need to increase resilience against adversities
of global climate change and increasing urbanization, by providing metrics to predict the effects of
nature-based solutions within the urban space.

Keywords: near-surface air temperature; land cover change; generalized additive model; climate
change; urban heat island; regional climate; Brazil; weather stations

1. Introduction

The average global near-surface air temperature increased 0.85 °C [0.69 °C to 0.95 °C]
between 1995–2014 relative to 1850–1900, dominated by increasing anthropogenic green-
house gases and a minor contribution from aerosols and other natural sources that range
from months to decades as solar radiation, volcanism, sea salt, and mineral dust [1].
However, this warming rate showed a large spatial variability across continental ar-
eas due to other anthropogenic factors like land cover change, increasing urbanization,
and aerosols from industrial processes that contribute to either warming or cooling at the
regional scale [2]. For Southeastern Brazil (SEB), a large and populated region larger than
900,000 km², with more than 89 million inhabitants, [3] reported warming of 1.1 °C in
50 years (1955 to 2004) using CRUTEM4 data [4], well above the global average, but also
attributed mostly to greenhouse gases and in agreement with the global scale effect [5].
However, at SEB there is a lack of information about the spatial variability of temperature
trends, and only local studies are available [6,7]. We suspected even more about the spatial
variability by analyzing historical trends from 52 weather stations in SEB. They showed a
mean of 0.25 °C 10 yr−1 across stations for daily averaged temperature, which compared
well with the regional mean of de Abreu et al. [3], but with a high range of values showing
both cooling and warming trends, of +0.02 to +0.51 °C 10 yr−1 for minimum daily tem-
perature (Figure 1a), from −0.01 to +0.46 °C 10 yr−1 for average temperature (Figure 1b),
and from −0.1 to +0.60 °C 10 yr−1 for maximum daily temperature (Figure 1c).
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Figure 1. (a) Minimum daily temperature (Tmin) trend for the stations in southeastern Brazil between
1985 and 2010, in ºC 10 yr−1, ordered from the lowest trend to the highest; (b) same as (a) but for
daily average temperature (Tavg); (c) same as (a) but for maximum daily temperature (Tmax). Solid
lines are the 95% confidence interval, vertical solid line is the average of all stations. * The dotted
vertical line in (b) is the southeastern Brazil average temperature trend estimated from CRUTEM4
(Data from de Abreu et al [3]).

The pattern with a pronounced spatial heterogeneity in temporal temperature trends
(Figure 1) motivated us to investigate in depth the spatial controls of the long-term mean
temperature. Various authors reported connections between the temporal trends and the
controls affecting the mean near air-surface temperature, for example, the land cover [8–10]
and topography [11,12], that can possibly enhance or diminish how the large-scale controls
affect the local response of temporal changes. Therefore, to identify the likely controls
of local-regional variability in temporal trends, we have first to guarantee the physical
consistency of the measurements, and then obtain the controls of variability in the mean
state of temperature.

The SEB contributes over 50% of the national Gross Domestic Product (GDP) with
services, agricultural and industrial goods, as well as headwaters for hydroelectricity and
human water supply, where the impacts of climate change are risky due to significant
exposure and vulnerability [13–15]. The region is spatially complex in topography and
land cover, where latitudinal variation explains up to 50% of average temperature range,
and longitude, which is a proxy for continentality, has a lower impact [16]. Rodriguez-
Lado et al. [17] used a linear regression model to study the patterns of spatial variability in
the state of São Paulo, which is part of the SEB, with altitude and latitude as independent
variables, with no significant impact on longitude. The influence of continentality is con-
founded with the effects of two large mountain ranges placed parallel to the coastline (Serra
do Mar and Serra da Mantiqueira), wherein a combined effect of sea breeze and orographic
circulation both contribute to cloud cover and cold air advection [18]. In SEB the land cover
in rural areas is dominated by pastureland and sugarcane plantations, and an increasing
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urbanization that enhances local warming [19]. For example, the urban heat island effect
in the city of São Paulo was characterized by accelerated expansion of urban areas since
the early 20th century, and is partly responsible for increasing local air temperature [20].
However, the urban heating is not homogeneous over it spatial extent and depends on
many different physical factors such as diurnal cycle, atmospheric turbulence, thermal
properties of constructed materials, and urban morphology as well as the background
temperature [8,21,22]. On this subject, Kagawa-Viviani and Giambelluca [12] used mul-
tiple linear regression at the regional scale in Hawaii and showed a dependency of the
spatial distribution of minimum temperature with vegetation and wind speed, which was
not observed for maximum temperature, that had a dependency with precipitation and
cloud cover. Also, other features might explain the effects at the local scale with complex
topography, like slope and aspect [23].

In general, the studies of attribution of spatial variability of temperature in SEB are
modest, using a limited set of independent variables that did not include likely effects
of land cover and cloud cover caused by mesoscale circulation [16,17]. To contribute to
this understanding, multiple linear regression (MLR) is advantageous, as a simple and
parsimonious model for explicit quantification of different independent variables. However,
MLR has intrinsic restrictions, like assuming a linear relationship between the dependent
and independent variables. The Generalized Additive Model (GAM) was developed to
overcome this limitation, as a generalization of the Generalized Linear Model (GLM). GAM
fits smoothing functions to build relationships between a set of predictors and the predicted
variable instead of assuming a linear dependency [24]. Still, relationships in GAM can be
easily interpreted graphically for each independent variable, and provide inferences about
individual contributions, differently from more complex non-linear methods like neural
networks and other “black box” types of models.

Our objective is to assess the influence of local vegetation and regional scale geophysi-
cal controls on the spatial variability of near-surface temperature in Southeastern Brazil.
Using a wide network of weather stations, and with the attempt to understand and describe
a simple way of showing the dependencies of temperature with the geophysical features of
zonality and continentality, altitude, cloud cover, and as a novelty the influence of local
vegetation, we used parsimonious linear (MLR) and non-linear (GAM) models.

2. Materials And Methods
2.1. Weather Station Information

We used minimum and maximum air temperature data (Tmin, and Tmax, respec-
tively) from a network of weather stations in Southeast Brazil (INMET, IAC, ICEA, and IAG
institutes) (Figure 2). We only used conventional weather stations that are installed accord-
ing to standards about site selection and exposure, and used the longest available period
to compute the climate means [25,26]. We selected the years from 1985 to 2010, which
was optimum because of satellite data availability to calculate the Normalized Difference
Vegetation Index (NDVI) values and by maximizing the number of available stations from
IAC network, which was available until 2010. We quality controlled the available data
by first checking metadata for the exact location of each station to calculate NDVI and
fill in missing information about altitude. The second step included comparing the time-
series with predefined thresholds of physically plausible values, persistency of repeated
values, and discarding data outside the boundaries defined by three times the standard
deviation. We also compared it with nearby stations when more than six of them were
available in a 100 km radius of the target stations, according to Meek and Hatfield [27] and
Shafer et al. [28]. Weather stations that were moved during the selected period were not
used in the analysis, resulting in 52 stations that met all requirements (Table S1). A total of
15 stations have between 10–30% of missing data for Tmin and 20 for Tmax, and only five
have between 20–30% for both Tmin and Tmax.
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Figure 2. Geographical position of the weather stations used in this research. Each station is identified
by a colored point according to the different networks they belong (red: Instituto de Astronomia,
Geofísica e Ciências Atmosféricas/Universidade de São Paulo (IAG); blue: Instituto Agronômico de
Campinas/Secretaria de Agricultura e Abastecimento de São Paulo (IAC); orange: Instituto Nacional
de Meteorologia (INMET); green: Instituto de Controle do Espaço Aéreo/Ministério da Aeronáutica
(ICEA)). Shading represents the altitude in meters. Upper case and bold letters are the federal states
delimited by the grey solid lines, and italic highlight the location of three important mountain chains:
Serra do Mar, Serra da Mantiqueira, and Serra do Espinhaço.

We interpolated missing data with Empirical Orthogonal Functions (EOF) according to
the method described in Beckers and Rixen [29], which is better suited to interpolate larger
periods of missing data [30]. According to this method, we start with the average of each
station as a first guess for the missing data. Singular Value Decomposition (SVD) is then
applied to the data matrix X (n× s dimensions, where n = the number of days, s = number
of stations). We retain m components to reconstruct the original matrix and create a new
estimate of the original matrix. The new estimates are then replaced at the missing points
in matrix X, and the process is repeated iteratively until convergence. To calculate the
optimum number m of components to be used, 2% of missing data is randomly added to
the original matrix and used to calculate the root mean squared error (RMSE). We select
the number m with the lowest RMSE for the interpolation. This study used m = 5, which
had an RMSE of 1.4 °C for minimum temperature. As a comparison, using inverse distance
weighting (IDW) resulted in an RMSE of 2.1 ºC. After the interpolation of missing values,
we homogenized the data (described in Section S2), which is important to reduce the
influence of random errors, detected through breakpoints in the timeseries, and caused by
changes in instruments, drift, transcribing errors, that are not available in the metadata. We
kept, however, stations where changes in NDVI and land use possibly occurred.

We used NDVI estimated by Landsat 5 satellite data (with 30 m of spatial resolution),
using all available images for each of the 26 years of data. Then, the temporal average
was calculated (Figure S3). We computed the spatial average using a circle with a variable
radius with the origin at the station coordinates. After a sensitivity analysis with the
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length of the radius, we selected 300 m for the consolidated averages, based on the highest
correlation with Tmin in the annual aggregation (Figure S4a). Altitude was selected from
metadata when available, and we used the estimates from Shuttle Radar Topography Mis-
sion (SRTM [31]) when not. Cloud cover was estimated from a 15-year average (2000–2014)
from the MODIS satellite with 1 km of spatial resolution [32].

2.2. Statistical Model

We used two models to represent the spatial variability of air temperature: Multiple
Linear Regression and Generalized Additive Model, which can be expressed as the sum of
smoothing functions f j [33]:

Y = α +
p

∑
j=1

f j(Xj) + ε (1)

where Y is the dependent variable (Tmin, Tmax), α is the intercept term, Xj is the jth inde-
pendent variable (j = 1, . . . , p; p = number of regressors), and ε is the residual error which
has a normal distribution with zero mean and constant variance. The smoothing functions
in Equation (1) have the ability to fit non-linear relations between the independent and
dependent variables, however they are fitted following a penalized least squares algorithm
to penalize too wiggly functions preventing an overfit of the model. The Generalized Cross
Validation (GCV) is used to estimate the penalization for each variable [24]. By doing
so, if the penalization is large we can even fit linear relations between the predictor and
predicted variable. We used the concept of estimated degrees of freedom (edf) to determine
whether or not the relations are linear since if edf ≥ 2, there is strong evidence that a
nonlinear function might be the best fit [24]. We used the following source equation to fit
the GAM:

T̂ = α̂ + f̂1(altitude) + f̂2(NDVI) + f̂3(cloud cover) + f̂4(lon,lat) (2)

Every function f̂ is fitted using the mgcv package for R [24], and the estimator α̂ is
the spatial sample mean of the dependent variable T. The model was fitted individually
for each of the following time aggregations: summer (December, January, and February),
winter (June, July, and August), and annual (January to December). We highlight the usage
of a single term for representing the zonal and continental effects through f4(lon,lat) that
will be discussed in more detail in the results.

GAM is based on smoothing functions that require many different parameters to
represent non-linear dependencies and therefore have a greater degree of complexity
when compared with MLR. In the case of MLR, the model that we used is analogous to
Equation (2), where f j(Xj) = β jXj and, therefore:

T̂ = α̂ + β̂1altitude + β̂2NDVI + β̂3cloud cover + β̂4lon + β̂5lat (3)

Equation (3) has a maximum of six degrees of freedom, one for each regressor, while a
GAM model can have more estimated degrees of freedom, depending on the nonlinearities
found in the data. Therefore we compare the results for Equations (2) and (3) with the
same regressors.

The models were evaluated according to the Bayesian Information Criteria (BIC),
BIC = nSSE− n log n + p log n, where SSE is the sum of squared residuals and n is the
number of data samples. The lower the BIC, the lower the error; however, a penalization
term accounts for the number of parameters in the model, prioritizing more parsimonious
models with fewer parameters. To ensure that we are using the most conservative model,
we tested all possible combinations of terms from Equations (2) and (3) (15 possibilities
for GAM and 31 for MLR) and selected the model in which all terms were statistically
significant with a 5% significance level and with the lowest BIC. A flow chart of the main
steps is presented in Figure 3.
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Figure 3. Flow chart of the main steps taken in the methods, including data source preprocessing, sta-
tistical methods (Simple Linear Regression (SLR), Multiple Linear Regression (MLR), and Generalized
Additive Model (GAM)), and selecting the best model for the analysis.

To detect if collinearity effects would be a problem in the model, affecting the inter-
pretation of the results, we calculate the variance inflation factor (VIF), which estimates
how much of the variance of the parameters in the regression is inflated in comparison
with the case where they are linearly independent. The maximum value of VIF was 1.64
for latitude, which is inside the range of recommended values and should not cause any
significant problems due to the collinearity of the regressors [34].

3. Results and Discussion

To elucidate the possible dependency of the average temperature with the selected
regressors (latitude, longitude, NDVI, and cloud cover), we show the scatter plot for the
annual average Tmax and Tmin (Figure 4) with each independent variable for a visual
inspection of the relationship between them. We notice a wide range of average temper-
atures of almost 10 °C, to be more precise, between 12.4 and 21.8 °C (17.3 ± 2.0 °C) for
Tmin and between 23.8 and 32.9 °C (28.5 ± 2.3 °C) for Tmax. We fitted the simple linear
regression (SLR), and all scaling factors are statistically significant (p-value < 5%), except for
Tmax and longitude (p-value = 0.19), suggesting that there is a dependency between each
pair of variables. Based solely on the scaling factor, Tmax has a greater sensitivity than
Tmin with latitude and cloud cover, while Tmin is more sensitive to NDVI, longitude,
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and altitude. In particular, we notice an atypical pattern between Tmax and altitude, with a
heterogeneous distribution of points close to altitudes of zero meters.
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Figure 4. Scatter plot of the average annual maximum (red) and minimum (blue) temperature in each
station, with the following independent variables: (a) latitude, (b) longitude, (c) altitude, (d) NDVI,
(e) cloud cover. The solid line is the univariate linear regression fitted using ordinary least squares
with the 95% confidence interval in shading. The equation and estimated parameters are located
above each scatter plot, with the p-value of the scaling factor in parenthesis.

3.1. Model Fitting

The estimated model parameters for MLR (β̂ j) and GAM (edf) are available in Table 1,
with the respective R² and BIC for the fitted model. They show that both models have a
high percentage of the explained variance for temperature, with R² between 86% and 94%.
GAM explains a higher percentage than MLR, with a difference of almost 9% for Tmax and
7% for Tmin, and a lower BIC. For Tmax, MLR had five degrees of freedom (number of
statistically significant independent variables), while for GAM there were 8.9 edfs (sum of
the individual edfs for each independent variable). For Tmin MLR showed four degrees of
freedom, while GAM had 10.3 edfs.

We noticed that the fitted functions using GAM are significant for Tmax with (lon,lat),
altitude, and cloud cover, and Tmin with (lon,lat), altitude, and NDVI. For MLR, the fitted
linear functions were the same as GAM, except for longitude, which was not statistically
significant for Tmin. The fitted function for NDVI using GAM has an edf close to 1, which
suggests a linear relation with Tmin, with no significant gain compared to MLR. Still,
for Tmin, the relationship with altitude was slightly non-linear (edf = 1.55). For Tmax,
the edf of altitude and cloud cover is close to 2, suggesting a non-linear relationship.
For both Tmin and Tmax, the function s(lon,lat) was the one with the highest edf, 7.71
and 5.40, respectively. The MLR fitted latitude for both Tmin and Tmax, but longitude
only for Tmax, differently from SLR, in which both Tmin have a significant dependency on
longitude (Figure 4b). There is a higher complexity when fitting the MLR with different
variables leading to a non-significant relationship between Tmin and longitude. For both
models, there was a consensus with NDVI only being significant for Tmin, and cloud cover
only for Tmax.
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Table 1. Estimated degrees of freedom (edf), and scaling factors β̂ j of each independent variable. R²
is the coefficient of determination, and BIC is the Bayesian Information Criteria. Only terms with
p-value < 0.01 are displayed.

Generalized Additive Model (GAM) Multiple Linear Regression (MLR)

Tmax
(edf)

Tmin
(edf)

Tmax
β̂j

Tmin
β̂j

Intercept 28.5 17.3 Intercept 37.5 27.5
- - - lon −0.17 -
s(lon,lat) 5.40 7.71 lat 0.44 0.26
s(altitude) 1.95 1.55 altitude −0.003 −0.005
s(NDVI) - 1.00 NDVI - −6.04
s(cloud cover) 1.56 - cloud cover −0.10 -

R² 94.3% 93.4% R² 85.8% 86.1%

BIC 125.8 127.2 BIC 155.4 136.4

3.2. Regional Range of Gam Parameters

The absolute contribution in degrees Celsius for each of the individual functions of
GAM, and their variability is presented in Figure 5. The contribution due to the geograph-
ical position, s(lon,lat), showed a zonal distribution with negative values to the south
and positive to the north for both Tmin and Tmax (Figure 5a,d). This pattern was mainly
expected from the differential radiative heating at the surface, but we noticed, especially for
Tmin, a zonal deformation in the shape of an inverted “U”, probably due to the complex
terrain to the east of the inverted “U”, which had a greater cooling for nighttime tempera-
ture (Figure 5a). In those areas of Serra da Mantiqueira and Serra do Espinhaço (Figure 2),
the mountain-valley circulation contributes to creating areas of significant cooling, usually
close to the valleys [35]. For Tmax, the identified pattern of s(lon,lat) shows a meridional
gradient aligned to the coast, consistent with the well-established thermal contrast between
ocean and continent around noon [18,36]. This variability of s(lon,lat) and its difference
between Tmin and Tmax points to the importance of using the multiple parameter term
with longitude and latitude, which were not evident when using SLR (Figure 4b), because of
the simplification in the spatial dependency.

The near-surface air temperature variation with altitude (in ºC per km of elevation)
across a region is known as the terrestrial lapse-rate (TLR), which is firstly influenced by
the vertical temperature profile in the atmosphere, which is represented by the ascension
of a parcel of air under adiabatic process, that expands and cools down, according to the
dry adiabatic lapse-rate Γd = −9.8 °C km−1. In reality, Γd is summed with different effects
that may affect Tmax and Tmin differently, from local to regional processes. For example,
Li et al. [37] showed a dependency of TLR increasing over warmer and wetter areas
in China. Martin et al. [35] showed lower absolute values of TLR for Tmin than Tmax
in the mountain ranges of Southeastern Brazil, which was attributed to the nighttime
thermal belt at about 200 m up the valley bottom. This tends to reduce the cooling rate
with altitude, having significant seasonal variability that marks the observed lapse-rate,
measured by radiosonde, with an average global value of γ = −6.5 °C km−1 [38]. The TLR
is estimated based on γ but restricted to surface measurements that are grouped regionally,
where microclimatic phenomenons are added, like the type and hydrological state of
the underlying vegetation, types of urbanization like, for example, local climate zones,
and etc. [35,37,39,40].
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Figure 5. Contribution of GAM terms, in °C, for the annual mean of Tmin (a–c) and Tmax (d–f).
In (a,d), is the function related to the geographical position s(lon,lat); in (b,e) is the altitude in meters
above sea level (a.s.l.); (c) the NDVI and (f) the cloud cover in%. In (a,d) we show the position of
each station used to fit the model. In (b,c,e,f): the points are the partial residual of the given function,
and the fitted GAM response is displayed as a solid line with a 95% confidence interval

With GAM we tried to identify the relationship between temperature and altitude,
analogous to the TLR. We estimated a reduction of Tmin and Tmax with altitude under a
range of regional response of approximately 6 °C (Figure 5b,e), similarly to SLR (Figure 4c),
but with very distinct response patterns between Tmin and Tmax. For Tmin, the variability
is well established and with a slightly non-linear response (edf = 1.55), with an approximate
variation of −4.4 °C km−1, roughly estimated using the difference between the highest
and lowest altitudes. Differently, for Tmax we noticed that the sensitivity for changes in
altitude is low in the first 500 m above sea level (a.s.l.), but it is more well established above
500 m. We estimated the TLR between 500 and 1200 m a.s.l., equal to −7.0 °C km−1 for
Tmax and −4.0 °C km−1 for Tmin. This value of TLR for Tmax is steeper than Tmin and
is reasonably comparable with the estimates of −7 °C km−1 from a study made in a rural
area in a 10 km² basin in complex terrain in Serra da Mantiqueira [35].

The cloud cover response acts by reducing temperature as cloud cover increases, and it
is statistically significant in GAM only for Tmax (Figure 5f). Its contribution is lower than
functions like s(lon,lat) and s(altitude), but it is still relevant with an amplitude of about
2 ºC, with a cloud cover variation between 40% and 75%. The contribution for Tmax was
not very clear between 40 and 55% of cloud cover, but it is better established between 55%
to 75%, with a temperature reduction of almost 2 °C for a 20% increase in cloud cover
(Figure 5f).

The s(NDVI) contribution is to reduce the temperature as NDVI increases, which is
statistically significant in GAM only for Tmin (Figure 5c), with an approximately linear
function. The amplitude is close to 2.5 °C between minimum and maximum NDVI val-
ues, comparable with the amplitude from cloud cover for Tmax, and is lower than the
altitude response.

The NDVI range is relatively wide, from 0.15 to 0.61, where most weather stations are
located in urban or suburban areas (Figure S6), and the minority are in rural areas. As a
rough estimate, we suppose a NDVI of 0.4 as a threshold in which below this value the
vegetation cover is too low, with a predominance of built-up areas, and 0.65 as a threshold
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which above this value there is a high vegetation cover [41,42], even though there are no
exact values of NDVI that separate areas with low or high vegetation cover, especially when
considering urban areas. In our sample data, we have 54% of stations with NDVI < 0.4
and none of them with NDVI > 0.65. However, this does not imply that the pixels used
to compute the average in a 300 m radius circle (with a spatial resolution of 30 m), do not
contain areas with NDVI > 0.65, like in urban parks and rural areas, as we will discuss in
the next section about the heterogeneity of land use.

The variability of s(NDVI) that is inversely proportional to NDVI has probably the
same causes of the urban heat island, the increase in stored energy inside the urban canopy
during the day and a slow release in the form of longwave radiation that is persistent
throughout the night, heating the air temperature [19]. The increase in Tmax can occur,
primarily due to the increase in the Bowen ratio in the built-up areas, but this is not a
consensus due to losses from atmospheric turbulence [19]. However, our analysis did
not show a statistically significant response between Tmax and NDVI for both GAM and
MLR, even though the SLR showed (Figure 4d). This is possibly due to the correlation
between NDVI and latitude (Pearson correlation of −0.38, with p-value < 0.01) that affects
the estimation of the parameters [34].

3.3. Seasonality of Gam Response

We further use GAM in a more detailed manner by fitting the summer and winter
averages to see how the seasonality changes the estimated functions (Figure 6). For Tmin,
the geographical position function, s(lon,lat), had a more significant contribution during
winter, when horizontal gradients are more prominent, with a north-south difference of
about 8 °C (Figure 6b), while in summer they are at most 3 °C (Figure 6a). For maximum
temperature, the seasonality response was similar to Tmin, with meridional gradients
above 8 °C in winter and lower than 3 °C in summer.

For the altitude function, we noticed little seasonal variation for Tmax (Figure 6g),
where the lower sensitivity remains for altitudes that are lower than 500 m a.s.l., but with a
steeper gradient above this altitude. For Tmin, we especially noticed that the dispersion
around the fitted function was larger during winter than during summer, mostly in weather
stations with an altitude lower than 500 m (Figure 6c). Kirchner et al. [39] and Li et al. [37]
suggest that this is related to the increase of days with thermal inversions during winter,
decreasing the lapse-rate. In fact, Martin et al. [35] showed that in small basins of meso-γ
scale in Southeastern Brazil, the lapse-rate for Tmin is positive in the first 200 m of altitude,
being more intense during winter, where it is limited by the thermal belt of the nocturnal
boundary layer, and it becomes negative for altitudes higher than 200 m. It seems like this
effect is incorporated in some of the analyzed stations, which helps to explain the pattern
in winter(Figure 6c), but being difficult to quantify it.

The cloud cover functions were statistically significant only for winter (Figure 6h) and
showed an amplitude of approximately 4 °C for cloud cover changes between 20 and 70%,
comparable with the response from altitude and (lat,lon). The NDVI function for Tmin
was significant for both seasons, with higher amplitude in winter (3 °C) than in summer
(1.5 °C), even though there is a higher dispersion in winter (Figure 6e). Southeastern
Brazil is characterized by dry winters and consequent lower cloud cover [43], also seen
in Figure 6h, where values are mostly below 50%. This characteristic can potentially
increase local contributions from vegetation and urbanization, with clear sky nights that
are favorable to promote heating in urban areas (low NDVI) when compared to rural areas
(high NDVI) [19].
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Figure 6. Contribution of GAM terms, in °C, for the seasonal mean of Tmin (a–d) and Tmax (e–h)
for summer and winter. (a–c,f) shows the geographical position, s(lon,lat); altitude in (c,g); NDVI
in (d); and cloud cover in (h). In (a–c,f) we show the position of each station used to fit the model.
In (c,d,g,h): the points are the partial residual of the given function, and the fitted GAM response is
displayed as a solid line with a 95% confidence interval.

3.4. Impact of Land Use Heterogeneity in Urban Areas

As discussed in the previous sections, we found a correlation between minimum
temperature and NDVI defined in a 300 m radius circle (hereafter referenced as NDVI300)
and for Tmax but only in the SLR case, with no statistical significance in GAM and MLR.
However, other factors may influence the signal’s amplitude, like wind speed which
increases this spatial variability when wind speed is low (Section S4). There is also the
possibility of contribution from urban heat islands that may extend up to 60 km from the
city center [44], with great seasonal variability from parameters that are related to land
cover and temperature of the order of 10³ m [45].

According to [46], the spatial homogeneity of land cover up to the order of 10³ m is
important to evaluate the contributions from land use in urban temperature and urban heat
island. Therefore, we reevaluated the spatial distribution of NDVI in an area of higher land
cover spatial heterogeneity around the weather station. We take the example of the city
of São Paulo, with a large urbanized area of 2310 km², and two stations that are separated
by a distance of approximately 4 km: iag01 (Figure 7a,b) located inside a park with more
vegetation and higher NDVI, that is however surrounded by a densely urbanized area
with lower NDVI; and ice03 (Figure 7a,c) station located in an airport with low NDVI in
all surrounding area. On the other hand, we also identified two other stations, one at the
north of SEB (inm07) (Figure 7a,d) and another one at the south (inm37) (Figure 7a,e) with
different NDVI spatial distributions.

After finding differences in NDVI distribution, one of them in the same city, we
reassessed the GAM for the prediction of average Tmin and Tmax, by considering the
influence of NDVI by a smoother with multiple predictors using NDVI300 and NDVI3000
(NDVI defined in a 3000 m radius circle), referenced as s(NDVI300, NDVI3000). This term
considers the local scale land use (NDVI300) and the regional scale (NDVI3000), which
involves transport at the scale of the urban boundary layer. We chose the radius of 3000 m
to capture the influence of the regional scale based on the leveling off of NDVI correlation
with temperature, as noticed in Figure S4.
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Figure 7. (a) Map of southeastern Brazil with all weather stations in this study, with a highlight for:
iag01, ice03, inm08 e inm37; annual average NDVI (1985 to 2010) for: (b) iag01, (c) ice03, (d) inm08 e
(e) inm37.

We fitted the GAM with s(NDVI300, NDVI3000), which was statistically significant for
Tmin in all temporal aggregations, but not Tmax, similarly to the previous models using
s(NDVI300) only. However, by using the term with multiple parameters, there was a best
overall fit, with an increase of the explained variance from 93.4% to 96.1%, and a reduction
in the BIC, from 127.2 to 123.7 (Table S4).

We did not notice a significant difference in the patterns associated with s(altitude)
and s(lon,lat), but there are relevant applications to s(NDVI300, NDVI3000), as shown
in Figure 8. The pattern of the function for the annual average Tmin shows negative
values and colder weather stations (blue area in Figure 8a), which are dominated by high
values of NDVI. In the opposite direction, the positive values represent warmer stations
(red area in Figure 8a), that covers the entire range of NDVI. Still, in the annual average
Tmin, in general, NDVI3000 was greater than NDVI300, as shown by the position of most
stations distributed around the 1:1 line (Figure 8a). This implies that the areas closest to
the station’s position have relatively lower green cover than the surrounding areas (up to
3000 m). There are few but important exceptions, like iag01 and inm08, that are relatively
warm stations with high NDVI300, positioned in local areas with more vegetation than
the surrounding areas (Figures 7b,d and 8a). With respect to the seasonality of s(NDVI300,
NDVI3000), the amplitude of the contribution was greater in winter, with approximately
±2 °C (Figure 8c), when compared to the summer, which was ±1 °C (Figure 8b).

An application of the function s(NDVI300, NDVI3000) is to verify how a hypothetical
change in NDVI would contribute to altering the temperature in a given weather station.
For example, shifting the station iag01 in the x direction (as displayed by the arrows in
Figure 8a) by reducing the NDVI300 (keeping NDVI3000 constant), there is little temper-
ature change, however, shifting it in the y direction and increasing NDVI3000 (keeping
NDVI300 constant) leads to a decrease in temperature by reaching the blue part of the plot.
Another example with a different result is the station inm37 which has high values of both
NDVI300 and NDVI3000. In this case, a decrease in NDVI300 (keeping NDVI3000 constant)
with changes in the x direction, increases temperature when reaching the warmer side of
the plot, as well as a change in the y direction with a reduction of NDVI3000 (keeping
NDVI300 constant). We used a large spatial domain to fit the model, that expresses the
combined effects of a large sampling, and that might not be the ideal approach to detect
changes at individual stations. Despite that, our simplified method used both the regional
and local scale NDVI to suggest how the temperature relationship with NDVI depends on
the heterogeneity of land-cover distribution across these scales.
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Figure 8. Contribution from the s(NDVI300, NDVI3000) function from GAM, in °C, for minimum
temperature in the following time aggregations: (a) annual, (b) summer, and (c) winter. The black
dots represent the NDVI in each station, with the names highlighting the position of the stations given
in Figure 7. The arrows indicate what happens when a given station is moved in the direction of the
arrow (increase or decrease of NDVI). The dashed line is the 1:1 line, where NDVI300 = NDVI3000.

4. Conclusions

With the purpose to assess the influence of local vegetation and regional scale geo-
physical controls on the spatial variability of near-surface temperature, we used 26 years of
meteorological measurements from 52 conventional weather stations in Southeast Brazil.
We used parsimonious statistical models of MLR and GAM, that helped to obtain the
relationships of temperature with regional geophysical features (zonality, continentality,
topography, and cloud cover) and local scale vegetation. The prediction of the average
near-surface Tmax and Tmin showed the best overall performance with GAM, which used
a single function to describe the combined effect of zonality and continentality, and for
NDVI at local (300 m) and regional scale (3000 m).

Our results were generally consistent with the knowledge established in the literature.
However, some studies relied on larger areas (up to 104 m of radius) due to uncertainties in
the information of station position, to attribute relationships of land-use and near-surface
air temperature [47,48]. As a novelty, our results fitted the dependency of geographical
position and temperature with a non-linear method that represents the background climate
conditions. Considering the additive property of the model we have on top of the spatial
distribution, at least for Southeast Brazil, the land-use component, represented by NDVI,
showed that, the variability of the near-surface air temperature is mostly correlated with
local scale NDVI (300 m radius). Still, there is a combined effect of local vegetation with
regional vegetation (3000 m) that represents the complexity of heterogeneous surfaces.

In GAM, the independent variables that accounted for the variation of the annual
average Tmin were geographical position and altitude, each with an amplitude of '5 °C,
and the NDVI that contributed with an amplitude of '3 °C. Similarly, the variables that
accounted for Tmax variation were geographical position and altitude, each with an
amplitude of '5 °C, and cloud cover that contributed with an amplitude of '3.5 °C.
The seasonality of the amplitude of each fitted function was relatively small across variables,
except for the geographical position and altitude in the Tmin model, which was slightly
higher in winter compared to the annual mean.
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Limitations of the proposed method are present, among them the fact that GAM is less
generalizable than MLR, making it harder to extrapolate its results to other regions. Another
limitation is the low density of stations available in the area that meet all required criteria
for the analysis. The main geographical patterns are similar to those of Alvares et al. [16]
and Rodríguez-Lado et al. [17], but a higher density is important for the characterization of
the impact of land use heterogeneity. It would also help define more localized relationships
with land use and topography, which would benefit from high-resolution data. For exam-
ple, Local Climate Zones in the vicinity of the weather stations have information about
architectural and urban morphology that are relevant to the surface energy budget [49],
as well as topographic aspect and slope [23].

Finally, our results stress the need to clarify the causality of near-surface air tem-
perature, at both the mean state and the temporal trends. Improving prediction of local
temperature is key to adapting to global climate change and increasing urbanization. Espe-
cially in urban areas, it is recognized the need to achieve levels of climate resilience that
assimilate current changes of the earth system. This issue can be driven partially through
nature-based solutions [50,51], whereby public policies can design green spaces, using
quantifying metrics that predict the possible effects distributed within in the urban space.
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