Are Adaptation Measures Used to Alleviate Heat Stress Appropriate to Reduce Ammonia Emissions?
Abstract
:1. Introduction
2. Data and Methods
2.1. Simulation of the Indoor Climate of Confined Livestock Buildings
2.2. Ammonia Emission and the Mitigation Potential
2.3. Adaptation Measures to Reduce Heat Stress
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leip, A.; Billen, G.; Garnier, J.; Grizzetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; De Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 115004. [Google Scholar] [CrossRef]
- Ni, J.Q.; Erasmus, M.A.; Croney, C.C.; Li, C.; Li, Y. A critical review of advancement in scientific research on food animal welfare-related air pollution. J. Hazard. Mater. 2020, 408, 124468. [Google Scholar] [CrossRef]
- Giannadaki, D.; Giannakis, E.; Pozzer, A.; Lelieveld, J. Estimating health and economic benefits of reductions in air pollution from agriculture. Sci. Total Environ. 2018, 622, 1304–1316. [Google Scholar] [CrossRef]
- Sundblad, B.-M.; Larsson, B.-M.; Acevedo, F.; Ernstgård, L.; Johanson, G.; Larsson, K.; Palmberg, L. Acute respiratory effects of exposure to ammonia on healthy persons. Scand. J. Work. Environ. Health 2004, 30, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Wing, S.; Wolf, S. Intensive livestock operations, health, and quality of life among eastern North Carolina residents. Environ. Health Perspect. 2000, 108, 233–238. [Google Scholar] [CrossRef]
- Xu, L.; Penner, J. Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos. Chem. Phys. 2012, 12, 9479–9504. [Google Scholar] [CrossRef] [Green Version]
- Anderl, M.; Haider, S.; Zethner, G.; Kropsch, M.; Pöllinger, A.; Zentner, E. Maßnahmen zu sekundären Partikeln aus der Landwirtschaft: Ammoniakemissionen; Umweltbundesamt Wien: Wien, Austria, 2016. [Google Scholar]
- Backes, A.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory. Atmos. Environ. 2016, 131, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Backes, A.M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 2016, 126, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Spangl, W.; Nagl, C.; Schneider, J.; Kaiser, A. Herkunftsanalyse der PM10-Belastung in Österreich. In Ferntransport und Regionale Beiträge; Umweltbundesamt: Wien, Austria, 2006. [Google Scholar]
- Wu, Y.; Gu, B.; Erisman, J.W.; Reis, S.; Fang, Y.; Lu, X.; Zhang, X. PM2. 5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut. 2016, 218, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.E.; Tsigaridis, K.; Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 2016, 43, 5394–5400. [Google Scholar] [CrossRef]
- Erisman, J.; Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 2004, 129, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Zhang, L.; Dingenen, R.V.; Vieno, M.; Grinsven, H.J.V.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C.; et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 2021, 374, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Backes, A.M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Influence of ammonia emissions on aerosol formation in Northern and Central Europe. In Air Pollution Modeling and Its Application XXIV; Springer: Berlin/Heidelberg, Germany, 2016; pp. 29–35. [Google Scholar]
- EEA. European Union Emission Inventory Report 1990–2015 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); European Environment Agency: Maastricht, The Netherlands, 2017.
- EEA. Air Quality in Europe—2017 Report; European Environment Agency: Copenhagen, Denmark, 2017.
- Anderl, M.; Haider, S.; Zethner, G.; Kropsch, M.; Pöllinger, A.; Zentner, E. Massnahmen zur Minderung sekundärer Partikelbildung durch Ammoniakemissionen aus der Landwirtschaft; Umweltbundesamt: Wien, Austria, 2016; p. 85.
- EU 2016/2284; Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC in 2284. EU: Luxembourg, 2016.
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, E.; Kushta, J.; Bruggeman, A.; Lelieveld, J. Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. Environ. Sci. Eur. 2019, 31, 93. [Google Scholar] [CrossRef] [Green Version]
- Brink, C.; van Grinsven, H.; Jacobsen, B.H.; Rabl, A.; Gren, I.-M.; Holland, M.; Klimont, Z.; Hicks, K.; Brouwer, R.; Dickens, R.; et al. Costs and benefits of nitrogen in the environment. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Bleeker, A., Grizzetti, B., Howard, C.M., Billen, G., van Grinsven, H., Erisman, J.W., Sutton, M.A., Grennfelt, P., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 513–540. [Google Scholar] [CrossRef]
- Wagner, S.; Angenendt, E.; Beletskaya, O.; Zeddies, J. Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions. Agric. Syst. 2015, 141, 58–68. [Google Scholar] [CrossRef]
- Lelieveld, J.; Haines, A.; Pozzer, A. Age-dependent health risk from ambient air pollution: A modelling and data analysis of childhood mortality in middle-income and low-income countries. Lancet Planet. Health 2018, 2, e292–e300. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gu, B.; van Grinsven, H.; Lam, S.K.; Liang, X.; Bai, M.; Chen, D. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 2020, 11, 4357. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130166. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. Impact of global warming on the odour and ammonia emissions of livestock buildings used for fattening pigs. Biosyst. Eng. 2018, 175, 106–114. [Google Scholar] [CrossRef]
- Geels, C.; Andersson, C.; Hänninen, O.; Lansø, A.S.; Schwarze, P.E.; Skjøth, C.A.; Brandt, J. Future premature mortality due to O3, Secondary inorganic aerosols and primary PM in Europe—Sensitivity to changes in climate, anthropogenic emissions, population and building stock. Int. J. Environ. Res. Public Health 2015, 12, 2837–2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, D.; Andersson, C.; Christensen, J.H.; Engardt, M.; Geels, C.; Nyiri, A.; Posch, M.; Soares, J.; Sofiev, M.; Wind, P.; et al. Impacts of climate and emission changes on nitrogen deposition in Europe: A multi-model study. Atmos. Chem. Phys. 2014, 14, 6995–7017. [Google Scholar] [CrossRef] [Green Version]
- Skjøth, C.A.; Geels, C. The effect of climate and climate change on ammonia emissions in Europe. Atmos. Chem. Phys. 2013, 13, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Aarnink, A.J.A.; Elzing, A. Dynamic model for ammonia volatilization in housing with partially slatted floors, for fattening pigs. Livest. Prod. Sci. 1998, 53, 153–169. [Google Scholar] [CrossRef]
- Jaderborg, J.P.; Spiehs, M.J.; Woodbury, B.L.; DiCostanzo, A.; Parker, D.B. Use of Bedding Materials in Beef Bedded Manure Packs in Hot and Cool Ambient Temperatures: Effects on Ammonia, Hydrogen Sulfide, and Greenhouse Gas Emissions. Trans. ASABE 2021, 64, 1197–1209. [Google Scholar] [CrossRef]
- Wulf, S.; Roesemann, C.; Eurich-Menden, B.; Grimm, E. Minderung von Ammoniakemissionen in der Landwirtschaft—Anforderungen, Potenziale und Umsetzbarkeit. In Proceedings of the 14. KTBL-Tagung: Aktuelle Rechtliche Rahmenbedingungen für die Tierhaltung, Ulm/Hannover, Germany, 24–26 September 2019. [Google Scholar]
- Groenestein, C.; Hutchings, N.; Haenel, H.; Amon, B.; Menzi, H.; Mikkelsen, M.; Misselbrook, T.; van Bruggen, C.; Kupper, T.; Webb, J. Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe. J. Clean. Prod. 2019, 211, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Opderbeck, S.; Keßler, B.; Gordillio, W.; Schrade, H.; Piepho, H.-P.; Gallmann, E. Influence of a cooled, solid lying area on the pen fouling and lying behavior of fattening pigs. Agriculture 2020, 10, 307. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Keen, A.; Metz, J.H.M.; Speelman, L.; Verstegen, M.W.A. Ammonia Emission Patterns during the Growing Periods of Pigs Housed on Partially Slatted Floors. J. Agric. Eng. Res. 1995, 62, 105–116. [Google Scholar] [CrossRef]
- Le, P.D.; Aarnink, A.J.A.; Jongbloed, A.W. Odour and ammonia emission from pig manure as affected by dietary crude protein level. Livest. Sci. 2009, 121, 267–274. [Google Scholar] [CrossRef]
- Van Harn, J.; Aarnink, A.J.A.; Mosquera, J.; Van Riel, J.W.; Ogink, N.W.M. Effect of bedding material on dust and ammonia emission from broiler houses. Trans. ASABE 2012, 55, 219–226. [Google Scholar] [CrossRef]
- Ding, L.; Li, Q.; Wang, C.; Zhang, G.; Jiang, R.; Yu, L.; Zheng, W.; Gao, R.; Ma, W.; Zhang, S.; et al. Determination of the mass transfer coefficient of ammonia emissions from dairy open lots using a scale model. Biosyst. Eng. 2020, 190, 145–156. [Google Scholar] [CrossRef]
- Saraz, O.; Alexander, J.; Ferreira Tinoco, I.d.F.; Gates, R.S.; Rocha, O.; Sullivan, K.; Zapata Marín, O.L. A simple methodology to measure ammonia flux generated in naturally ventilated poultry houses. Rev. Colomb. Cienc. Pecu. 2015, 28, 3–12. [Google Scholar]
- Gyldenkærne, S.; Skjøth, C.A.; Hertel, O.; Ellermann, T. A dynamical ammonia emission parameterisation for use in air pollution models. J. Geophys. Res. D Atmos. 2005, 110, D07108.1–D07108.14. [Google Scholar] [CrossRef]
- Ni, J. Mechanistic models of ammonia release from liquid manure: A review. J. Agric. Eng. Res. 1999, 72, 1–17. [Google Scholar] [CrossRef]
- Schauberger, G.; Lim, T.T.; Ni, J.Q.; Bundy, D.S.; Haymore, B.L.; Diehl, C.A.; Duggirala, R.K.; Heber, A.J. Empirical model of odor emission from deep-pit swine finishing barns to derive a sstandardised odor emission factor. Atmos. Environ. 2013, 66, 84–90. [Google Scholar] [CrossRef]
- Blunden, J.; Aneja, V.P.; Westerman, P.W. Measurement and analysis of ammonia and hydrogen sulfide emissions from a mechanically ventilated swine confinement building in North Carolina. Atmos. Environ. 2008, 42, 3315–3331. [Google Scholar] [CrossRef]
- Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; Schönhart, M.; et al. Impacts of global warming on confined livestock systems for growing-fattening pigs: Simulation of heat stress for 1981 to 2017 in Central Europe. Int. J. Biometeorol. 2019, 63, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, G.; Piringer, M.; Petz, E. Separation distance to avoid odour nuisance due to livestock calculated by the Austrian odour dispersion model (AODM). Agric. Ecosyst. Environ. 2001, 87, 13–28. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Petz, E. Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for fattening pigs. Int. J. Biometeorol. 2000, 43, 154–162. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Heber, A.J. Odour emission scenarios for fattening pigs as input for dispersion models: A step from an annual mean value to time series. Agric. Ecosyst. Environ. 2014, 193, 108–116. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure VDI. VDI 3894 Part 1. Emissions and Immissions from Animal Husbandry—Housing Systems and Emissions—Pigs, Cattle, Poultry, Horses; Beuth: Berlin, Germany, 2011. [Google Scholar]
- Vitt, R.; Weber, L.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosyst. Eng. 2017, 164, 85–97. [Google Scholar] [CrossRef]
- Schauberger, G.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Global warming impact in confined livestock buildings: Efficacy of adaptation measures to reduce heat stress for growing-fattening pigs. Clim. Chang. 2019, 156, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, G.; Hennig-Pauka, I.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Efficacy of adaptation measures to alleviate heat stress in confined livestock buildings in temperate climate zones. Biosyst. Eng. 2020, 200, 157–175. [Google Scholar] [CrossRef]
- Ni, J.Q.; Heber, A.J.; Sutton, A.L.; Kelly, D.T. Mechanisms of gas releases from swine wastes. Trans. ASABE 2009, 52, 2013–2025. [Google Scholar]
- Tong, X.; Zhao, L.; Heber, A.J.; Ni, J.Q. Development of a farm-scale, quasi-mechanistic model to estimate ammonia emissions from commercial manure-belt layer houses. Biosyst. Eng. 2020, 196, 67–87. [Google Scholar] [CrossRef]
- Ni, J.Q.; Hendriks, J.; Vinckier, C.; Coenegrachts, J. Development and validation of a dynamic mathematical model of ammonia release in pig house. Environ. Int. 2000, 26, 105–115. [Google Scholar] [CrossRef]
- Sommer, S.G.; Olesen, J.E. Effects of dry matter content and temperature on ammonia loss from surface-applied cattle slurry. J. Environ. Qual. 1991, 20, 679–683. [Google Scholar] [CrossRef]
- Ye, Z.; Zhu, S.; Kai, P.; Li, B.; Blanes-Vidal, V.; Pan, J.; Wang, C.; Zhang, G. Key factors driving ammonia emissions from a pig house slurry pit. Biosyst. Eng. 2011, 108, 195–203. [Google Scholar] [CrossRef]
- Anderson, N.; Strader, R.; Davidson, C. Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environ. Int. 2003, 29, 277–286. [Google Scholar] [CrossRef]
- Bjerg, B.; Norton, T.; Banhazi, T.; Zhang, G.; Bartzanas, T.; Liberati, P.; Cascone, G.; Lee, I.B.; Marucci, A. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 1: Ammonia release modelling. Biosyst. Eng. 2013, 116, 232–245. [Google Scholar] [CrossRef]
- Jeppsson, K.-H. Diurnal variation in ammonia, carbon dioxide and water vapour emission from a deep litter house for fattening pigs. In Proceedings of the International Symposium Gaseous and Odor Emissions from Animal Production Facilities, Horsens, Denmark, 1–4 June 2003. [Google Scholar]
- Tabase, R. Impact of Ventilation on Ammonia and Odour Emissions from Pig Housing; Gent University: Gent, Belgium, 2020. [Google Scholar]
- Skjøth, A.C.; Hertel, O.; Gyldenkærne, S.; Ellermann, T. Implementing a dynamical ammonia emission parameterisation in the large-scale air pollution model ACDEP. J. Geophys. Res. D Atmos. 2004, 109, D06306. [Google Scholar]
- Economic Commission for Europe, Executive Body for the Convention on Long-range Transboundary Air Pollution. UN ECE/EB.AIR/120. In Guidance Document on Preventing and Abating Ammonia Emissions from Agricultural Sources; Economic Commission for Europe, Executive Body for the Convention on Long-range Transboundary Air Pollution: Geneva, Switzerland, 2014. [Google Scholar]
- United Nations Economic Commission for Europe. UN ECE/EB.AIR/129. In Framework Code for Good Agricultural Ractice for Reducing Ammonia Emissions; United Nations Economic Commission for Europe: Geneva, Switzerland, 2015. [Google Scholar]
- Wulf, S.; Rösemann, C.; Eurich-Menden, B.; Grimm, E. Ammoniakemissionen in der Landwirtschaft Minderungsziele und -potenziale. In Proceedings of the Aktuelle Rechtliche Rahmenbedingungen für die Tierhaltung, Hannover, Germany, 31 May 2017. [Google Scholar]
- Amann, M.; Klimont, Z.; Winiwarter, W. Emissions from Agriculture and their Control Potentials; DG-Environment of the European Commission: Brussels, Belgium, 2012. [Google Scholar]
- De Vries, J.W.; Melse, R.W. Comparing environmental impact of air scrubbers for ammonia abatement at pig houses: A life cycle assessment. Biosyst. Eng. 2017, 161, 53–61. [Google Scholar] [CrossRef]
- Rößler, R.; Eurich-Menden, B.; Vandré, R.; Wulf, S.; Döhler, H. Ammonia emissions: Abatement costs for feeding of fattening pigs. Landtechnik 2012, 67, 69–72. [Google Scholar]
- Döhler, H.; Vandré, R.; Rößler, R.; Eurich-Menden, B.; Wulf, S. Ammonia emissions: Abatement costs for the storage of liquid manure. Landtechnik 2011, 66, 465–468. [Google Scholar]
- Döhler, H.; Vandré, R.; Rößler, R.; Wulf, S. Ammonia emissions: Abatement costs for the application of liquid manure. Landtechnik 2011, 66, 469. [Google Scholar]
- Melse, R.W.; Ogink, N.W.M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: Review of on-farm research in the Netherlands. Trans. Am. Soc. Agric. Eng. 2005, 48, 2303–2313. [Google Scholar] [CrossRef]
- Melse, R.W. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production; Wageningen University: Wageningen, The Netherlands, 2009. [Google Scholar]
- Van der Heyden, C.; Demeyer, P.; Volcke, E.I.P. Mitigating emissions from pig and poultry housingfacilities through air scrubbers and biofilters: State-of-the-art andperspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Fritz, C. Abluftreinigung in der Mastschweinehaltung—Eine betriebswirtschaftliche Betrachtung für Österreich. In Proceedings of the Bautagung Raumberg-Gumpenstein 2019, Irdning-Donnersbachtal, Austria, 15–16 May 2019; p. 12. [Google Scholar]
- Pertagnol, J. Untersuchung zu verschiedenen Zuluftführungs-und Kühlungsmöglichkeiten in Mastschweineställen; Universität Hohenheim: Hohenheim, Germany, 2013. [Google Scholar]
- Jeppsson, K.H.; Olsson, A.C.; Nasirahmadi, A. Cooling growing/finishing pigs with showers in the slatted area: Effect on animal occupation area, pen fouling and ammonia emission. Livest. Sci. 2021, 243, 104377. [Google Scholar] [CrossRef]
- Queenan, K.; Garnier, J.; Rosenbaum Nielsen, L.; Buttigieg, S.; De Meneghi, D.; Holmberg, M.; Zinsstag, J.; Rüegg, S.; Häsler, B.; Kock, R. Roadmap to a One Health agenda 2030. In CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources; CABI: Wallingford, UK, 2017; Volume 12, pp. 1–17. [Google Scholar]
- Tarazona, A.M.; Ceballos, M.C.; Broom, D.M. Human relationships with domestic and other animals: One Health, One Welfare, One Biology. Animals 2020, 10, 43. [Google Scholar] [CrossRef]
Relative Ammonia Difference (%) | |||||||
---|---|---|---|---|---|---|---|
SD80% | SD60% | INV | VENT | CP | CPHE | EAHE | |
Maximum | 5.0 | 6.9 | 4.3 | 17.6 | 6.0 | 5.8 | 13.0 |
3rd Quartile | 0.6 | 0.4 | −1.1 | 8.1 | 0.4 | 0.2 | 5.1 |
Median | −0.7 | −0.9 | −2.7 | 3.1 | −1.4 | −1.3 | −3.2 |
Mean | −0.7 | −1.7 | −2.6 | 4.3 | −2.0 | −1.7 | −3.1 |
1st Quartile | −2.1 | −3.9 | −4.2 | 0.1 | −4.0 | −3.4 | −11.4 |
Minimum | −7.1 | −9.9 | −7.7 | −4.9 | −11.1 | −10.0 | −19.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherllin-Pirscher, B.; Mikovits, C.; Baumann-Stanzer, K.; Piringer, M.; Schauberger, G. Are Adaptation Measures Used to Alleviate Heat Stress Appropriate to Reduce Ammonia Emissions? Atmosphere 2022, 13, 1786. https://doi.org/10.3390/atmos13111786
Scherllin-Pirscher B, Mikovits C, Baumann-Stanzer K, Piringer M, Schauberger G. Are Adaptation Measures Used to Alleviate Heat Stress Appropriate to Reduce Ammonia Emissions? Atmosphere. 2022; 13(11):1786. https://doi.org/10.3390/atmos13111786
Chicago/Turabian StyleScherllin-Pirscher, Barbara, Christian Mikovits, Kathrin Baumann-Stanzer, Martin Piringer, and Günther Schauberger. 2022. "Are Adaptation Measures Used to Alleviate Heat Stress Appropriate to Reduce Ammonia Emissions?" Atmosphere 13, no. 11: 1786. https://doi.org/10.3390/atmos13111786
APA StyleScherllin-Pirscher, B., Mikovits, C., Baumann-Stanzer, K., Piringer, M., & Schauberger, G. (2022). Are Adaptation Measures Used to Alleviate Heat Stress Appropriate to Reduce Ammonia Emissions? Atmosphere, 13(11), 1786. https://doi.org/10.3390/atmos13111786