Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collecting
2.2. Experimental Process
2.3. Statistical Analyses
3. Results and Discussion
3.1. Production of Greenhouse Gases in Freshwater Ecosystems Affected by Microplastics
3.1.1. Concentration of CO2 in Poyang Lake and Paddy Soil
3.1.2. Concentration of CH4 in Poyang Lake and Paddy Soil
3.2. Concentrations of Greenhouse Gases in Saltwater Ecosystems
3.2.1. Concentration of CO2 in Intertidal and Mangrove Forests
3.2.2. Concentration of CH4 in Intertidal and Mangrove Forests
3.3. Global Warming Equivalent in Different Ecosystems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girod, B.; van Vuuren, D.P.; Hertwich, E.G. Global climate targets and future consumption level: An evaluation of the required GHG intensity. Environ. Res. Lett. 2013, 8, 014016. [Google Scholar] [CrossRef] [Green Version]
- Pugnaire, F.I.; Morillo, J.A.; Penuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; van der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC; Stocker, T.F.; Qin, D.; Plattner, G.K.; Midgley, P.M. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Comput. Geom. 2013, 1535, 2013. [Google Scholar]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Grünfeld, S.; Brix, H. Methanogenesis and methane emissions: Effects of water table, substrate type and presence of Phragmites australis. Aquat. Bot. 1999, 64, 63–75. [Google Scholar] [CrossRef]
- Lu, X.; Cheng, G. Climate change effects on soil carbon dynamics and greenhouse gas emissions in Abies fabri forest of subalpine, southwest China. Soil Biol. Biochem. 2009, 41, 1015–1021. [Google Scholar] [CrossRef]
- Chen, H.; Wu, N.; Wang, Y.; Zhu, D.; Peng, C. Inter-Annual Variations of Methane Emission from an Open Fen on the Qinghai-Tibetan Plateau: A Three-Year Study. PLoS ONE 2013, 8, e53878. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.L.; Liu, F.H.; Liu, J.C.; Li, J.J.; Zhang, Y.C.; Yu, J.F.; Wang, O.M. Nano-Fe3O4 particles accelerating electromethan-ogenesis on an hour-long timescale in wetland soil. Environ. Sci. Nano 2018, 5, 436–445. [Google Scholar] [CrossRef]
- Li, J.; Xiao, L.L.; Zheng, S.; Zhang, Y.; Luo, M.; Tong, C.; Xu, H.; Tan, Y.; Liu, J.; Wang, O. A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction. Sci. Total Environ. 2018, 643, 1024–1030. [Google Scholar] [CrossRef]
- Xiao, L.L.; Liu, F.H.; Xu, H.D.; Feng, D.W.; Liu, J.C.; Han, G.X. Biochar promotes methane production at high acetate concentrations in anaerobic soils. Environ. Chem. Lett. 2019, 17, 1347–1352. [Google Scholar] [CrossRef]
- Liu, J.; Liu, F.H.; Yu, J.F.; Wang, Q.; Li, Z.K.; Liu, K.; Xu, C.M.; Yu, H.; Xiao, L.L. Proteomics reveal biomethane production process induced by carbon nanotube. Environ. Res. 2021, 200, 111417. [Google Scholar] [CrossRef]
- Demisie, W.; Liu, Z.Y.; Zhang, M.K. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Ding, L.J.; Zama, E.F.; Liu, P.P.; Hozzein, W.N.; Zhu, Y.G. Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate. Environ. Sci. Technol. 2018, 52, 12198–12207. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.L.; Sun, R.; Zhang, P.; Zheng, S.; Tan, Y.; Li, J.; Zhang, Y.; Liu, F.H. Simultaneous intensifcation of direct acetate cleavage and CO2 reduction to generate methane by bioaugmentation and increased electron transfer. Chem. Eng. J. 2019, 378, 122229. [Google Scholar] [CrossRef]
- Gao, M.; Zhang., L.; Liu., Y. High-loading food waste and blackwater anaerobic co-digestion: Maximizing bioenergy recovery. Chem. Eng. J. 2020, 394, 124911. [Google Scholar] [CrossRef]
- Huang, W.H.; Lee, D.J.; Huang, C. Modification on biochars for applications: A research update. Bioresour. Technol. 2021, 319, 124100. [Google Scholar] [CrossRef]
- Xiao, L.L.; Liu, F.H.; Lichtfouse, E.; Zhang, P.; Feng, D.W.; Li, F.B. Methane production by acetate dismutation stimulated by Shewanella oneidensis and carbon materials: An alternative to classical CO2 reduction. Chem. Eng. J. 2020, 389, 124469. [Google Scholar] [CrossRef]
- He, P.J.; Zhang, H.H.; Duan, H.W.; Shao, L.M.; Lu, F. Continuity of biochar-associated biofilm in anaerobic digestion. Chem. Eng. J. 2020, 390, 124605. [Google Scholar] [CrossRef]
- Kubota, M.; Nakabayashi, T.; Matsumoto, Y.; Shiomi, T.; Yamada, Y.; Ino, K.; Yamanokuchi, H.; Matsui, M.; Tsunoda, T.; Mizukami, F.; et al. Selective adsorption of bacterial cells onto zeolites. Colloids Surf. B Biointerfaces 2008, 64, 88–97. [Google Scholar] [CrossRef]
- Masebinu, S.O.; Akinlabi, E.T.; Muzenda, E.; Aboyade, A.O. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 103, 291–307. [Google Scholar] [CrossRef]
- Habouzit, F.; Gevaudan, G.; Hamelin, J.; Steyer, J.P.; Bernet, N. Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium. Bioresour. Technol. 2011, 102, 4054–4060. [Google Scholar] [CrossRef] [PubMed]
- Capson-Tojo, G.; Moscoviz, R.; Ruiz, D.; Santa-Catalina, G.; Trably, E.; Rouez, M. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresour. Technol. 2018, 260, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Komnitsas, K.; Zaharaki, D.; Pyliotis, I.; Vamvuka, D.; Bartzas, G. Assessment of Pistachio Shell Biochar Quality and Its Potential for Adsorption of Heavy Metals. Waste Biomass Valorization 2015, 6, 805–816. [Google Scholar] [CrossRef]
- Xiao, L.L.; Lichtfouse, E.; Kumar, P.S.; Wang, Q.; Liu, F.H. Biochar promotes methane production during anaerobic digestion of organic waste. Environ. Chem. Lett. 2021, 19, 3557–3564. [Google Scholar] [CrossRef]
- Lu, F.; Luo, C.H.; Shao, L.M.; He, P.J. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016, 90, 4–43. [Google Scholar] [CrossRef]
- Xiao, L.L.; Zheng, S.L.; Lichtfouse, E.; Luo, M.; Tan, Y.; Liu, F.H. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure cultures to anaerobic soils. Soil Biol. Biochem. 2020, 150, 107938. [Google Scholar] [CrossRef]
- Xiao, L.L.; Wei, W.; Luo, M.; Xu, H.; Liu, F.H. A potential contribution of a Fe(III)-rich red clay horizon to methane release: Biogenetic magnetite-mediated methanogenesis. Catena 2019, 181, 104081. [Google Scholar] [CrossRef]
- Yu, J.F.; Liu, J.; Kumar, P.S.; Wei, Y.W.; Zhou, M.; Vo, D.V.N.; Xiao, L.L. Promotion of methane production by magnetite via increasing acetogenesis revealed by metagenome-assembled genomes. Bioresour. Technol. 2022, 345, 126521. [Google Scholar] [CrossRef]
- Xiao, L.L.; Lichtfouse, E.; Kumar, P.S. Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: A critical review. Fuel 2021, 305, 121577. [Google Scholar] [CrossRef]
- Han, L.F.; Chen, L.Y.; Li, D.T.; Ji, Y.; Feng, Y.Y.; Feng, Y.F.; Yang, Z.F. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environ. Pollut. 2022, 292, 118386. [Google Scholar] [CrossRef]
- Gao, B.; Yao, H.; Li, Y.; Zhu, Y. Microplastic Addition Alters the Microbial Community Structure and Stimulates Soil Carbon Dioxide Emissions in Vegetable-Growing Soil. Environ. Toxicol. Chem. 2021, 40, 352–365. [Google Scholar] [CrossRef]
- Ren, X.; Tang, J.; Liu, X.; Liu, Q. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ. Pollut. 2020, 256, 113347. [Google Scholar] [CrossRef]
- Seeley, M.E.; Song, B.; Passie, R.; Hale, R.C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 2020, 11, 2372. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Martin-Closas, L.; Pelacho, A.M.; DeBruyn, J.M. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Front. Microbiol. 2018, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Machado, A.A.D.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Mierzwa-Hersztek, M.; Gondek, K.; Kopec, M. Degradation of Polyethylene and Biocomponent-Derived Polymer Materials: An Overview. J. Polym. Environ. 2019, 27, 600–611. [Google Scholar] [CrossRef] [Green Version]
- Ajith, N.; Arumugam, S.; Parthasarathy, S.; Manupoori, S.; Janakiraman, S. Global distribution of microplastics and its impact on marine environment—A review. Environ. Sci. Pollut. Res. 2020, 27, 25970–25986. [Google Scholar] [CrossRef]
- Wang, C.; Wei, W.; Zhang, Y.T.; Ni, B.J. Evaluating the role of biochar in mitigating the inhibition of polyethylene nanoplastics on anaerobic granular sludge. Water Res. 2022, 221, 118855. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Zhuang, Q. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queiros, A.M.; Galloway, T.S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yao, H.; Wen, Z.; Song, C. CH4MODwetland: A biogeophysical model for simulating methane emissions from natural wetlands. Ecol. Model. 2010, 221, 666–680. [Google Scholar] [CrossRef]
- Stolte, A.; Forster, S.; Gerdts, G.; Schubert, H. Microplastic concentrations in beach sediments along the German Baltic coast. Mar. Pollut. Bull. 2015, 99, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Besseling, E.; Quik, J.T.K.; Sun, M.; Koelmans, A.A. Fate of nano- and microplastic in freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Zhang, L.W.; Lan, S.Q.; Zhao, L.J.; Yi, H.P.; Han, G.X. Temporal variation of water-use efficiency and water sources of Phragmites australis in the coastal wetland: Based on stable isotopic composition (δ13C and δ18O). Ecol. Indic. 2022, 139, 108957. [Google Scholar] [CrossRef]
- Blsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Rillig, M.C.; Bonkowski, M. Microplastic and soil protists: A call for research. Environ. Pollut. 2018, 241, 1128–1131. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Chen, J.; Wang, J.F.; Zeng, Q.G.; Zhang, Z.B.; Zhu, D. Linkage of soil organic matter composition and soil bacterial community structure as influenced by dominant plants and hydrological fluctuation in Poyang Lake. J. Soils Sediments 2021, 21, 2865–2881. [Google Scholar] [CrossRef]
- Fan, L.C.; Dippold, M.A.; Ge, T.D.; Wu, J.S.; Thiel, V.; Kuzyakov, Y.; Dorodnikov, M. Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes. Soil Biol. Biochem. 2020, 141, 107685. [Google Scholar] [CrossRef]
- Chu, X.J.; Han, G.X.; Wei, S.Y.; Xing, Q.H.; He, W.J.; Sun, B.Y.; Li, X.G.; Hui, D.F.; Wu, H.T.; Wang, X.J.; et al. Seasonal not annual precipitation drives 8-year variability of interannual net CO2 exchange in a salt marsh. Agric. For. Meteorol. 2021, 108557, 308–309. [Google Scholar] [CrossRef]
- Wei, S.Y.; Han, G.X.; Chu, X.J.; Sun, B.Y.; Song, W.M.; He, W.J.; Wang, X.J.; Li, P.G.; Yu, D.X. Prolonged impacts of extreme precipitation events weakened annual ecosystem CO2 sink strength in a coastal wetland. Agric. For. Meteorol. 2021, 310, 108655. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Lu, P.W.; Zhang, Z.B.; Jian, M.F.; Zhu, D. Effects of fire disturbance on soil carbon components and carbon sequestration capacity at Nanji Mountain under water level fluctuation. Resour. Environ. Yangtze River Basin 2022, 31, 156–165. [Google Scholar]
- Deng, Y.W.; Ye, R.Z.; Zhu, Z.K.; Inubushi, K.; Wu, J.S.; Ge, T.D. Legacy effect of elevated CO2 and N fertilization on mineralization and retention of rice (Oryza sativa L.) rhizodeposit-C in paddy soil aggregates. Soil Ecol. Lett. 2022, 4, 78–91. [Google Scholar]
- Hao, Q.Q.; Liu, F.H.; Zhang, Y.C.; Wang, O.M.; Xiao, L.L. Methylobacter accounts for strong aerobic methane oxidation in the Yellow River Delta with characteristics of a methane sink during the dry season. Sci. Total Environ. 2017, 595, 337–343. [Google Scholar] [CrossRef]
- Zhang, C.W.; Zhang, Y.X.; Luo, M.; Tan, J.; Chen, X.; Tan, F.F.; Huang, J.F. Massive methane emission from tree stems and pneumatophores in a subtropical mangrove wetland. Plant Soil 2022, 473, 489–505. [Google Scholar] [CrossRef]
- Yuan, H.C.; Wu, H.; Ge, T.D.; Li, K.L.; Wang, J.R. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils. Chin. J. Appl. Ecol. 2015, 26, 1807–1813. [Google Scholar]
- Liu, F.; Wang, Y.Q.; Zhang, Y.; Zhu, Z.K.; Wu, J.S.; Ge, T.D.; Li, Y.H. Effect of long-term straw returning on the mineralization and priming effect of rice root-carbon. Environ. Sci. 2022, 43, 4372–4378. [Google Scholar]
- Luo, M.; Zeng, C.S.; Tong, C.; Huang, J.F.; Yu, Q.; Guo, Y.B.; Wang, S.H. Abundance and speciation of iron across a subtropical tidal marsh of the Min River Estuary in the East China Sea. Appl. Geochem. 2014, 45, 1–13. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, G.Q. China’s CH4 and CO2 emissions: Bottom-up estimation and comparative analysis. Ecol. Indic. 2014, 47, 112–122. [Google Scholar] [CrossRef]
- Zhao, M.L.; Han, G.X.; Li, J.Y.; Song, W.M.; Qu, W.D.; Eller, F.; Wang, J.P.; Jiang, C.S. Responses of soil CO2 and CH4 emissions to changing water table level in a coastal wetland. J. Clean. Prod. 2020, 269, 122316. [Google Scholar] [CrossRef]
- Machado, A.A.D.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bacheher, J.B.; Faltin, E.; Becker, R.; Gorlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [Green Version]
- Shen, R.; Lan, Z.; Huang, X.; Chen, Y.; Hu, Q.; Fang, C.; Jin, B.; Chen, J. Soil and plant characteristics during two hydro-logically contrasting years at the lakeshore wetland of Poyang Lake, China. J. Soils Sediments 2020, 20, 3368–3379. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.D.; Liu, Y.; Chen, L.Y.; Tao, S.; Liu, W.X. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci. Total Environ. 2021, 756, 143860. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, Y.T.; Huang, Q.S.; Ni, B.J. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Res. 2019, 163, 114881.1–114881.10. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Conrad, R.; Wassmann, R.; Neue, H.U. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 1999, 47, 269–295. [Google Scholar] [CrossRef]
- Yza, B.; Jwa, B.; Mza, B.; Zja, B.; Sza, B.; Yan, L.C. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. Total Environ. 2020, 748, 141368. [Google Scholar]
- Wu, Q.T.; Bian, F.H.; Eller, F.; Wu, M.D.; Han, G.X.; Yu, J.B.; Guan, B. Pollution levels and toxicity risks of heavy metals in different reed wetland soils following channel diversion in the Yellow River Delta. Wetlands 2022, 42, 31. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.H.; Xu, X.J.; Yu, H.; Xi, B.D.; Tan, W.B. Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. Environ. Int. 2021, 149, 106398. [Google Scholar] [CrossRef]
- Chen, T.S.; Zheng, P.G.; Zhang, Y.N.; Dong, C.; Han, G.X.; Li, H.; Yang, X.; Liu, Y.H.; Sun, J.J.; Li, H.Y.; et al. Characteristics and formation mechanisms of atmospheric carbonyls in an oilfield region of northern China. Atmos. Environ. 2022, 274, 118958. [Google Scholar] [CrossRef]
- Ali, I.; Ding, T.; Peng, C.; Naz, I.; Sun, H.; Li, J.; Liu, J. Micro- and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies—A critical review. Chem. Eng. J. 2021, 423, 130205. [Google Scholar] [CrossRef]
- Otero, X.L.; Mendez, A.; Nobrega, G.N.; Ferreira, T.O.; Santiso-Taboada, M.J.; Melendez, W.; Macias, F. High fragility of the soil organic C pools in mangrove forests. Mar. Pollut. Bull. 2017, 119, 460–464. [Google Scholar] [CrossRef]
Factors | Incubation Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 | 8 | 14 | 22 | 28 | 35 | 49 | 58 | 70 | ||
soil | F | 22.786 | 9.551 | 20.834 | 20.574 | 14.064 | 16.234 | 2.402 | 26.778 | 13.032 |
P | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.078 | <0.01 | <0.01 | |
microplastics | F | 0.565 | 1.663 | 1.087 | 1.318 | 1.221 | 2.111 | 0.174 | 11.045 | 10.621 |
P | 0.690 | 0.169 | 0.370 | 0.272 | 0.311 | 0.090 | 0.951 | <0.01 | 0.010 | |
soil × microplastics | F | 0.779 | 0.446 | 0.964 | 0.363 | 1.208 | 1.450 | 1.210 | 4.020 | 7.348 |
P | 0.637 | 0.938 | 0.492 | 0.972 | 0.298 | 0.168 | 0.302 | <0.01 | <0.01 |
Factors | Incubation Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 | 8 | 14 | 22 | 28 | 35 | 49 | 58 | 70 | ||
soil | F | 164.071 | 18.658 | 8.898 | 1.154 | 2.340 | 5.823 | 1.728 | 1.386 | 2.591 |
P | <0.01 | <0.01 | <0.01 | 0.334 | 0.081 | 0.001 | 0.170 | 0.254 | 0.069 | |
microplastics | F | 3.779 | 1.264 | 0.441 | 1.267 | 1.394 | 4.556 | 1.295 | 3.571 | 4.637 |
P | 0.008 | 0.293 | 0.778 | 0.291 | 0.245 | 0.003 | 0.281 | 0.011 | 0.002 | |
soil × microplastics | F | 5.139 | 2.922 | 1.002 | 1.105 | 2.502 | 4.981 | 2.192 | 1.217 | 1.575 |
P | <0.01 | 0.003 | 0.457 | 0.371 | 0.009 | <0.01 | 0.022 | 0.290 | 0.120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, L.; Zhou, L.; Liu, J.; Zhou, M.; Lin, Z.; Luo, M.; Zhang, B.; Xiao, L. Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems. Atmosphere 2022, 13, 1796. https://doi.org/10.3390/atmos13111796
Li X, Zhang L, Zhou L, Liu J, Zhou M, Lin Z, Luo M, Zhang B, Xiao L. Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems. Atmosphere. 2022; 13(11):1796. https://doi.org/10.3390/atmos13111796
Chicago/Turabian StyleLi, Xiaoyu, Lirong Zhang, Lifeng Zhou, Jian Liu, Meng Zhou, Zhengyu Lin, Min Luo, Baohua Zhang, and Leilei Xiao. 2022. "Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems" Atmosphere 13, no. 11: 1796. https://doi.org/10.3390/atmos13111796
APA StyleLi, X., Zhang, L., Zhou, L., Liu, J., Zhou, M., Lin, Z., Luo, M., Zhang, B., & Xiao, L. (2022). Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems. Atmosphere, 13(11), 1796. https://doi.org/10.3390/atmos13111796