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Abstract: The negative impact of indoor formaldehyde pollution has become a growing interest,
especially in severe cold areas, since most residential buildings do not have enough ventilation and
people are unwilling to open windows. In order to explore the status and the influencing factors of
indoor formaldehyde pollution in severe cold areas and predict the formaldehyde concentrations in
these areas, a study of 60 residential buildings in Liaoning, China, was carried out using the method
of phenol reagent spectrophotometry. While testing the formaldehyde concentration, the infiltration
air change rate of the room was also tested using CO2 as a tracer gas. The correlation between
formaldehyde concentration and its influencing factors was analyzed by SPSS software. Multiple
linear regression equations were established for the linear regression analysis. The measured data
were used to assess the formaldehyde cancer risk of residents in Liaoning. The test results showed that
the most serious rates of average formaldehyde pollution occurred in summer with a concentration
of 0.097 mg/m3, and the bedroom was the room most seriously polluted by formaldehyde in autumn
with a concentration of 0.104 mg/m3. According to the correlation analysis, the formaldehyde
concentration was significantly correlated with the indoor temperature, years of decoration, and
the infiltration ventilation rate. The linear regression equation for predicting the formaldehyde
concentration was established. According to the risk assessment of the test results, residents in
Liaoning are already at risk of cancer caused by formaldehyde.

Keywords: formaldehyde; indoor air; measurement; numerical analysis; risk assessment

1. Introduction

In modern society, most people’s work and life are gradually moving indoors, leading
to the fact that people can spend more than 90% of their time indoors, which makes it
inevitable that they breathe in a large amount of indoor air [1]. According to statistics, adults
breathe 10 to 15 times per minute, with 0.5 L of air being inhaled each time. Calculated
based on the average lifespan of 70 years, each person will breathe in 270,000 m3 of air in
their lifetime. The air drawn into the alveoli through human respiration has a total surface
area of 60 to 80 m2 [2]. Then it is physically diffused into the body for exchange, and the
pollutants contained in the air also enter the body. Poor indoor air quality (IAQ) can cause
people to develop serious diseases such as sick building syndrome (SBS), which has become
an increasingly global problem. Therefore, it is widely believed that IAQ has a great impact
on the physical and mental health of people both at home and abroad [3,4]. At present,
Chinese residents are facing serious indoor and outdoor IAQ problems and are in need of
guidance on indoor pollution removal methods and ventilation strategies.

As a common indoor air pollutant, formaldehyde is listed by the International Agency
for Research on Cancer (IARC) as a category 1 carcinogen in humans and can irritate the
eyes and upper respiratory tract [4]. Many other studies have found that formaldehyde is
highly toxic and a carcinogen that can cause respiratory diseases [5,6]. With the increasing
improvement of living standards, people care more and more about the indoor visual
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environment. This has led to more and more complex and diverse interior decoration.
Therefore, the complex decoration materials in the relatively airtight indoor space have
become the main source of pollution harming the human body [7]. Just like the deaths of
Ali employees who rented rooms with excessive formaldehyde that led to leukemia [8],
increasing attention and awareness have been paid to indoor pollutants such as formalde-
hyde. Currently, people are faced with the problem of exceeding the standard limit of
indoor pollutants, which has once again initiated an upsurge of indoor air quality testing.

Studies have shown that common construction products such as wood-based materials,
particleboard, furniture surface coatings, and combustion materials are typical indoor
formaldehyde sources [9–11]. In addition to those sources, others include outdoor sources
such as biomass burning and the conversion of biogenic emissions [12], chemical reactions
in indoor spaces, various combustion processes, the operation of equipment such as air
purifiers, and emissions from human activities such as saunas, cooking, and cleaning [13].
Due to the complex pollution sources of formaldehyde in residential buildings, there are
many factors that affect the concentration of formaldehyde. In terms of interior decoration,
the quality and quantity of man-made board, decorated material loading factor (wooden
floors, cold-paint multi-layer wooden materials, and multi-layer materials for system
furniture), furniture features (such as geometric features, product components, processing,
and function), type of paint and coating of the surface area, external environmental factors
(such as temperature and humidity), maturing time, and many other factors will affect
the concentration of formaldehyde in indoor air [10,11,14–16]. Therefore, it is particularly
important to study the emission characteristics of formaldehyde. Some scholars have
studied the influence of relative humidity on the decomposition of formaldehyde. The
results showed that when the relative humidity is between 25% and 50%, there is no
significant difference in the effective change coefficient of formaldehyde [17]. However,
10 ◦C variations in temperature increased the formaldehyde emissions 1.9~3.5 times [18].
To explore the emission characteristics of indoor formaldehyde, an effective approach is
the regression analysis method to separate the influence of different factors [19]. However,
each region in different climatic zones has its own environmental conditions, and relatively
few field tests and characteristic studies have been conducted on indoor formaldehyde
concentrations for the severe cold areas of northeast China [20,21]. Thus, it is necessary
to establish a regression equation that belongs to severe cold areas for predicting the
formaldehyde concentrations in these regions.

In the present research, the status, influencing factors, and regression equation for
indoor formaldehyde pollution were studied based on a group of 60 residential buildings in
Liaoning, China. In total, 39 households were tested by on-site measurement and the data
of the other 21 households were taken from our former research [22]. Referring to a method
of linear regression [23], a multiple linear regression equation applicable to the Liaoning
region was established. The formaldehyde concentration obtained from the test was used
to calculate the current formaldehyde cancer risk of residents in Liaoning province.

2. Methods
2.1. Depiction of the Tested Household Conditions

To determine the status of the formaldehyde pollution in residential buildings in the
Liaoning area, 60 residential buildings in Shenyang (the largest city in Liaoning province,
41◦48′ N, 123◦25′ E), Fushun (the typical old base of heavy industry in Liaoning, 41◦52′ N,
123◦55′ E), and Yingkou (the typical port city of Liaoning, 40◦39′ N, 122◦13′ E) were selected
for the to be tested by on-site measurement of formaldehyde concentrations. In addition,
29 households were selected according to different environmental conditions for on-site
measurement in the different seasons of the year. The selection of the sample size was
carried out according to the maximum number of households that can be determined
using the existing research funds. Due to certain difficulties in on-site measurement, the
sample size selected in this paper was not small [23], and it also met the requirement that
the ratio of variable to sample size should be at least five times when conducting multi-
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factor regression analysis with a small sample size [24]. The climate of the selected region
is characterized by cold and dry winters (November–March), short transition seasons
(April–May, September–October), and hot and rainy summers (June–August). The houses
tested were chosen according to the time since they were last decorated, number of floors,
apartment type, floor area, and decoration method. Approximately half of all households
had been decorated between 1 and 2 years from the start of the test. Various types of
residential units were included in the study, including one- to four-bedroom homes, duplex
apartments, and villas. The floors on which the residences were found cover low, medium,
and high positions, with the highest being 32 floors. The decorating materials were mainly
latex-painted walls, composite wood floors (tiles), and panel furniture. The information for
the 29 households under long-term monitoring is shown in Table 1.

2.2. On-Site Measurement of Formaldehyde

At present, there are two existing indoor air quality standards in China, namely, GB/T
18883-2002 Indoor Air Quality Standard established by the Ministry of Health [25] (here-
inafter referred to as the GB/T 18883 standard) and GB 50325-2020 Indoor Environmental
Pollution Control Code for Civil Construction Projects issued by the Ministry of Construc-
tion [26] (hereinafter referred to as the GB 50325 standard). The differences between the
two standards are shown in Table 2.

From the perspective of numerical comparison, the GB/T 18883 standard is more
lenient, while the GB 50325 standard is stricter. From the perspective of the implementation
conditions of the standards, the GB 50325 standard is the project acceptance standard,
which does not consider indoor furniture, while the GB/T 18883 standard is the daily
operating standard. Thus, there are some different requirements between them. What is
more, their test preconditions are also different. The GB/T 18883 standard requires the
sampling room to be airtight for 12 h before sampling, whereas the GB 50325-2020 standard
only requires the sampling room to be airtight for 1 h before sampling. For this difference,
Li et al. believed that the concentration of pollutants tested after 12 h of airtightness should
be the highest concentration possible during people’s stay indoors, which was considered
the most adverse conditions [27]. For this reason, the standard referred to in this paper for
the on-site measurement is the GB/T18883 standard, that is, the sampling rooms were kept
airtight for 12 h before the measurements were taken.

The testing lasted for almost one year, starting from 20 December 2016 and ending
on 30 October 2017. Typical days in each of the four seasons were selected for the on-site
measurement under airtight conditions. The specific test time was from 20 December 2016
to 20 January 2017 in winter, 22 April 2017 to 4 June 2017 in spring, 15 July 2017 to 29
August 2017 in summer, and 11 October 2017 to 30 October 2017 in autumn.

The main functional rooms of a residential house can be divided into three parts: the
bedroom, the living room, and the kitchen. Therefore, these three functional rooms were
selected for the on-site measurement in this paper. The number of sample points in each
test room was determined according to the area required in the GB 50325 standard. The
sampling site should avoid vents and possible pollution sources, and the distance from the
wall should be greater than 0.5 m. In principle, the height of the sampling site should be
consistent with the height of the breathing zone. The relative height is between 0.5 m and
1.5 m, and should be arranged in the middle of the room as far as possible. In the sampling
process, the sampler is placed on a bracket fixed a height at 1.4 m. When the sampling
space is too small to place the bracket, the sampler is placed on a cabinet with a height of
more than 1 m as far as possible.
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Table 1. Household information.

NO. City Construction
Year

Year of
Decoration

Building
Floor No.

No. of
Floors House Type Residential

Area (m2)
Furniture Surface

Area (m2) Decoration Type

N1 Shenyang 2011 2011 11 2 Four-bedroom 145 42.345 Latex paint + wallpaper + solid wood
N2 Shenyang 2012 2012 19 6 Two-bedroom 70 37.522 Latex paint + composite wood
N3 Shenyang 2013 2013 18 16 Two-bedroom 90 21.285 Putty powder + composite wood
N4 Shenyang 2009 2009 16 3 Two-bedroom 100 41.302 Latex paint + composite wood
N5 Shenyang 2013 2013 33 26 Three-bedroom 134 52.9676 Latex paint + solid wood
N6 Shenyang 2004 2004 9 8 Three-bedroom 140 63.975 Latex paint + solid wood
N7 Shenyang 2012 2012 28 16 Three-bedroom 120 60.415 Latex paint + composite wood
N8 Shenyang 2003 2003 6 6 Three-bedroom 110 46.3825 Latex paint + composite wood
N9 Shenyang 2015 2015 30 27 Two-bedroom 105 39.04 Latex paint + composite wood

N10 Shenyang 2011 2011 6 1 Two-bedroom 110 33.659 Latex paint + composite wood
N11 Shenyang 2008 2009 23 2 Penthouse 150 52.46 Putty powder + solid wood
N12 Shenyang 2002 2009 6 1 Two-bedroom 90 52.23 Putty powder + composite wood
N13 Shenyang 2003 2004 6 1 Three-bedroom 95 36.3275 Putty powder + composite wood
N14 Shenyang 2002 2012 6 1 Three-bedroom 125 34.03 Putty powder + composite wood
N15 Shenyang 2009 2009 28 13 Two-bedroom 90 40.28 Latex paint + composite wood
N16 Fushun 2016 2016 33 1 Two-bedroom 80 40.33 Latex paint + composite wood
N17 Fushun 2016 2016 33 6 Two-bedroom 75 28.243 Latex paint + composite wood
N18 Fushun 2016 2016 33 27 Single room 65 41.785 Latex paint + composite wood
N19 Fushun 2016 2016 33 1 Two-bedroom 65 39.905 Latex paint + composite wood
N20 Fushun 1996 2016 6 5 Two-bedroom 75 22.225 Latex paint + composite wood
N21 Fushun 2016 2016 28 4 Two-bedroom 65 22.38 Latex paint + composite wood
N22 Yingkou 2016 2016 7 7 Three-bedroom 120 21.308 Diatom ooze + composite wood

N23 Yingkou 2016 2016 2 6 Two-bedroom 90 44.928 Diatom ooze + composite wood +
ceramic tile

N24 Yingkou 2012 2013 7 28 Four-bedroom 160 43.095 Wallpaper + textile + solid wood +
ceramic tile

N25 Yingkou 2016 2017 - 3 Villa 300 43.5 Latex paint + wallpaper + solid wood +
ceramic tile

N26 Shenyang 2016 2016 16 34 Single room 55 38.22 Latex paint + composite wood
N27 Shenyang 2016 2016 32 34 Single room 52 34.62 Latex paint + composite wood
N28 Shenyang 2016 2016 9 34 Single room 55 43.41 Latex paint + composite wood
N29 Shenyang 2016 2016 26 34 Two-bedroom 65 36.32 Latex paint + composite wood
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Table 2. Differences between standards.

GB/T 18883-2002 Indoor Air
Quality Standard

GB 50325-2020
Indoor Environmental

Pollution Control Code for
Civil Construction Projects

Formaldehyde/mg/m3 0.10 0.07
VOC/mg/m3 0.60 0.50

CO2/ppm 1000 ppm (daily average)

PM2.5/mg/m3 0.075 (daily average)

According to GB 3095-2012
Ambient Air Quality Standard,
excellent < 0.035, good < 0.075,

light pollution < 0.115,
medium pollution < 0.15

According to the standard of GB/T 18204.2-2014 “Public Health Inspection Methods—
Part 2: Chemical Pollutants” [28], the concentration of formaldehyde is determined by
the phenol reagent (3-methyl-2-benzothiazolinone hydrazone, hereinafter referred to as
MBTH) spectrophotometric method. Before sampling, the absorption liquid (MBTH) was
configured, and 5 mL of the absorption liquid was put into the absorption tube, which had
been washed and dried with distilled water in advance. Air sampling pumps were used to
circulate 10 L air through the absorption tubes over 20 min at a rate of 0.5 L/min. After
sampling, the formaldehyde absorbent was transferred into the colorimetric tube, and the
absorbent was stabilized to 5 mL, 0.4 mL of ammonium ferric sulfate was added, and the
solution was left to stand for 15 min during the experiment. Finally, a spectrophotometer
(Figure 1a, Table 3) was used to measure the absorbance of the sample at the wavelength
of 630 nm (the spectrophotometer should be preheated for 40 min), and this value was
compared with the standard curve to calculate the formaldehyde concentration in the
sample. This method provides acceptable accuracy with a coefficient of variation lower
than 5%, and has been used in many studies [29–32]. However, during the testing process,
both the preparation of the solution and the handling during sampling and assaying may
have an impact on the final results. Considering other studies used sophisticated testing
instruments for field testing, we should enhance the accuracy and science of the testing in
future studies.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 13 
 

 

paper for the on-site measurement is the GB/T18883 standard, that is, the sampling rooms 
were kept airtight for 12 h before the measurements were taken. 

The testing lasted for almost one year, starting from 20 December 2016 and ending 
on 30 October 2017. Typical days in each of the four seasons were selected for the on-site 
measurement under airtight conditions. The specific test time was from 20 December 2016 
to 20 January 2017 in winter, 22 April 2017 to 4 June 2017 in spring, 15 July 2017 to 29 
August 2017 in summer, and 11 October 2017 to 30 October 2017 in autumn. 

The main functional rooms of a residential house can be divided into three parts: the 
bedroom, the living room, and the kitchen. Therefore, these three functional rooms were 
selected for the on-site measurement in this paper. The number of sample points in each 
test room was determined according to the area required in the GB 50325 standard. The 
sampling site should avoid vents and possible pollution sources, and the distance from 
the wall should be greater than 0.5 m. In principle, the height of the sampling site should 
be consistent with the height of the breathing zone. The relative height is between 0.5 m 
and 1.5 m, and should be arranged in the middle of the room as far as possible. In the 
sampling process, the sampler is placed on a bracket fixed a height at 1.4 m. When the 
sampling space is too small to place the bracket, the sampler is placed on a cabinet with a 
height of more than 1 m as far as possible. 

According to the standard of GB/T 18204.2-2014 “Public Health Inspection Meth-
ods—Part 2: Chemical Pollutants” [28], the concentration of formaldehyde is determined 
by the phenol reagent (3-methyl-2-benzothiazolinone hydrazone, hereinafter referred to 
as MBTH) spectrophotometric method. Before sampling, the absorption liquid (MBTH) 
was configured, and 5 mL of the absorption liquid was put into the absorption tube, which 
had been washed and dried with distilled water in advance. Air sampling pumps were 
used to circulate 10 L air through the absorption tubes over 20 min at a rate of 0.5 L/min. 
After sampling, the formaldehyde absorbent was transferred into the colorimetric tube, 
and the absorbent was stabilized to 5 mL, 0.4 mL of ammonium ferric sulfate was added, 
and the solution was left to stand for 15 min during the experiment. Finally, a spectropho-
tometer (Figure 1a, Table 3) was used to measure the absorbance of the sample at the 
wavelength of 630 nm (the spectrophotometer should be preheated for 40 min), and this 
value was compared with the standard curve to calculate the formaldehyde concentration 
in the sample. This method provides acceptable accuracy with a coefficient of variation 
lower than 5%, and has been used in many studies [29–32]. However, during the testing 
process, both the preparation of the solution and the handling during sampling and as-
saying may have an impact on the final results. Considering other studies used sophisti-
cated testing instruments for field testing, we should enhance the accuracy and science of 
the testing in future studies. 

Table 3. Equipment information. 

Equipment Manufacturer Model 
Spectrophotometer UNICO (Shanghai) 2100PC 

CO2 gas detector GE (USA) Telaire 7001 
Recorder ONSET(USA) HOBO U12 

 

Figure 1. Test equipment: (a) spectrophotometer, (b) Telaire 7001 and HOBO.

Table 3. Equipment information.

Equipment Manufacturer Model
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Recorder ONSET(USA) HOBO U12
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2.3. Measurement and Determination of Infiltration Rate

The tracer gas decay method according to the national standard testing GB/T 18204.1-
2013 “Public Health Inspection Methods—Part 1: Test Method of Public Health Physical
Factors” was used to determine the infiltration rate of each household for the different
seasons [33]. CO2 was selected as a tracer gas and the average method was used to analyze
the test results. Due to the limited conditions, it was difficult to test the infiltration rate
of the whole house, so only the bedroom was selected as the measurement point in this
paper. The test procedure is as follows: close the windows and doors of the test room,
release carbon dioxide into the bedroom, and turn on a fan to mix the tracer gas with the
indoor air. When the CO2 concentration in the test room reaches 2500 PPM, stop releasing
the CO2 and turn off the two mixing fans after 5 min. The Telaire 7001 sensor and HOBO
(Figure 1b, Table 3) were used to continuously measure and record CO2 concentration and
temperature at two measuring points. The test was completed when the CO2 concentration
had decayed to the background level. The experiment was repeated twice to ensure data
quality. The ventilation frequency N is calculated by Equation (1).

N =
ln(C1 − C0)− ln(Cτ − C0)

τ
(1)

where the environment background concentration of the tracer gas is C0, the mass concen-
tration of the tracer gas in the room at the initial time (ppm) is C1, the mass concentration
of the tracer gas in the room at time τ (ppm) is Cτ , and the measurement time is τ.

2.4. Data Processing

The data processing adopted the method of overall statistical analysis to comprehen-
sively analyze the variation trend of formaldehyde concentrations in the household and
a macro analysis of the data was made. The Pearson’s correlation analysis used SPSS
software to analyze the correlation between the data and the significant differences between
the two independent samples. When the p-value is less than 0.05, the statistical correlation
is considered to be significant. At the same time, multiple regression analysis was carried
out based on the data. Equation (2) adopted the regression model established in this test
research group.

y = y0 + A1 exp(T0) + A2 ln(Y) + A3 ln(V0) + 1000A4d (2)

where y represents the predicted indoor formaldehyde concentration under airtight condi-
tions, y0 represents the initial concentration of the indoor formaldehyde, and T0 represents
the standard indoor air temperature: T0 = T/15 (T represents the sampling point temper-
ature, and 15 ◦C was the base temperature because it was almost the lowest indoor air
temperature found during the on-site measurements), Y represents the years of decoration
for each household, V0 is the standard infiltration rate of each household: V0 = Vi/0.3
(0.3 h−1 was the standard infiltration rate because it was the infiltration rate with the
highest probability density according to the distribution fitting result), and d represents the
source characteristics variable and is set as −1, 0, and 1 for households with low, modest,
and high formaldehyde concentrations, respectively, and 1000 is a conversion factor to
change from mg/m3 to µg/m3 for formaldehyde [23].

2.5. Health Risk Assessment

Equation (3) [34] was used to calculate the average chronic daily intake (CDI, mg/kg/day)
for household formaldehyde exposure.

CDI =
C× IR× ED× EF

BW × ATL
(3)

where C is the formaldehyde concentration of 0.081 mg/m3 obtained from the on-site
measurement and IR is the respiration rate, which is 0.63 m3/h for an adult male and
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0.4 m3/h for an adult female, respectively. The average of these, 0.52 m3/h, was selected in
this paper. EF is the exposure frequency (d/year), the test population is family members,
and the average daily exposure is 16.3 h/d. ED is the duration of continuous exposure
(year) and the average duration of residence was assumed to be 10 years. BW represents
weight (kg), and the average adult weight is assumed as 60 kg. ATL represents the average
lifespan (70 years). Equation (4) was used to calculate the lifetime carcinogenic risk (LCR)
of formaldehyde.

LCR = CDI × PF (4)

where PF is the slope factor, referring to the carcinogenic risk slope factor proposed by the
US Environmental Protection Agency (EPA) of 0.046 mg/(kg·d) [35].

3. Results and Discussion
3.1. Formaldehyde Concentrations

The key statistical parameters of each sampling site and the situation of exceeding the
standard are shown in Table 4. The indoor formaldehyde concentrations of 60 households
in the Liaoning area under airtight conditions are shown in Figure 2. As can be seen
from the results, the average concentration of each sampling site in the residences in
the Liaoning area does not exceed the standard, but is close to the limit. The average
formaldehyde pollution in the bedrooms is more severe than in the other two sampling
sites, mainly due to the smaller space and the presence of more furniture. The phenomenon
of formaldehyde exceeding the standard limit was found in all three sampling sites, with the
exceeding rate of the living room being highest; this may be connected with the wallpaper
used for decoration in this part of the household. In general, the average concentration
of formaldehyde in the Liaoning area is below 0.1 mg/m3 after 12 h of airtightness, as
stipulated in the GB/T18883 standard, but nearly one-third of the households experienced
indoor formaldehyde concentrations that exceeded the standard.

Table 4. Statistical parameters and over-standard rate of formaldehyde in 60 households.

Formaldehyde Bedroom Living Room Kitchen

Average 0.0816 0.0748 0.0721
Median 0.0820 0.0714 0.0642

Over-standard rate 28.07% 30.19% 28.21%
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The above results include the formaldehyde concentration test results of each season.
In order to explore the indoor formaldehyde concentration levels of the residential buildings
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in the Liaoning area over different seasons, 29 households were selected according to the
different environmental conditions. The on-site formaldehyde measurement results under
typical daily airtight conditions over the four seasons of the year are shown in Figure 3. It
can be seen from the figure that the formaldehyde concentrations under airtight conditions
changed with the seasons: they increased with the increase of the outdoor temperature
and reached a peak in summer. In one household, the formaldehyde concentrations at
the three sampling sites exceeded 0.2 mg/m3 in the summer, twice the national standard
limit. Table 5 shows the rates of formaldehyde under airtight conditions. According to
the over-standard rate, formaldehyde pollution in autumn is relatively serious, and the
average concentration of formaldehyde in the bedroom in autumn is 0.104 mg/m3.
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Table 5. Over-standard rate of formaldehyde concentrations in 29 households.

Formaldehyde Winter Spring Summer Autumn

Bedroom 12.5% 37.9% 26.1% 48.3%
Living room 6.25% 25.9% 34.8% 26.9%

Kitchen 3.2% 26.9% 30.0% 18.5%

Due to the lower outdoor temperatures in the autumn and the absence of district heat-
ing in Liaoning, the low indoor temperature in autumn leads to less ventilation behavior
in residents’ bedrooms, such as opening windows. At the same time, the temperature
difference between the indoor and outdoor environment is lower, resulting in lower in-
filtration rates in the rooms. These factors caused the serious increases in formaldehyde
concentrations in the bedrooms of Liaoning residents in the autumn. In summer, accord-
ing to previous studies [22,36], residents of the Liaoning area use air conditioning less
frequently in their bedrooms, and most of them achieve indoor thermal comfort by opening
windows for ventilation combined with the use of electric fans. Therefore, bedrooms are
more ventilated and have lower formaldehyde concentrations compared to other rooms.
However, the overall average formaldehyde concentration in summer under airtight con-
ditions is 0.097 mg/m3, which is the highest among the four seasons. The reason was
that the formaldehyde concentrations were very high (0.217 mg/m3, 0.209 mg/m3, and
0.180 mg/m3) in the three houses decorated with wallpaper. There are several reasons for
the lower formaldehyde concentration in the kitchen compared to other rooms. Firstly, from
the on-site test process, we found that most households have a small kitchen space and
almost no furniture except for cabinets. Secondly, most of the residents will open the cooker
hood when cooking, resulting in frequent mechanical ventilation in the kitchen and more
fresh air compared to other rooms. Some of the kitchen windows in older buildings can be
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less airtight and therefore have higher infiltration rates due to the use of cooker hoods over
the years. Thirdly, the households tested included high-rise residences. The non-return
valves in their hood ducts also result in more air changes in the kitchen due to thermal
pressure [37]. These three points are the reason for the relatively low concentrations of
formaldehyde in the kitchen. In winter, the temperature difference between the indoor
and outdoor environment is larger and the number of infiltration air changes is higher
compared to other seasons. The amount of fresh air is also greater in kitchens when using
cooker hoods for mechanical ventilation. These factors lead to the lower formaldehyde
concentrations observed in kitchens in the Liaoning area in winter than other rooms [38,39].
The test results show that the characteristics of seasonal changes in indoor formaldehyde
concentrations in Liaoning are consistent with those in other climate zones in China, and are
related to the indoor temperature and humidity [14,40]. However, the indoor formaldehyde
concentrations were higher in Liaoning than in the southern region of China. Compared
with the southwest region, the formaldehyde concentrations under airtight conditions are
similar, but the situation varies from room to room, and the formaldehyde concentration in
the kitchen is higher in the northwest region [41]. Thus, the formaldehyde concentrations
in different regions of China have their own characteristics, so it is more important to
develop the corresponding formaldehyde prediction and treatment methods according to
the geographical characteristics.

3.2. Infiltration Rate

A distribution histogram of the ventilation rate of residential buildings in Liaoning
province is shown in Figure 4. The average infiltration rate is 0.38 times per hour, and the
median is 0.34 times per hour. Previous studies have shown that the concentrations of
formaldehyde and TVOC are relatively lower when the infiltration rate of the residence
is high [42]. However, in winter, a high infiltration rate will not only cause the invasion
of outdoor PM2.5, but also reduce the indoor temperature and increase indoor energy
consumption. If the infiltration rate is too low, it will lead to insufficient indoor fresh air
volume and indoor pollutant accumulation. Therefore, determining a reasonable range of
osmotic ventilation times has become a very important research topic.
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3.3. Correlation Analysis

In order to explore the correlation between the influencing factors and the concen-
tration of formaldehyde, SPSS software was used to analyze the correlation between
formaldehyde concentration and infiltration rate, decorating material loading factor (the
ratio between the total exposed area of decorating materials used and the net space volume
of the room during interior decoration [26]), the years since decoration, and the indoor
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temperature. The results are shown in Table 6, from which it can be seen that formalde-
hyde is significantly positively correlated with indoor temperature, significantly negatively
correlated with years since decoration, and infiltration, and weakly correlated with the
decorating material loading factor, which was not statistically significant. Therefore, the
decorating material loading factor was not considered when the regression equation of the
Liaoning region was established.

Table 6. Correlation analysis.

Formaldehyde Years of
Decoration

Infiltration
Rate

Indoor
Temperature

Decorating Material
Loading Factor

Pearson
correlation
coefficient

−0.11 * −0.382 * 0.132 * 0.082

p-value 0.048 0.034 0.034 0.231
* Note: the correlation was significant at the 0.05 level (two-tailed).

3.4. Regression Analysis

According to the research mentioned above, the indoor formaldehyde concentration
is significantly correlated with the logarithm of years of decoration, the logarithm of
infiltration rate, and the index of indoor temperature under airtight conditions. The
regression model was recalculated using the data obtained from the on-site measurement of
residential buildings in Liaoning province, and the linear regression Equation (5) belonging
to Liaoning province was established. The calculated parameters are shown in Table 7.

y = 16.6 + 4.7 exp(T0)− 0.674 ln(Y)− 17.3 ln(V0) + 50d (5)

Table 7. Parameters of the regression equation.

Estimated Value (Std. Error) T Pr (>|t|)

y0 16.6 (9.86) 1.671 0.009
A1 4.7 (1.78) 2.644 0.01
A2 −0.674 (2.87) −0.235 0.015
A3 −17.3 (4.77) −3.626 0.001
A4 50 13.766 0.000
R2 0.776

Adjusted R2 0.764
F-statistic 63.959
p-value 0.000

n 60

In previous studies, regression Equation (6) [23] was established using the test results
of formaldehyde concentrations and the influencing factors in all climatic regions in China,
and is shown below.

y = 48.6 + 3.9 exp(T0)− 9.3 ln(Y)− 11.3 ln(V0)− 48d (6)

Because the equation was established based on data taken from all climatic regions
in China, a large deviation will occur when it is used to predict the formaldehyde concen-
trations in Liaoning province alone. The test results from Liaoning province were used
to verify the two regression equations. The verification results were compared and are
shown in Figure 5. It can be seen from the results that there is a large deviation between
Equations (5) and (6), so Equation (4) cannot accurately represent the characteristics of the
Liaoning region.
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3.5. Health Risk Assessment

After calculation, the lifetime carcinogenic risk of formaldehyde in residential build-
ings in Liaoning province is 3.1 × 10−6, which is higher than the international carcinogenic
risk standard value of 1.0 × 10−6 set by the US Environmental Protection Agency [35].
Therefore, residents in the Liaoning region have a higher risk of cancer because of indoor
formaldehyde. It is urgently necessary to study how to control indoor formaldehyde
pollution. In future studies, more representative tests and long-term monitoring should be
carried out on more households, and an affordable indoor formaldehyde pollution control
scheme should be provided for residents in this area.

4. Conclusions

This paper examines the indoor formaldehyde pollution of 60 residential buildings in
the Liaoning area, carries out tracking tests of formaldehyde in 29 of them over four seasons,
and obtains the infiltration rate of residential buildings using the tracer gas decay method.
The correlation and regression analyses of formaldehyde and its influencing factors were
carried out with the test data, and the risk of formaldehyde-related cancer among residents
in Liaoning province was evaluated. The research drew the following conclusions.

The average formaldehyde concentrations and the over-standard rate at the three
sampling points of 60 residential buildings in Liaoning were 0.0816 mg/m3 (28.07%) for
the bedrooms, 0.0748 mg/m3 (30.19%) for the living rooms, and 0.0721 mg/m3 (28.12%)
for the kitchens. Over the four seasons, the formaldehyde pollution was the most serious
in summer, with an overall average formaldehyde concentration of 0.097 mg/m3, and the
formaldehyde pollution in the bedrooms of the three sampling points was the most serious
in autumn, with an average concentration of 0.104 mg/m3. The average infiltration rate in
Liaoning was 0.38 times per hour.

There was a significant correlation between the concentration of formaldehyde and the
years since decoration, the infiltration, and the indoor temperature in Liaoning, but a weak
correlation was found between the concentration of formaldehyde and decorating material
loading factor. According to the measured data to establish the regression equation for
y = 16.6 + 4.7 exp(T0)− 0.674 ln(Y)− 17.3 ln(V0) + 50d, the LCR of formaldehyde in resi-
dential buildings in the Liaoning area is 3.1 × 10−6, which is higher than the international
carcinogenic risk standard value stipulated by the US Environmental Protection Agency,
indicating that the residents in this area are at risk of cancer.
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