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Abstract: To address the problems of cumbersome processes, large data, and error accumulation
in the calculation of conventional GNSS precipitable water volume (PWV), the multi-factor PWV
conversion models were established using the multiple linear regression fitting method. This paper
analyzed the correlation between PWV and zenith tropospheric delay (ZTD), surface temperature
(T), and atmospheric pressure (P) based on the data from 38 GNSS stations in the China region from
2017 to 2018. The research results showed that the mean deviation of the one-factor PWV conversion
model based on the GNSS-ZTD was 12.16 mm, and its RMS was 14.30 mm. After adding surface
temperature as an independent variable to form the two-factor PWV conversion model, the mean
deviation and RMS decreased to 9.07 mm and 11.15 mm. The mean deviation of the two-factor
PWV conversion model based on atmospheric pressure and GNSS-ZTD was 0.31 mm, and its RMS
was 0.39 mm. The mean deviation of the three-factor PWV conversion model based on surface
temperature, atmospheric pressure, and GNSS-ZTD was 0.33 mm, and its RMS was 0.38 mm. The
accuracies of the two-factor and three-factor PWV conversion models were similar. The external
precision assessment of PWV conversion models was verified by 12 GNSS stations unused for the
modelling establishment. The mean deviation and RMS of the two multi-factor PWV conversion
models were both less than 0.16 mm and 0.33 mm, which proves their widespread applicability in the
China region.

Keywords: GNSS; precipitable water vapor; meteorological elements; zenith tropospheric delay;
conversion model

1. Introduction

Rainstorms can easily cause stagnant water in cities and trigger flash floods in the
mountains and may lead to derivative disasters such as traffic interruption, landslides, river
flooding, and farmland inundation [1–3]. Flood disasters not only harm crops and the forestry,
fruit, and fishery industries, but also destroy farmhouses and industrial and agricultural
facilities, causing human and animal casualties, as well as serious economic losses [4,5].
Almost all the flood disasters in China’s history have been caused by heavy rainstorms [6–9].

Atmospheric water vapor is one of the significant driving forces of climate changes
and atmospheric circulation [10–12]. The dynamical variation of atmospheric water va-
por is a significant factor in forecasting heavy rainstorm disasters [13–15]. However, it
is not practical to monitor atmospheric water vapor at a higher spatiotemporal resolu-
tion, predominantly due to the higher operational expenses of traditional sensors such
as radiosondes, weather radar, and water vapor radiometers [16–18]. Contemporarily,
the Global Navigation Satellite Systems (GNSS) have been one of the new technologies
to retrieve the atmospheric precipitable water vapor (PWV) due to its lower cost, higher
precision, higher spatiotemporal resolution, 24 h availability, and global coverage [17,19,20].
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Studies have shown that GNSS-PWV has the potential to predict severe rainstorms
[5,21–23] and to study the climate [24–26]. Previous studies [11,22,27–29] have shown that
serious rainstorms occur in the descending trends of GNSS-PWV after PWV reaches its
initial peak, which can be an obvious sign for rainstorms’ forecasting. Lasota et al. [30]
used both radio occultation (RO) and ground-based GNSS observations to study the
severe hailstorms that occurred in Bulgaria in 2014 and 2019, and the WRF Model and
the ERA5 dataset were used to reproduce the temperature profiles for both hailstorms.
Guerova et al. [31,32] used statistical regression analysis, real-time GNSS tropospheric
products, and instability indices to predict hail and thunderstorms in Bulgaria.

GNSS-PWV can also be used as an important enhancement factor for numerical
weather forecasting models [33–36]. Zhao et al. [37] established a precipitation forecast
model with the time change trend and predicted the rainfall events in the next 2–6 h, with a
correct rate of 80% and a false alarm rate of 60–70%. He et al. [38] analyzed the six typhoon
events that occurred in Hong Kong in 2017, and precise point positioning (PPP) was used
to analyze the PWV inversion accuracy, which provided a strong reference for the water
vapor characteristics of typhoon forecasting. Liu et al. [39] used a variety of meteorological
elements (temperature, air pressure, relative humidity), time-related parameters (annual
cumulative day, daily cumulative hour, time integral), and PWV to establish a forecasting
model by a three-hidden-layer neural network. More than 95% of rainfall events could be
predicted, and the false alarm rate was only about 20%, which is nearly 10% lower than
the existing short-term rainfall prediction methods, while the false alarm rate was similar.
Benevides et al. [40] suggested that the reliability and precision of weather forecasts could
be improved after analyzing the 3D distribution variations of PWV. Therefore, the rapid
acquisition of GNSS-PWV has important practical significance for improving the efficiency
and accuracy of real-time heavy rainstorm forecasting [40–45].

The traditional GNSS-PWV calculation method first calculates the zenith total delay
(ZTD), using the GNSS observation based on the double-difference method or PPP technology,
and then, the zenith wet delay (ZWD) can be obtained by subtracting the zenith hydrostatic
delay (ZHD) from the ZTD. The ZHD is the main delay for the GNSS signals transmitted
in the neutral atmosphere, accounting for more than 90% of the ZTD [46,47]. This means
that the precision of the ZHD calculated by the Saastamoinen model will indirectly affect the
precision of the ZWD. GNSS-PWV can be obtained from the ZWD multiplied by the water
vapor conversion factor (K) [10]. The weighted mean temperature (Tm) is one of the important
parameters to calculate K for the conversion from the ZWD to PWV.

The calculation process of K, Tm, ZHD, ZWD, and PWV is cumbersome. It also
involves a large number of meteorological elements such as the surface temperature (T)
and air pressure (P), which easily results in the error accumulation problem. Yi et al. [48]
used regression analysis to establish seasonal and annual PWV conversion models and
found that the RMS of the PWV conversion models in each season was less than 1.5 mm,
while the maximum error did not exceed 3.3 mm. Therefore, PWV can be directly estimated
using the seasonal linear regression equation based on the tropospheric delay for short-
term weather forecasting if some stations lack meteorological data in a certain period of
time. Fan et al. [49] established a PWV direct conversion model based on seven GNSS
stations in the Yangtze River Delta region from 2017 to 2018. The results showed that
the RMS of the three-factor PWV model based on GNSS-ZTD, temperature, and pressure
was 0.47 mm [50]. Huang et al. [51] used the ERA5 reanalysis data from 2012 to 2017
to construct a vertical-correction PWV model in Mainland China considering the time-
varying decreasing factor according to the national and geographical division methods. The
model had better interpolation accuracy and stability, especially in southern and western
China. Compared with the conventional GNSS-PWV method, the abovementioned PWV
conversion methods can not only improve the computing efficiency, but also reduce the
error accumulation, but most of the above research aimed at a single station or small-scale
continuously operating reference station (CORS) networks.
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This paper used the data of 38 GNSS stations selected nationwide in 2017 to analyze
the changes and their correlation between PWV and GNSS-ZTD, temperature, and pressure
and establish several applicable PWV conversion models nationally. The PWV of twelve
GNSS stations that did not participate in the modeling was used as the true value to test
the external accuracy and reliability of the PWV conversion models.

The outline of this paper is as follows. The data sources of the GNSS products, the
relationships and collinearity of PWV, and other meteorological elements are analyzed
and shown in the second section. The establishment of the one-factor, two-factor, and
three-factor PWV conversion models and their precisions is shown in the third section. The
conclusions are given in the fourth section.

2. Data Sources and Methods
2.1. Data Sources

The research data in this paper came from the Jiangsu Meteorological Bureau
and the China Earthquake Administration GNSS data product service platform [52]
(http://www.cgps.ac.cn (accessed on 15 August 2021)), and the main contents include
GNSS-PWV, GNSS-ZTD, and its gradient, surface atmospheric pressure and temperature,
etc. The time span was from 1 January 2017 0:00 to 31 December 2018 23:00, and the time
resolution was 1 h. The accuracy of GNSS-PWV was within 1 and 3 mm. We selected
50 GNSS stations that evenly cover most of the China region, of which 38 GNSS sta-
tions were used for PWV modeling and 12 GNSS stations were used for external confor-
mity testing. Their spatial location distributions are shown in Figure 1. The selection of
38 GNSS stations for modeling and 12 GNSS stations was for the verification according to
the three-step topography of high, medium, and low altitudes and five climate zones, and
they are evenly distributed in China region. At least one GNSS station was selected for
modeling in each province. Their precise locations were shown in Tables 1 and 2.
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Table 1. Locations of 38 GNSS stations for PWV modelling in the China region.

Station Code Longitude
(◦)

Latitude
(◦)

Elevation
(m) Station Code Longitude

(◦)
Latitude

(◦)
Elevation

(m)

Tuotuohe QHTT 92.44 34.22 4499.10 Karamay XJKL 84.91 45.61 321.00
Gar XZGE 80.11 32.52 4427.40 Yanji JLYJ 129.50 42.88 284.60

Shigatse XZRK 88.86 29.25 3854.80 Hegang HLHG 130.24 47.35 210.70
Baima QHBM 100.74 32.93 3486.70 Qiongzhong QION 109.84 19.03 207.60
Zayu XZCY 97.47 28.66 3306.80 Zigui HBZG 110.97 30.84 164.70

Delingha DLHA 97.38 37.38 2955.80 Beijing BJSH 116.22 40.25 155.40
Haiyuan NXHY 105.65 36.55 1822.30 Xiamen XIAM 118.08 24.45 106.10
Khotan XJHT 79.05 37.16 1572.70 Nanning GXNN 108.15 22.57 97.80

Jingdong YNJD 100.88 24.44 1244.60 Jiande ZJJJ 119.27 29.48 97.20
Guiyang GZGY 106.67 26.47 1093.90 Gian JXJA 115.06 26.75 89.50

Dunhuang GSDH 94.68 40.14 1080.10 Mayang HNMY 109.80 27.88 89.00
Baotou NMBT 110.02 40.60 1053.90 Queshan HAQS 114.03 32.85 72.10
Ujimqin NMDW 116.96 45.51 834.20 Shenyang LNSY 123.58 41.83 69.80

Charkhlik XJRQ 88.17 39.02 830.70 Qingdao SDQD 120.30 36.08 58.10
Tianquan SCTQ 102.76 30.07 773.70 Bengbu AHBB 117.30 32.90 54.10
Mianxian SNMX 106.69 33.13 594.00 Guangzhou GUAN 113.34 23.19 30.90

Linfen SXLF 111.37 36.08 558.90 Longyao HELY 114.71 37.40 30.30
Chongqing CQCS 107.23 29.91 361.40 Shanghai SHAO 121.20 31.10 22.00
Shanshan XJSS 90.26 42.89 348.60 Binhai TJBH 117.69 39.08 1.10

Table 2. Locations of 12 selected GNSS stations for verification in the China region.

Station Code Longitude (◦) Latitude (◦) Elevation (m)

Zhongba XZZB 84.10 29.60 4570.05
Ritu XZRT 79.70 33.30 4256.64

Golmud QHGE 94.70 36.10 3090.00
Minqin GSMQ 103.00 38.60 1320.05

Dongchuan YNDC 103.10 26.10 1297.62
Kuche XJKC 83.00 41.80 1028.84

Erenhot NMEL 111.90 43.60 946.18
Altay XJAL 88.10 47.80 874.87

Wudalianchi HLWD 126.10 48.60 313.97
Changchun CHUN 125.40 43.70 268.35

Hebi HAHB 114.50 35.60 46.55
Yancheng JSYC 120.02 33.38 12.70

The GNSS product of the China Earthquake Administration uses the Saastamoinen
model to calculate the ZHD based on the observed surface meteorological elements at the
GNSS stations. Its specific expression is as follows [10].{

ZHD = (2.2678± 0.0024)× P
f (θ,H)

f (θ, H) = 1− 0.00266× cos 2θ + 0.00028H
(1)

The ZWD can be obtained by subtracting the ZHD from the ZTD.

ZWD = ZTD− ZHD (2)

According to the empirical equation, PWV can be obtained by multiplying the ZWD
by the conversion factor (K): 

PWV = K× ZWD
K = 1×106

ρw(k3/Tm+k′2)Rv

Tm = 70.2 + 0.72T

(3)

In the formula, ρw is the density of liquid water; k
′
2 and k3 are the constants

of atmospheric refraction, and their empirical values are 22.13 ± 2.20 (K/hPa) and
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3.739 ± 0.012 ×105 (K/hPa); Rv is the gas constant of water vapor, Rv = 461.495 (J·kg−1·K−1);
Tm is the weighted mean temperature. The above GNSS-PWV calculation method is one
of the most commonly used and reliable methods in GNSS meteorology [52]. However,
this traditional method requires a huge amount of calculation, which may take much time.
In this paper, the calculation efficiency could be improved by establishing direct PWV
conversion models based on the meteorological elements and GNSS-ZTD.

2.2. Correlation and Collinearity Analysis

Since the ZHD accounts for about 80–90% of the ZTD, the ZWD accounts for a small
proportion of the ZTD. The pressure is the main influencing factor of the ZHD. According
to Formula (2), the main influencing factor of K is Tm, affected by the surface temperature.
Therefore, the main influencing factors that may cause GNSS-PWV calculation errors are
GNSS-ZTD, surface temperature, and pressure [53]. However, the ZWD accounts for a
small proportion of the ZTD, so there may be a limited impact of temperature on the
accuracy of PWV. This paper firstly analyzed the correlation level between PWV and GNSS-
ZTD, temperature, and pressure, which were selected to establish the PWV conversion
models according to the correlation strength.

The Pearson correlation coefficient (R) can be used to describe the level of linear
correlation between two variables. The larger the absolute value of R, the stronger the
correlation level. This means an extremely strong correlation if the R is between 0.8 and
1.0. It is a strong correlation if the R is between 0.6 and 0.8. If the R is between 0.4 and 0.6,
this means a moderate correlation. It is a weak correlation when R is between 0.2 and 0.4.
There is no correlation when R is between 0.0 and 0.2 [54].

It can be seen from Figure 2 that the correlation coefficient between PWV and GNSS-
ZTD is 0.99, which means their correlation is extremely strong, indicating that GNSS-ZTD
has the greatest impact on PWV. The correlation coefficient between PWV and temperature
is 0.80, showing a strong correlation. The correlation coefficient between PWV and pressure
is −0.55, showing a moderate negative correlation.
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In summary, the linear correlation between PWV and GNSS-ZTD is the strongest, and
a one-factor PWV conversion model based on GNSS-ZTD can be established. Temperature
and pressure also have a greater impact on PWV, and they can be used to establish a
three-factor PWV conversion model based on GNSS-ZTD, temperature, and pressure.
Considering that pressure and temperature have different influences on PWV, two two-
factor PWV conversion models based on GNSS-ZTD and pressure (or temperature) were
established, respectively.

Table 3 is a statistics table of the correlations, from which we can see the correlation
coefficient between independent variables. If there is a high level of collinearity between
two independent variables, the linear regression model based on these variables will be
unstable. It is difficult to distinguish the influence of each independent variable on the
model results. Therefore, collinearity analysis is necessary for each independent variable.

Table 3. The correlation of dependent and independent variables and their collinearity.

Dependent
Variable

Independent
Variable

Correlation
Coefficient (R)

Independent
Variable

Independent
Variable

Correlation
Coefficient (R) VIF

PWV ZTD 0.99 ZTD Pressure −0.47 1.42
PWV Pressure −0.55 Pressure Temperature −0.68 1.25
PWV Temperature 0.80 Temperature ZTD 0.74 2.70

The variance inflation factor (VIF) was used to analyze the collinearity between inde-
pendent variables in this paper, its specific expression is as follows.

VIFi = 1/
(

1− R2
)

(4)

where R is the correlation coefficient between an independent variable and other variables.
It is generally believed that there is no multicollinearity when 0 < VIF < 10; there is stronger
multicollinearity when 10≤ VIF < 100; there is the strongest multicollinearity when VIF ≥ 100.

It can be seen in Table 3 that the square of the product of the collinearity co-
efficient of GNSS-ZTD and pressure is 0.30 (R2

ZTD−P = (0.99× (−0.55))2 = 0.30),
so VIFZTD−P = 1.42. Similarly, R2

P−T = 0.20, VIFP−T = 1.25; R2
T−ZTD = 0.63, and

VIFT−ZTD = 2.70. It is clear that all the VIF are less than 10, so there is no collinearity
between any two independent variables.

2.3. Methods

The selected 38 GNSS stations evenly cover the China region, and their GNSS me-
teorological products in 2017 were used to establish several multiple linear regression
models between PWV and other meteorological elements. Taking GNSS-ZTD, pressure,
and temperature as the independent variables, PWV as the dependent variable for the
multivariate linear model is as follows.{

y = β0 + β1 × x1 + . . . + βm × xm + ε
ε ∼ N

(
0, σ2) (5)

where y is the dependent variable; x1, x2, . . . , xm are the independent variables; β0 is the
constant term; β1, β2, . . . , βm are the regression coefficients, these unknown parameters being
irrelevant to the independent variables (x1, x2, . . . ,. xm); ε is an unobservable random variable
with zero mean and positive variance (σ2 > 0), called the error term. The coefficients (βi) of
the independent variables can be obtained using the least-squares method.

At the same time, in order to verify the accuracy of the established PWV conversion
models, the GNSS-ZTD, temperature, and pressure of each GNSS station in 2018 were
substituted into the models to calculate the predicted PWV value, which can be compared
with GNSS-PWV (as the true value) to verify the prediction accuracy and reliability of the
established PWV conversion models.
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Considering the vast territory, undulating terrain, and complex meteorological con-
ditions in the China region, this paper selected 12 GNSS stations unused for modeling to
further verify the accuracy of the external coincidence prediction accuracy and reliability of
the established PWV conversion models.

3. Results and Discussions
3.1. PWV Conversion Models

(1) Three-factor model

Taking GNSS-ZTD, temperature, and pressure as the independent variables and GNSS-
PWV as the dependent variable, a three-factor linear regression model can be established
as follows.

PWV = β0 + β1 × ZTD + β2 × T + β3 × P (6)

The GNSS-ZTD, temperature, pressure, and GNSS-PWV of the 38 GNSS stations in 2017
were all taken into the above formula, and the model coefficients can be estimated by the
least-squares method. Finally, the three-factor PWV conversion model was obtained as follows.

PWV = 0.1631× ZTD− 0.3710× T + 0.0159× P− 5.3494 (7)

(2) Two-factor model

In the same way, the GNSS-PWV, GNSS-ZTD, and temperature of the 38 GNSS stations
in 2017 were all put into Formula (5), and the two-factor PWV conversion model based on
GNSS-ZTD and temperature can be obtained as follows.

PWV = 0.015× ZTD + 1.049× T − 313.0672 (8)

If the GNSS-PWV, GNSS-ZTD, and pressure of the 38 GNSS stations in 2017 are all put
into Formula (5), the two-factor PWV conversion model based on GNSS-ZTD and pressure
can be obtained as follows.

PWV = 0.1641× ZTD− 0.3731× P− 1.1352 (9)

(3) One-factor model

In the same way, the GNSS-PWV and GNSS-ZTD of the 38 GNSS stations in 2017 were
all taken into Formula (5), and the one-factor PWV conversion model based on GNSS-ZTD
can be obtained as follows.

PWV = 0.0341× ZTD− 54.3775 (10)

3.2. Internal Coincidence Accuracy

Due to space limitations, Figure 3a lists the time series of the predicted PWV of some
GNSS stations during 2017–2018, in which GNSS-PWV can be used as the true value to
compare with the PWV predicted by different PWV conversion models. It can be seen from
Figure 3 that the one-factor PWV model based on the ZTD showed a small change, and its
deviations from the GNSS-PWV series were the largest. The change trends of other PWV
sequences were basically the same. Among them, the two-factor PWV based on the ZTD
and pressure and the three-factor PWV based on the ZTD, pressure, and temperature were
the closest to GNSS-PWV, showing obvious rising and falling trends and seasonal changes
in a year. They are in line with the climatic characteristics of a hot and humid summer and
a dry winter in China.

Figure 3b describes the deviations of each PWV conversion model from GNSS-PWV
during 2017–2018. It can be seen from the figure that the deviations of the one-factor
predicted PWV based on the ZTD were basically within 40 mm; the deviations of the two-
factor predicted PWV based on the ZTD and temperature were mostly within 30 mm; the
deviations of the two-factor predicted PWV based on the ZTD and pressure were basically
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within 1.0 mm. The deviations of the three-factor predicted PWV based on the ZTD,
pressure, and temperature were within 1.0 mm as well. However, the three-factor PWV
conversion model showed the highest accuracy among them. Moreover, the deviations
of the two-factor and three-factor predicted PWV during 2018 were basically the same as
those during 2017.
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For some high-altitude (>3000 m) GNSS stations, the one-factor predicted PWV based
on the ZTD was negative, which is obviously inconsistent with common sense (PWV should
always be positive). Therefore, the one-factor PWV model cannot be used in a high-altitude
region. The two-factor predicted PWV based on the ZTD and temperature also had a
large deviation at high-altitude stations, the maximum PWV being close to 25 mm, and
the predicted PWV in some periods was also negative, indicating the weak correlation
between the PWV and temperature in high-altitude areas. It is clear that the one-factor
and two-factor PWV models based on the ZTD and temperature are not suitable for high
altitudes (>3000 m).

Table 4 summarizes the mean deviations and RMS of the predicted PWV of the four
conversion models for the 38 GNSS stations during 2017–2018. It can be seen from the table
that the RMS of the one-factor PWV conversion model based on the ZTD was 12.16 mm and
14.30 mm. After adding temperature as a new independent variable, the mean deviation of
the two-factor PWV conversion model reduced to 9.07 mm, its RMS reduced to 11.15 mm,
and the accuracy slightly improved. While adding pressure as a new independent variable,
the mean deviation of the two-factor PWV conversion model based on GNSS-ZTD and
pressure was 0.31 mm, and its RMS was 0.39 mm. While adding pressure and temperature
as two independent variables, the mean deviation of the three-factor PWV conversion
model was 0.33 mm, and its RMS was 0.38 mm.

Table 4. Precision statistics of the one-, two-, and three-factor PWV conversion models (mm).

Models
RMS Bias

2017 2018 Mean 2017 2018 Mean

One-factor (ZTD) 14.39 14.21 14.30 12.19 12.13 12.16
Two-factor (ZTD, T) 11.30 10.99 11.15 9.17 8.97 9.07
Two-factor (ZTD, P) 0.40 0.38 0.39 0.32 0.31 0.31

Three-factor (ZTD, P, T) 0.39 0.37 0.38 0.31 0.30 0.33

From Formulas (1–3) in Section 2.1, it can be seen that the ZHD accounted for about
80–90% of the ZTD, mainly calculated by the pressure; adding pressure into the two-factor
PWV model can improve its accuracy. The conversion factor (K) is mainly calculated by the
surface temperature and Tm, where Tm is also mainly calculated from the air temperature.
The ZWD accounts for a small proportion of the ZTD, so the accuracy improvement by
adding the temperature is limited. Therefore, the accuracy of two-factor PWV model based
on the ZTD and pressure was significantly improved compared to that of the two-factor
PWV model with temperature added.

It can be seen that atmospheric pressure is a key meteorological element that greatly
improved the accuracy of the PWV conversion models. The RMS of the two-factor and
three-factor PWV conversion models by adding pressure were lower than 0.40 mm, and
their accuracies were sufficient to meet most atmospheric requirements.

3.3. External Coincidence Accuracy

It is known from Section 3.2 that the accuracies of the two-factor and the three-factor
PWV conversion model by adding pressure were relatively high. Therefore, 12 stations
that did not participate in the modeling and that are distributed at different altitudes were
selected to verify the accuracy of the above two PWV conversion models in this section.

Figure 4a–l lists the deviations of the predicted PWV for the 12 GNSS stations during
2017–2018. Overall, the predicted PWV deviations of the two models were larger in summer
and smaller in winter. Most of the predicted PWV deviations were between−0.5 and 1.0 mm.
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Figure 4. The deviations of the predicted PWV of 12 GNSS verification stations (a–l) during 2017–2018.

It can be seen from Table 5 that the mean RMS of the two-factor PWV of the 12 GNSS
stations during 2017–2018 was 0.31 mm, and the mean deviation was 0.16 mm. The mean
RMS of the three-factor PWV was 0.33 mm, and the mean deviation was 0.16 mm. Therefore,
the key meteorological elements affecting PWV were the ZTD and pressure. The two-factor
and three-factor PWV conversion models based on GNSS-ZTD and pressure can obtain
the predicted PWV with an accuracy better than 0.5 mm in this paper. However, the three-
factor model will need one more meteorological parameter, which increases the difficulty
of obtaining the temperature. In this case, the two-factor model is generally better and
more practical than the three-factor PWV model.

Table 5. The external precision of predicted PWV of verification stations during 2017–2018 (mm).

Stations
Elevation

(m)
Two-Factor (ZTD, P) Three-Factor (ZTD, P, T)

RMS Bias RMS Bias

XZZB 4570.05 0.26 0.19 0.28 0.22
XZRT 4256.64 0.20 0.15 0.24 0.18
QHGE 3090.00 0.19 0.13 0.23 0.18
GSMQ 1320.05 0.23 0.12 0.19 0.11
YNDC 1297.62 0.36 0.11 0.39 0.10
XJKC 1028.84 0.31 0.14 0.24 0.10

NMEL 946.18 0.35 0.14 0.39 0.15
XJAL 874.87 0.39 0.14 0.41 0.12

HLWD 313.97 0.44 0.16 0.56 0.21
CHUN 268.35 0.29 0.16 0.36 0.16
HAHB 46.55 0.36 0.28 0.33 0.25
JSYC 12.70 0.38 0.11 0.35 0.09
Mean 0.31 0.15 0.33 0.15

4. Conclusions

Based on the data of 38 GNSS stations in China from 2017 to 2018, this paper used
multiple linear regression fitting and established one-factor, two-factor, and three-factor
PWV conversion models suitable for the China region based on GNSS-ZTD, temperature,
and pressure. Compared with the conventional GNSS-PWV acquisition method, the PWV
conversion models not only improved the computing efficiency, but also reduced the error
accumulation. The main research conclusions are as follows:

(1) There are extremely strong and moderate linear correlations between GNSS-PWV
and GNSS-ZTD, temperature, and pressure. The correlation coefficient between PWV
and GNSS-ZTD is 0.99; the correlation coefficient between PWV and temperature
is 0.80; the correlation coefficient between PWV and pressure is −0.55. There is no
collinearity between any two independent variables.

(2) The mean deviation of the one-factor predicted PWV based on GNSS-ZTD is 12.16 mm,
and its RMS is 14.30 mm. The mean deviation of the two-factor predicted PWV after
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adding temperature reduced to 9.07 mm, and its RMS reduced to 11.15 mm. The mean
deviation of the two-factor predicted PWV based on ZTD and pressure is 0.31 mm,
and its RMS is 0.39 mm. The mean deviation of the three-factor predicted PWV based
on GNSS-ZTD, pressure, and temperature is 0.33 mm, and its RMS is 0.38 mm.

(3) In terms of external coincidence accuracy, the RMS of the two-factor and three-factor
predicted PWV based on the ZTD and pressure is better than 0.33 mm, and the mean
deviation is better than 0.16 mm. Obviously, these two new PWV conversion models
are good enough to be widely used in the China region.

Moreover, the latitude and elevation both affect the accuracy of the ZHD and ZWD.
Due to the smaller number of stations at high latitudes and elevations, these two factors
were not considered in this paper. The latitude and elevation may improve the fitting effect
and accuracy if they are added into the PWV conversion model in high-altitude areas.
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