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Abstract: Deep learning artificial intelligence technology, which has the advantages of nonlinear
mapping ability, massive information extraction ability, spatial-temporal modeling ability, and so on,
provides new ideas and methods for further improving the accuracy of weather and climate extreme
event prediction. A transfer learning CNN (Convolutional Neural Networks) classification model is
established to classify the circulation patterns, along with the newly reconstructed dataset of regional
persistent historical heavy rain events, daily rainfall data of 2474 observational stations, and the
NCEP/NCAR global reanalysis data of daily geopotential height field in 1981–2018. Different from
previous classifications, usually with one level variable, here, in addition to 500 hPa heights, 200 hPa
zonal winds and 850 hPa meridional winds over the key areas are also considered in the model. The
results show that the multi-level circulation pattern classification based on the transfer learning CNN
network has a higher accuracy in the independent test than the single-level model, with the accuracy
reaching 92.5% (while only 85% for the single-level model). The spatial correlation coefficient of
precipitation between each typical mode and related patterns obtained by the multi-level transfer
learning CNN classification is greater than that obtained by the single-level transfer learning CNN,
and the variance of 500 hPa heights between each typical mode and the associated patterns is also
greater than that obtained by the single-level transfer learning CNN. These results show that the
performance of the classification by the multi-level transfer learning CNN model is better than that
by the single-level transfer learning CNN. The study is helpful to develop circulation classifications
related to large-scale weather or climate disaster events and then to provide a physical basis for
further improving the forecast effect and extending the valid time of the forecast through combining
the numerical model products.

Keywords: multi-level circulation pattern classification; deep learning; transfer learning

1. Introduction

Artificial neural networks have long been applied to meteorology [1–4]. As denoted
by Xu [5], the application of Artificial Intelligence (AI) in meteorology has shown great
potential value and broad aspects. In recent years, deep learning technology has risen and
is being widely used [6–9]. In the field of weather forecasting, AI is not only used for short-
term weather forecasting and nowcasting [6] but also for the diagnosis of extreme weather
events [10–13]. There are also a lot of technologies based on deep learning combined with
a dynamic model [14–18]. For example, AI technology is used to optimize or replace part
of the parameterization scheme in the numerical model to improve the efficiency of the
running model [19]. An AI algorithm is also employed to improve the performance of the
model forecast in model forecast product interpretation, the statistical post-processing of
ensemble forecast, statistical downscaling, and other aspects, etc. [20–29].
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AI technology mainly includes traditional machine learning and deep learning. Com-
mon traditional machine learning algorithms include random forest, logical regression, etc.
Deep learning is able to automatically learn the effective features from a dataset, which
is usually used to solve the problem of insufficient fitting ability by traditional machine
learning in high-dimensional space [30,31]. The models involved mainly CNN, Long Short
Term Memory (LSTM), and the combination of both [32–36]. Each model can be divided
into different types. For example, CNN mainly includes conventional CNN, including
classification, regression models, as well as FCN (Fully Convolutional Networks) [37] and
U-Net [32,38–40] based on semantic segmentation. CNN, as a neural network with a deep
learning function, has the advantages of a flexible range of applicability, simultaneous
feature extraction with classification, strong generalization ability, fewer parameters used
in global optimization training, etc. Compared with the traditional methods, classification
no longer requires manual feature description and image extraction for the target. Instead,
CNN neural networks learn features from training samples independently. The algorithm
has achieved great success in image recognition, data mining, and other fields in recent
years due to its excellent spatial feature extraction ability [31,41–43]. At present, this method
has been well applied in the forecast correction of weather model products [44,45] and the
nowcast based on image recognition with better results achieved [46]. Cai et al. [47] estab-
lished an objective circulation classification through the step-by-step training of migration
learning by the residual neural network (CNN). Additionally, the circulation patterns of
persistent heavy rainfall cases in the Jianghuai Basin over China from 1981 to 2018 are objec-
tively classified by the transfer learning CNN model. The results show that the multi-step
transfer learning CNN model is better than the other two analog methods with R (pattern
classification based on a new analog quantity R) [48] and COS (pattern classification based
on cosine similarity) [47,49] as computing parameters. In the objective classification of
persistent heavy precipitation, the precipitation correlation coefficients between each base
pattern and the related pattern obtained by CNN are much higher than those obtained by
the R and COS methods [47]. Additionally, a certain ability of the CNN is also shown to
identify the circulation classification for non-persistent heavy rainfall.

The formation of regional weather and climate is very complex, such as the heavy
rainfall in Jianghuai Basin; its occurrence and development will be affected by varied
weather systems at the low, middle, and high levels of the troposphere, respectively. In
addition to the weather systems at 500 hPa, such as the blocking high at middle and high
latitudes, the westerly trough, the subtropical high over the western Pacific at low latitudes,
the upper jet stream, and the South Asian high at 200 hPa, the southwest jet stream at
lower altitudes can also be very important [47,49]. Therefore, this paper intends to take
advantage of the transfer learning CNN method. On the basis of the single-level variable
transfer learning CNN classification with single 500 hPa heights, the upper-level jet stream
and the low-level southwest jet stream are also considered to be added to the transfer
learning CNN classification model. That is, considering the changes in the location and
intensity of the upper-level jet stream and the impact of the warm and humid air brought
by the low-level southwest jet stream on regional extreme weather at lower levels, the
circulation classification related to large-scale persistent meteorological disaster events will
be developed with multi-level variables, which will provide a physical basis for further
improving the forecast effect and extending the valid forecast time through combining with
the model products.

The structure of the paper is organized as follows. Following the introduction, the
data and methods are described in Section 2. Section 3 gives the spatial distribution of the
heavy rainfall and related circulation patterns obtained by the objective analysis. Then, the
section explores the circulation classification by multi-level variable transfer learning CNNs,
with the performance explained in comparison with those obtained by single-level transfer
learning CNN classification. Additionally, conclusions are summarized in Section 4, with
some existing important problems also discussed.
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2. Data and Methodology
2.1. Data

The data used in this paper mainly include: (1) the daily precipitation of 2474 stations
in China from 1981 to 2019 provided by the National Meteorological Center; (2) Historical
cases of persistent heavy rainfall events in China from 1981 to 2018 [50]; (3) daily reanalysis
data from NCEP/NCAR, with a horizontal resolution of 2.5◦ × 2.5◦ [51].

Jianghuai Basin denotes the place over the (110◦–126◦ E, 22◦–36◦ N) area, the region
between the Yangtze River and the Huaihe River (Figure 1) [52]. Jianghuai Basin is in
the transition zone between south China (with abundant rainfall) and north China (with
little rainfall). The interannual and seasonal variability of the rainfall is very large usually
accompanying frequent disastrous weather or climate events, especially floods or heavy
rainfall events during summer with the onsetting of plum rain. Additionally, the resulting
factors are very complicated. Due to the developed economy and large population density
in the region, disaster events will bring huge losses and impacts to the economy and
people’s lives. Therefore, it is of great significance to study heavy rainfall events and their
prediction to give early warnings of flood disasters.
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2.2. Methodology
2.2.1. Residual Neural Network

CNN emerged in recent years and is a pattern recognition method combining artificial
neural networks and deep learning theory, which has become one of the research focuses
in the field of image classification. Different from the traditional image classification
method, CNN does not need to extract specific features manually from the original image
for specific tasks but performs hierarchical abstract processing on the original image to
produce classification results by simulating the human visual system, which has a higher
recognition rate and wider practicability. This algorithm applies to local receptive fields,
weight sharing, and spatial sub-sampling techniques, which greatly reduces the number
of training parameters of the network in comparison with other artificial neural networks.
It has been widely used in speech recognition, face recognition, handwriting recognition,
pedestrian detection, and other fields. A residual neural network is a special kind of
convolutional neural network, which can be trained to achieve a task by fitting residual
mapping. The residual neural network (ResNet18) is used here with 18 layers [52]. Here,
18 refers to 18 layers with weight, including convolution layers and fully connected layers
apart from the pooling layers and BN (Batch Normalization) layers. If a deep network is
built on a shallow network and all the added layers are direct copies of the previous layer
(i.e., y = x), the training error of the deep network should be equal to that of the shallow
network under extreme conditions. Therefore, the root way to resolve network degradation
is optimization. In the residual network, it is not the original mapping allowed to fit directly
but the residual mapping. Assuming that the original mapping is H (x), then the mapping
of residual network fitting is F (x) = H (x) − x. The output H (x) = F (x) + x of the residual
unit is divided into two parts. One is obtained by the input of the network x through
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directly connecting the identity mapping, and the other part is obtained by the network
training of the residual F (x). In this way, the integrity of the information is protected to
some extent, with learning difficulty decreased because of the residual goal of learning.

The ResNet18 here used has the same architecture as that by He et al. [49], which is
shown in Table 1. Additionally, the numbers of neurons and layers are kept the same as the
ResNet18 used in the reference paper, and the input data are also treated into images. For
example, for a single CNN model, the input data are color maps of 500 hPa heights, while
for multi-level CNN is a map including 500 hPa heights, 200 hPa zonal winds, and 850 hPa
winds. Additionally, the sizes and color scales for different days are the same for the same
values. The target output of the CNN model during the training is a value of 1 for Pattern I,
2 for Pattern II, and 3 for Pattern III.

Table 1. Architectures for CNN.

Layer Name Output Size 18-Layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2[
3 × 3, 64

3 × 3, 64

]
× 2

conv3_x 28 × 28
[

3 × 3, 128

3 × 3, 128

]
× 2

conv4_x 14 × 14
[

3 × 3, 256

3 × 3, 256

]
× 2

conv5_x 7 × 7
[

3 × 3, 512

3 × 3, 512

]
× 2

1 × 1 average pool, 1000-d fc, softmax

FLOPs 1.8 × 109

2.2.2. Steps of Model Establishing

The establishment of the classification model is mainly divided into three steps. Firstly,
the basic patterns of objective classification from historical data are constructed. Here, the
typical modes and related circulation patterns of heavy rainfall in the Jianghuai Basin are
extracted by EOF (empirical orthogonal function) using the historical case dataset.

Second, the circulation classification model related to the persistent heavy rainfall in
Jianghuai Basin is established by the transfer learning CNN (ResNet18), with the dataset of
the typical rainfall modes and related circulations. The transfer learning here mainly lies in
the three training processes. That is, a part of the samples used for training are put into
the network for training in batches. The samples put into the training for the first time are
284 case days. After the training, the parameter values obtained from the network training
are retained and brought into the next network training as the initial values. A second
training with another 30 sample days was added in. Similarly, the results after the second
training are brought into the third network training. Adding another 30 daily samples
for the third training, the corresponding parameter values will be retained at the end of
the network training, with the minimum values (threshold values) of each pattern output
and counted.

Finally, the circulation patterns for independent samples (40 sample days in the test
set) are to be classified objectively by the established transfer learning CNN network model.
The corresponding output can be obtained by the CNN network with the data input for the
classification. When the maximum value of the output is larger than the threshold value,
the corresponding pattern of the day can be obtained (here, three patterns are divided, not
limited to the three patterns in the actual application). Otherwise, it is outside the previous
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basic patterns (that is, the pattern is not included in the basic three patterns for persistent
precipitation, such as the one without precipitation).

3. Results
3.1. Typical Modes of the Heavy Rainfall

In order to obtain the samples for the training and test of the transfer learning CNN
network, the typical modes are refined from 72 extreme persistent heavy rainfall cases
that occurred in Jianghuai Basin in summer by EOF (empirical orthogonal expansion). In
total, 296 days (excluding duplicate dates) are selected. The typical modes of the extreme
persistent heavy rainfall events can well reflect the characteristics of the heavy rainfall in
the Jianghuai Basin and ensure the typicality and accuracy of each pattern to a certain
extent. The main modes of EOF analysis are obtained according to the variance contribution
(Figure 2). It can be seen from the figure that the first mode shows a consistent variation
of rainfall in the whole region, and the center of the maximum rainfall is located slightly
south of the middle part of the Jianghui Basin. The spatial distribution of the second
mode appears as a reverse variation over the north to that over the south of the area. The
third mode reflects the variation in the middle region opposite to that over the north and
south. The variance of the three modes accounts for about 43.8% of the total variance, with
25.8%, 10.9%, and 7.1% for each, respectively. There are 83 day, 79 day, and 53 day samples
(215 days in total) selected according to the time coefficients of the three modes, and the
rainfall and circulation distribution of the typical mode can be extracted by composite
analysis (Figure 3), which will be the basis for further objective classification.

It can be seen from Figure 2 that the 500 hPa heights of the first mode (Figure 3a)
at middle and high latitudes are dominated by negative anomalies, with weak positive
anomalies near the south of the Ural Mountains and negative centers over the north of
the Ural Mountains and the Okhotsk Sea, corresponding to the development of troughs
and ridges, respectively. Additionally, at low latitudes, the heights are characterized by
the western Pacific subtropical high with a weak positive variation. The 500 hPa heights of
the second typical mode (Figure 3b) at the middle and high latitudes are almost covered
by positive anomalies, especially with a positive center over the Ural Mountain area,
denoting block high occurring frequently. The low latitudes are also dominated by positive
anomalies over most areas, especially to the northwest edge of the subtropical high with
a positive center denoting a little northward extension but a great westward extension of
the western Pacific subtropical high, and the strength of the high stronger than normal.
The 500 hPa heights of the third typical mode (Figure 3c) are negative at most areas of
the high latitudes, with a center in the middle of Siberia. Additionally, at mid- and low-
latitudes, almost positive anomalies can be seen, with a positive center located to the north
of the western Pacific subtropical high. This positive center is much stronger than that in
Figure 2b, appearing greatly northward of the western Pacific subtropical high. However,
the character line of the subtropical high with a value of 588 dgpm maintains over the
Sea (while extending westward to the eastern continent of China in Figure 3b) denotes
mainly the northward movement of the high. The Jianghuai Basin is controlled by a low
trough and is located to the west and north of the western Pacific subtropical high in
500 hPa heights for all of the three typical modes. Additionally, the heavy rainfall results
from the intersection with the cold air brought by the westerly trough at the middle and
high latitudes and the warm/humid air at the northwest edge of the western Pacific
subtropical high from the low latitudes.

On 200 hPa winds (Figure 3d–f) of the three typical modes, the location of the South
Asia high and the related jet stream is mainly concerned. In the field of the first typical
mode (Figure 3d), the South Asia high is mainly located over the land to the south of 30◦ N,
and the upper jet stream is mainly between 32◦–42◦ N. The Jianghuai Basin is located to
the south of the South Asia high and the upper-level jet stream. Additionally, the whole
region is divergent, though the center is over the sea. The position of South Asia high
of the second typical mode deviates slightly to the north, in comparison with that of the
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first typical mode roughly between 35◦–45◦ N but weaker with the exit located far west
(Figure 3e). Additionally, there is a divergent center over the Jianghuai area. The position
of the South Asia high and upper jet stream for the third typical mode is a little northward
of that for the second typical mode, and the jet stream is also weaker and thinner than the
exit of the jet stream also a little west (Figure 3f). Additionally, there is a divergence over
the north of Jianghuai but a convergence over the south.
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Figure 3. Composite heights at 500 hPa and zonal wind at 200 hPa for Mode1 (a,d), Mode 2 (b,e),
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On the 850 hPa winds (Figure 4) of the three typical modes, the low-level jet stream
and related water vapor transportation are important for heavy rainfall. For the first typical
mode, the low-level jet stream is strong, reaching about 30◦ N, and the southwest wind is
dominant in the south of the Jianghuai basin, with water vapor transported mainly from
the Bay of Bengal and the South China Sea. For the second typical mode, the low-level jet
stream is similar to that of the first typical mode, but it can reach the area farther north
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of the basin. The low-level jet stream of the third typical mode is relatively weak in the
Jianghuai basin, mainly affecting the southern basin, while the northern part of the region
is influenced by the southeast wind from the western Pacific, with the water vapor mainly
transported from the South China Sea and the western Pacific.
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Figure 4. Composite anomaly winds and related divergence at 850 hPa for Mode1 (a), Mode2 (b),
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10–6 s−1, dotted areas denote the t-test exceeding the confidence level of 0.05).

3.2. Establishing of the CNN for Multi-Level Circulation Pattern Classification

Cai et al. (2022) established a transfer learning CNN model for single-level circulation
classification according to the characteristics at 500 hPa heights, and the results show that
the transfer learning CNN has better performance in circulation classification than the
traditional methods such as the similarity by R and COS [47,49]. However, due to the
complex formation of the regional weather and climate, its development will be affected by
different key systems at different levels at the same time. In addition to 500 hPa heights
with the mid- and high-latitude blocking highs, the westerly trough, the western Pacific
subtropical high at low latitudes, etc., there are also weather systems at the upper levels
(such as the upper-level jet stream, the South Asian high, and the low-level jet stream) that
play important roles in the formation [47,49].

Therefore, considering both the location and intensity of the upper-level jet stream
and the warm/humid air brought associated with the lower-level jet stream, multi-level
variables are added to the transfer learning CNN to establish the multi-level circulation
classification model. According to the evolution characteristics of the three typical modes
at 200 hPa in Figure 3 and those at 850 hPa winds in Figure 4, the zonal wind over the
area (90◦–130◦ E, 20◦–45◦ N) at 200 hPa and the meridional wind at 850 hPa over the area
(90◦–130◦ E, 10◦–35◦ N) are selected as the key areas for the establishment of a multi-level
circulation classification model. With the three-level data of 384 d samples, the transfer
learning CNN model for three-layer classification is established by using the method of
three steps of migration training.

The training data for the pre-trained CNN model to establish the multi-level circulation
pattern classification model are the three-level variables of the 284 d samples. When training
the CNN network, the transfer learning includes two parts (Figure 5). Firstly, to realize the
migration of parameters by initializing the parameters from a pre-trained model before
the formal training. The pre-training model not only retains the network’s good abilities
of image feature extraction and feature learning but also makes the network suitable for
specific tasks or problems through freezing the convolution layer parameters and updating
the parameters of the full-connection layers. Additionally, the network to be established can
also converge faster by loading the parameters of the pre-training model directly, instead of
randomly initializing the parameters. Secondly, to train the model three times (three-step
transfer learning). The samples used for training (90 case days) are divided into three
parts, which are put into the network for training in batches. For the first step of training,
there are 284 samples put into the training. Additionally, the corresponding parameter
values obtained from the training are retained and brought into the next step of training
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as the initial parameter values of the network. In the second step of training, another
30 samples were added (that is, 314 samples), and the parameter values obtained from the
second step of training are also retained and brought into the next step of training as the
initial parameter values of the network. Similarly, another 30 samples were added (that is,
344 samples) into the network for the third step of training. Additionally, the corresponding
parameters should be retained after the three-step network training, with the minimum
output values of the network (threshold) for each type counted. The test samples are
40 sample days for all of the three-step transfer learning.
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From the loss function and accuracy rate of the model training (Figure 6), the loss
function and accuracy rate of the training converge quickly and reach stability. For the
testing, the loss function gradually decreases as the accuracy rate gradually increases. The
loss function of the transfer learning CNN for the three-level circulation classification
model is smaller and the accuracy rate is higher in comparison with the training results
of the single-level transfer learning CNN classification model. The accuracy of the single-
level transfer learning CNN test set is 85%, while it is 92.5% in the three-level transfer
learning CNN classification model. The corresponding output of the types on the day
can be obtained with related multi-level circulation variables input into the established
CNN model for typing. When the maximum output value of the CNN model is larger
than the threshold value, the corresponding type included in the basic three types can be
obtained; otherwise, its type on the day belongs to types other than the three basic types.
The threshold value of the output values from the CNN model for selecting each type
is 0.997.

After the three-level transfer learning CNN classification model is built and the related
threshold values are obtained for each type, the 200 hPa zonal winds, 500 hPa heights, and
850 hPa meridional winds over the key areas of the persistent heavy rainfall events over
China can be inputted into the model for circulation classification objectively, with 3179 d
samples in total. Additionally, the three types of heavy rainfall samples classified by the
CNN model are 748 d, 327 d, and 310 d, respectively. From the variances of the 500 hPa
heights between the different patterns obtained by the multi-level variables of the transfer
learning CNN and single-layer transfer learning CNN (Figure 7), it can be seen that the
variation of inter-pattern variance obtained by the three-level classification CNN model
is consistent with that of the single-level model, and the variances between different the
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types for heavy rainfall calculated by the three-level classification model are greater than
those calculated by the single-level model. The results suggest that the differences of the
500 hPa heights between each type obtained by the three-level model are more obvious,
and the three-level model can better distinguish the circulations of different types for heavy
rainfall than the single-level model. Additionally, interestingly, the variances between type
I and type II, and type I and type III increase with the leading days, which means that the
signals for distinguishing the circulation patterns of type I and type II are stronger with
longer days ahead of the onset day. As is shown in Figure 1, the heavy rainfall of type I
is mostly disastrous. Therefore, the better performance of the multi-level classification is
helpful for the further forecasting of extreme events with a longer valid time.
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The spatial distribution of the three types of heavy rainfall is obtained by compositing
the rainfall of each type of day as classified by the single-level CNN model (Figure 7a–c)
and the three-level CNN model (Figure 8d–f). It can be seen from Figure 8a that the center
of the maximum rainfall for Pattern I is located near the middle and a little south of the
Basin, the lower reaches of the Yangtze River. For Pattern II (Figure 8b), the composite
rainfall is characterized by more rainfall in the north than that in the south, and the center
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is located in the north of the basin. Pattern III (Figure 8c) shows more rainfall in the south
than that in the north, and the least in the middle, with two rainfall centers in the south
and north located in the southwest and northeast of the basin, respectively. Additionally,
the rainfall patterns classified by the multi-level model are similar but with larger center
values and range, denoting a higher focus of the samples for each type. It suggests that the
multi-level model is better. The rainfall pattern distribution from both the single-level and
multi-level models is alike to the distribution of the basic modes (Figure 2), suggesting a
good effect is able to be achieved by the single-level and multi-level models.
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From the rainfall correlation coefficients between the typical modes and each corre-
sponding pattern obtained by the multi-level classification model (Table 2), except that
the correlation coefficient between the mean fields of Pattern II (0.970) is slightly smaller
than that of the single-level model (0.986), the correlation coefficients of the mean field for
both Pattern I and Pattern III by the three-level transfer learning CNN classification model
are larger than those by the single-level model. All the correlation coefficients of the three
types reached a 0.05 significance level. Additionally, the mean correlation coefficients of all
sample days classified by the multi-level model are all greater than those of the single-layer
model. The number of days with correlation coefficients reaching a 0.05 significance level is
1093 d in total. In conclusion, compared with the single-level model, the three-level model
is better for circulation classification. It indicates that adding multi-level variables such as
the 200 hPa zonal winds and 850 hPa meridional winds to the CNN model can improve the
classification effect to a certain extent.

Table 2. The correlation coefficients between the transfer learning CNN model and the heavy rainfall
of typical mode patterns in samples.

Methods I II III

Coefficients of mean fields
Single CNN 0.771 0.986 0.913

3-levels CNN 0.810 0.970 0.916

Mean coefficients of all samples Single CNN 0.348 0.224 0.382
3-levels CNN 0.367 0.333 0.417
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4. Summary and Discussion

In this paper, the EOF method is used to analyze and refine the typical modes of heavy
rainfall in the Jianghuai Basin as the basic type of heavy rainfall. Then, apart from the
500 hPa heights, 200 hPa zonal winds and 850 hPa meridional winds are added to the
classification CNN model for transfer learning, and a three-level circulation classification
CNN model is established through three-step transfer learning. The main conclusions are
as follows:

The basic rainfall and circulation patterns are refined. The EOF decomposition of
72 typical case days from the persistent heavy rainfall events in the Jianghuai Basin is
conducted to refine the basic precipitation and circulation pattern datasets for further CNN
training. The corresponding time coefficients are obtained by projecting the daily rainfall
onto the typical rainfall modes and then used to select the training and test samples for
further study.

The three-level transfer learning CNN classification model has higher accuracy than
the single-level model in the test. The accuracy of the single-layer transfer learning CNN
test set is 85%, while it is 92.5% in the three-layer transfer learning CNN classification model.
The rainfall pattern distribution from both the single-level and multi-level CNN is alike to
the distribution of the basic modes, suggesting a good effect is able to be achieved by the
two CNN models. The rainfall patterns from the patterns classified by the multi-level CNN
are similar but with larger center values and range, denoting higher focusing of the samples
for each type. All the correlation coefficients of the three types reached a 0.05 significance
level. Additionally, the mean correlation coefficients of all sample days classified by the
three patterns are all greater than those classified by the single-level model. This suggests
that the multi-level model is better.

Circulation is a direct factor responsible for regional weather and climate. Some
extreme weather and climate will bring huge losses and impacts to the national economy,
social development, and people’s lives. If the timeliness and effectiveness of extreme
weather forecasting could be improved, it will be better to prevent and mitigate the loss
resulting from disasters. At present, the performance of the numerical model on circulation
forecasting is much better than that on element forecasting. Therefore, based on the more
accurate classification of circulation patterns, the circulation products from the numerical
model can be combined for better forecasting [53]. Extreme events usually have close
relationships with the circulation such as the height at 500 hPa, the meridional wind
component at 850 hPa, the relative humidity at 700 hPa, and the zonal wind at 200 hPa,
if they are classified [49]. The examination of the rainfall for the days with daily rainfall
of more than 25 mm and 50 mm in the Jianghuai Basin with the analogue method (COS)
shows that the TSs in the independent experiments of different lead times from 1 d to
10 d are higher than those from the EC and T639 models for the events with daily rainfall
more than 25 mm, and those of 3–10 d for the events with daily rainfall more than 50 mm
are also higher than those from the numerical models. That means if we use the classified
circulation of the leading time, the corresponding extreme events can be forecasted with
higher accuracy and longer valid times than the numerical models. Cai et al. [47] compared
the circulation classification for Jianghuai heavy rainfall events obtained by single CNN
with those obtained by the R and COS methods; the results show that the single CNN
model has the highest classification accuracy on the test dataset. Here, this paper suggests
that the multi-level CNN has the best performance in circulation classification. Therefore,
the multi-level CNN is a recommendable method in the study of extreme events. On the
one hand, the elements forecasted by the numerical model can be corrected in accordance
with different types of circulation patterns to improve the prediction performance. On the
other hand, it is also possible to extend the valid time of the element forecasting from the
numerical model. In this paper, taking the persistent heavy rainfall events in Jianghuai
Basin as an example, the multi-level circulation classification of the transfer CNN network
is implemented. This method can also be applied to the classification and diagnosis of
other disastrous weather or climate events.
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