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Abstract: People spend most of their time indoors, and prolonged exposure to pollution can harm
their health. The degradation of indoor air quality (IAQ) has raised serious issues. Botanical biofilters
are an exciting solution for lowering indoor air pollution. However, plants cultivated inside under low
light intensity (10–50 µmole PAR m−2 s−1) generate CO2 in the indoor atmosphere. Combining C3
(Calvin Cycle) and Crassulacean Acid metabolism (CAM) plants may be able to address this problem
by lowering CO2 emission levels and enhancing the efficiency of pollution removal by removing
the primary indoor air pollutants from actual interior settings, including carbon dioxide (CO2),
formaldehyde (HCHO), particulate matter (PM2.5 and PM10), and total volatile organic compounds
(TVOCs). As a result, a successful botanical biofilter made of several plants was researched. Indoor
plants can phytoremediate a variety of indoor contaminants. However, just a few studies have
demonstrated its efficacy in practical contexts. Due to the harsh winter, apartments in South Korea are
frequently closed, necessitating the measurement of interior air pollution concentration in real-time.
Four apartments (APT I through APT IV) with various ventilation and indoor plant setups were
selected for this investigation. Various combinations of indoor environments (ventilation, low light)
and a combination of C3 and CAM indoor plants as a botanical biofilter were used to study the sites
over two months. Current research indicates that combining a botanical biofilter with ventilation can
reduce levels of CO2, TVOCs, HCHO, PM2.5, and PM10 by 76%, 87%, 75%, 52%, and 51%, respectively.
The current study concluded that different indoor potted plants provide an effective, affordable, self-
regulating, sustainable option for enhancing indoor air quality and, consequently, human well-being
and productivity in small, cramped places.

Keywords: phytoremediate; indoor air quality; TVOC; particulate matter; formaldehyde; CO2

1. Introduction

Long-term research has been conducted on the harmful effects of exposure to outdoor
air pollution. Numerous studies have connected various health effects to both short-term
and long-term exposure to particulate matter (PM) with a diameter of less than 10 µm
(PM10) and particulate matter with a diameter of less than 2.5 µm (PM2.5), VOCs, and
formaldehyde [1–6]. A lesser amount of research has been conducted on exposure to indoor
air pollution. Personal exposure depends on various factors, including behaviors that could
increase the concentrations of the pollutants of concern, the amount of time spent in the
environment, and the methods used to remove the pollutants. Since most people spend
roughly 90% of their time indoors and at home, interior spaces are expected to be the source
of the greatest exposure [7,8]. The bulk of indoor contaminants originates from outdoor air,
which generally has an impact on the quality of indoor air. Infiltrations from the outdoors,
emissions from interior-specific sources, and particle production from indoor chemistry
are the dynamics causing elevated indoor air pollution levels [9,10]. Furthermore, several
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indoor sources and occupant activities include furniture, paints, varnishes, waxes, carpets,
solvents, cleaning supplies, office equipment including copiers and printers, gas cooktops,
and cigarettes that generate potentially harmful gases and particulate matter (PM) [11].
Carbon monoxide and dioxide (CO and CO2), volatile organic compounds (VOCs; for
example, formaldehyde and benzene), nitrogen oxides (NO and NO2), and polycyclic
aromatic hydrocarbons (PAHs) are among the air pollutants that are commonly found in
various indoor situations [12]. Given that individuals in developed nations spend more
than 80% of their time indoors, one of the top issues for human health today is the buildup
of air pollutant concentrations to dangerous levels, particularly in new energy-efficient yet
airtight homes [13]. The primary sources of interior PM pollution include tenant activities
such as cooking, lighting candles, incense, and almost any external PM pollution that enters
the building through the ventilation systems. Burning incense during religious ceremonies,
yoga, and meditation can have a tremendous impact on the indoor atmosphere because
it has been a regular practice for decades. According to research, eco-friendly incense
releases more polycyclic aromatic hydrocarbons and fine particulate matter (PM2.5) than
conventional incense [14]. This increases the risk of cardiovascular diseases and seriously
impacts the human lungs [15].

To maintain superior indoor environment quality (IEQ), which primarily focuses on
occupant thermal comfort, buildings are frequently outfitted with air conditioning and
mechanical ventilation (ACMV) systems. Modern technology has significantly improved
the air filtration component of air conditioning (AC) systems, making it more effective in
improving indoor air quality (IAQ) and offering optimum thermal comfort to building
occupants. However, the high energy consumption of AC systems unintentionally in-
creases greenhouse gas emissions that could impact global warming. The fresh air entering
residential buildings is typically insufficient because they only have split air conditioners
and no mechanical ventilation systems [16].

As in other cold nations, Korea experiences severe wintertime cold and snowfall. To
keep indoor air clean and conserve energy for air conditioning, it is typical for residents
to seal window and door openings. The sealing of windows and doors results in the
accumulation of indoor pollutants, air stagnation, and a decline in IAQ. To increase IAQ
and supply fresh air inside buildings, air purifiers are typically employed along with the
operation of ACs to improve IEQ. Although air purifiers’ initial performance appears
compelling, Ref. [17] reported that with time, dust particles could build up and clog air
filters, decreasing the air purifier’s single-pass efficiency (SPEs) [18].

Removing VOCs and converting these harmful substances into a carbon source for plant
and microbial growth are both highly prospective outcomes of phytoremediation [19–22]. It
has been shown that several plant species have a high clearance rate for contaminants such as
formaldehyde and benzene. Active botanical biofilter (ABB) systems effectively filter indoor
air pollutants and have been identified as a way to improve IAQ in buildings [23].

The Ministry of Environment (MOE) passed the Indoor Air Quality Management Law
in Multi-use Facilities in May 2004 to fully handle the IAQ issue. Before occupancy, IAQ
data in residences must be measured and made available to the public. The MOE released
updated housing guidelines for indoor air quality (IAQ) in December 2005. Additionally,
contractors who build or remodel apartment buildings with more than 100 units must install
ventilation systems with an air ventilation performance (air exchange rate) of over 0.7 times
per hour, according to an update to the Ministry of Construction and Transportation’s
Regulations on the Facility Standards of Buildings. Despite this development, a Korean
Consumer Agency investigation found that 14.5% of survey respondents had sick-house
syndrome [11], and lawsuits against building companies based on poor indoor air quality
have continued. Additional fundamental investigations are required to comprehend better
the development of IAQ improvement to combat indoor air pollution, and botanical
biofilters have gained popularity [24,25]. Between phyto- and bio-degradation, active
airflow through the plant layer and growth media layer with microorganisms can increase
the effectiveness of removing BTEX [26]. Rhizospheric bacteria can increase pollutant
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removal effectiveness in addition to plants [27]. Additionally, some contaminants can be
absorbed by the chemical and physical characteristics of the plant development media [28].
Therefore, using active botanical biofilters instead of standard passive potted plants delivers
a better removal efficiency [24].

Even while botanical biofilters may effectively remove indoor air pollution, plants
can often create a high concentration of carbon dioxide (CO2) during plant respiration,
especially when inadequate light conditions are present (indoor settings) [17]. According to
Satish et al. [29], considerable symptoms are produced by CO2 at 4.5–9 g m−3, and several
human symptoms and diseases are caused by high CO2 concentrations over 1.08 g m−3 [29].
The normal CO2 guideline, according to ASHRAE (2011), shouldn’t be more than 1.8 g m−3.
Therefore, it is crucial to consider the CO2 generated by plants in low-light situations before
utilizing a botanical biofilter. Numerous studies have shown that plants can effectively
absorb CO2 when they receive adequate light, but they cannot do so when they do not
receive enough light [29]. A combination of C3 and CAM plants in an efficient botanical
biofilter can be a different approach to the issue of CO2 production by botanical biofilters
under poor light support or indoor settings. According to botany principles, CAM plants
generally absorb CO2 at night, while C3 plants can leak CO2 into the atmosphere.

Our study examined the impacts of CAM and C3 plants, which are frequently imple-
mented to reduce indoor air pollution in real-life scenarios. The objective was to investigate
the concentration of significant indoor pollutants throughout the winter when interior
household activities are typically conducted with windows closed due to the cold outside,
including CO2, PM2.5, PM10, TVOC, and HCHO. The effectiveness of the combination of
these plants in lowering indoor air pollution was also monitored.

2. Materials and Methods
2.1. Study Location

Uiwang is a city in Gyeonggi Province, South Korea (Figure S1). It lies just South of
Seoul. Uiwang has an area of approximately 53.46 km2 and a total population of 158,482.
The study was carried out in a typical Uiwang studio apartment home, which was a
one-room, 10-pyeong-squared apartment with a kitchen slab and bathroom slab shared
in the same living space (View Figure 1). To conduct this study, four apartments (I-IV)
were considered (Table 1): APT I (without ventilation and interior plants), APT II (without
ventilation, with indoor plants), APT III (with ventilation, without indoor plants), and
APT IV (with ventilation and indoor plants). Additionally, an ambient air sample site
(outdoor) was chosen to track changes in the external environment. All the selected units
were single-occupancy, and each had a window. People were instructed to keep a record
detailing all indoor activities and the times they opened windows. The ventilation type in
the apartments was natural ventilation. The precise experimental approach was as stated
below. Before each sample’s measurement began, equipment was placed at the measuring
location in the respective apartments, and after briefly explaining the experiment to the
occupants, a questionnaire was given to each of them. Prior to the trial, the indoor air
quality in each apartment was actually tested for 48 h in 5-min increments to obtain insights
into the occupant’s activity and indoor pollution levels. All experiments were, in theory,
carried out with the door closed and the heating on as needed, but the residents were free
to open and close the windows as needed to maintain their thermal comfort. However, due
to the extremely cold weather in South Korea, the tenants in the apartments did not open
their windows during the requested times.
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Figure 1. Diagram of the apartment showing the doors, windows, Kitchen shafts, indoor air pollutants
(IAP) monitors, and the entry and exit path.

Table 1. Detailed information about the apartments.

Experimental Sites Area, Door, Window
No. of Occupants Ventilation Indoor Plant

Apartment I
(APT I)

10-Pyeong (~33 m2),
1, 1, 1

With Ventilation With Indoor Plants.

Apartment II
(APT II)

10-Pyeong (~33 m2),
1, 1, 1

Without Ventilation With Indoor Plants
(only CAM plants).

Apartment III
(APT III)

10-Pyeong (~33 m2),
1, 1, 1

With Ventilation Without Indoor
Plants.

Apartment IV
(APT IV)

10-Pyeong (~33 m2),
1, 1, 1

Without Ventilation Without Indoor
Plants

2.2. Plant Preparation

Sansevieria kirkii, Sansevieria trifasciata, Monstera deliciosa, Zamiifolia, and Portulacaria
afra (Table 2), five commonly used ornamental plants with comparable age, sizes, and
forms were bought from plant stores in South Korea. These plant species are frequently
grown indoors. Plants having a total leaf area of 500 cm2 that were pest-free were retrieved
from the apartments to gauge how effectively they removed the indoor air pollutants. A
LICOR LI-250A Light Meter was used to measure the light intensity of a fluorescent lamp
(400–700 nm), which was 50 µmole PAR (Photosynthetically Active Radiation) m−2 s−1.
The plant development medium consisted of a potting mixture with a moisture content
of 1.1 to 1.4%, a water retention capacity of 9.1 to 10.2 cm m−1, and a composition of 58%
sand, 28% silt, and 14% clay. Typically, this substance is used to grow decorative plants.
The porosity of the potting material was in the range of 36–38%. All plants were cultivated
in their native environments at 30–32 ◦C and 12/12 h day/night before the experiment.
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Table 2. Details about selected Plant species.

Plant Family Common Name Plant Type

Sansevieria kirkii Asparagaceae Snake Plant CAM carbon fixation.

Sansevieria trifasciata Asparagaceae Snake Plant CAM carbon fixation.

Monstera deliciosa Araceae Swiss Cheese Plant C3 carbon fixation.

Zamiifolia Araceae ZZ-plant C3 carbon fixation

Portulacaria afra Didiereaceae Jade plant C3 or CAM carbon
fixation

Sansevieria trifasciata, Sansevieria kirkii, and Zamiifolia were maintained close to the
window, while the Monstera and jade plants were stored on the opposite side. Because
there is no separation between the apartments, we can infer that all of the plants were in
the same room.

2.3. Indoor Air Pollutants Measurements

From December 2021 to January 2022, the units’ indoor air quality (IAQ) was inspected
due to the extremely high levels of particulate matter pollution [30,31]. Each apartment was
monitored for 24 h over a regular two-week period. Table 1 describes the characteristics of
each flat. The plants were positioned to prevent any obstructions to mobility. Since it was
winter in Korea, the tenants kept their windows closed. As their actions also contributed
to pollution, the residents were instructed to list all their indoor activities on a notepad,
such as sweeping, cooking, lighting candles, and smoking. Information regarding the
kind of household, heating and cooling systems, and usage were gathered using a brief
questionnaire. However, none of the tenants were smokers; therefore, the main indoor
contributing sources were cooking and other maintenance activities. Activities such as
cooking, burning incense sticks, and other maintenance jobs such as sweeping and cleaning
were also asked to be noted down. All the indoor air pollutants were measured using
the AirScan device from Sensoronic (Figure 2). Formaldehyde (HCHO), total volatile
organic compounds (TVOCs), carbon dioxide (ppm), PM10, and PM2.5 were all measured
in real-time, along with the temperature (◦C) and relative humidity (%). The system was
configured to record values every five minutes. Weekly readings were recorded. Before the
experiment, TVOCs, CO2, PM10, HCHO, and PM2.5 levels were pre-tested and measured
to determine the levels and variability of these pollutants. Outdoor PM10 and PM2.5
concentrations were also measured using the same device.
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2.4. Data Analysis

MATLAB 2021a was used to process and analyze the real-time mass concentrations of
the indoor pollutants that were measured using the Sensoronic AirScan device (Figure 2).
The mean and standard deviation were calculated using a descriptive statistical method.
For samples with more than two groups, the mean of each treatment was compared using
a one-way analysis of variance (ANOVA) at a 95% level of confidence, and for samples
with two groups, an independent t-test with n1 + n2 − 2 and α = 0.025 (two tails). Tukey’s
multiple comparison test with a 95% confidence level was used to classify groups after the
one-way ANOVA. Data visualization and interpretation were made using MATLAB 2021a.

2.5. Calculation of Air Exchange Rate (AER), Deposition and Emission Rate

Using the CO2 release mechanism and its decay rate, as reported in [32], determined
the sampling duration’s air exchange rate (AER). The apartment was equipped with an
Extech SD800 Datalogger, and the AirScan was used to gauge the CO2 levels within.
By releasing lab-grade CO2 from a gas cylinder, the CO2 levels were raised to between
5000 and 7000 ppm, making small fluctuations in the background levels inconsequential.
The impact of the background CO2 levels was minimized as a result. The location of the
CO2 monitor was changed in order to provide a clearer image of the average AERs. The
mass balance equation was employed in this investigation to determine the indoor PM2.5
emission rates, which is consistent with prior studies [33–35]. Numerous presumptions
were made to simplify the mass balance equation. The penetration efficiency (P) was first
considered to be one. The P, however, is a function of particle size and is less than one due to
gravitational settling, especially for high particle diameters, which is crucial to mention (e.g.,
Ref. [9]). Outdoor sources were regarded as negligible since indoor concentrations during
the activities were significantly more significant than background levels. Using average
values and the extra supposition of a well-mixed environment, the average emission rates
were calculated from Equations (1) and (2) as follows:

dCin
dt

= PaCout +
Qs

v
− (a + k)Cin (1)

Qs = V ×
[

Cin − Cin0
∆t

]
+ (a + k)cin − aCin0 (2)

Where t is the difference in time between the initial and peak concentrations, AER, is
the deposition rate, and Cin is the average indoor concentration. Qs is the average indoor
particle emission rate, V is the room volume, and Cin and Cin0 are the peak and initial
indoor concentrations, respectively. The value (α + κ) denotes the average removal rate.
As a result, dynamic aerosol processes that affect particle generation and removal, such as
condensation, evaporation, and coagulation, are not considered. (Ref. [33]) provides more
information on the estimation of particle emission rates.

According to [36], which assumes that the outdoor effect is minimal, the decay of
interior particles after the source has stopped is characterized as follows:

dCin
dt

= −(a + k)Cin (3)

Equation (3) can be integrated to yield the following linear equation:

ln
Ciνt
Cin0

= −(a + k)t (4)

where the slope of the graph of ln( Cint
Cino ) vs. t is equal to (α + κ).
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3. Results
3.1. Indoor and Outdoor PM2.5 and PM10 Concentration

According to our findings, there are substantial differences in the component concen-
trations of each apartment (Table 1), with APTI having the lowest pollutant level due to
ventilation and specially chosen indoor plants. The lowest and highest average indoor
PM2.5 levels were recorded for APTI and APTIV, respectively. The PM10 content of APTI
was found to vary from 6 to 68 µg m−3, with an average value of 19.4 µg m−3, whereas AP-
TIV had a range from 4 to 679 µg m−3, with the highest average value being 58.81 µg m−3.
These standards cover typical indoor activities, including frying, cleaning, and lighting
candles. PM10 and PM2.5 are both present, with PM2.5 having a range of 4–42 µg m−3 and
an average of 12.64 µg m−3 for APTI and APTIV, respectively, and a range of 3–49 µg m−3

and 35.72 µg m−3. For each apartment, the interior PM10 and PM2.5 readings exhibit greater
variation than the outdoor concentrations (Table S1). The study’s indoor PM concentrations
are within the range of those noted in the literature. According to earlier research [9,33–36],
indoor PM2.5 levels can reach 9.5 µg m−3 and 34.6 µg m−3, and indoor PM10 levels can
reach 23.0 µg m−3, 18.3 µg m−3, and 47.2 µg m−3, respectively [37,38]. The minimum,
maximum, and average concentrations of all the pollutants from each apartment can be
seen in Table S1. There was a difference between interior and outdoor PM concentrations
in each apartment, with the apartment with ventilation and inside plants having the lowest
concentration (Figure 3).

The concentrations of PM2.5 and PM10 varied significantly between the indoor sites.
While preliminary comparisons can still be used even though complete multiple compar-
isons cannot be made using the nonparametric technique, there were significant variations
in PM2.5 and PM10 concentrations among the flats. The results (Figures S2–S5) show that
despite indoor plants and ventilation, the indoor PM2.5 and PM10 concentrations in APT I
did not significantly change in response to outdoor PM2.5 and PM10 concentrations. How-
ever, the results from APT IV and APT III also suggest that ventilation may have a small
effect on indoor pollutant concentration.

The results also made it abundantly clear that apartments with indoor plants and
ventilation can significantly lower PM2.5, up to 64.61%, as opposed to apartments with only
CAM plants, which only show a reduction of 52.09%. These apartments also have higher
reduction efficiencies than apartments without indoor plants and ventilation (Table 3)
(p-value < 0.0001). The outcomes demonstrated the plants’ capacity to adsorb or absorb
PM2.5. Prior research has suggested that plants can lower the amount of PM2.5 in the
air [39,40].

3.2. Indoor TVOC, HCHO, and CO2 Concentrations
3.2.1. Total Volatile Organic Compound (TVOC) Concentrations

Table 3 shows the total volatile organic compound (TVOC) rates throughout the
complete two-month study. Table 3 shows the variation in average TVOC concentrations
over time for several sets of circumstances, namely, APTI, APTIV, APT II, and APT III.
Indoor average TVOC concentrations without indoor plants and ventilation can reach
800.41 µg m−3, but they were found to be 56.35 µg m−3 and 190.93 µg m−3 in APTI and
APT II, respectively (Table S1). In the indoor testing settings, a general decreasing pattern
for average TVOC concentration was seen with the indoor plants (p-value < 0.0001; APTI–
APTIV). This increase in average TVOC concentration can be noticed in APT II compared to
APT I. We also discovered a decrease in TVOC levels, with APT I having the lowest average
TVOC level compared to APT II when both C3 Cycle and CAM plants were combined
(Table 3).
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Figure 3. Average PM2.5 and PM10 concentrations for Different Apartments (APTI–APTIV): In-
door and Outdoor Diurnal Variations. (a) Apartment with indoor plants and ventilation (APTI).
(b) Apartment with indoor plants (only CAM plants) and without ventilation (APT II). (c) Apartment
with ventilation and without indoor plants (APT III). (d) Apartment without ventilation and indoor
plants (APTIV).

The sansevieria species and other commonly used indoor plant species have been
shown in prior research to be able to remove a variety of VOCs [41–44]. Still, we discovered
that the apartment with both C3 and CAM plants, or APT I, had a substantially greater
TVOC-removal effectiveness than APT II, which only had the CAM plants, when comparing
the removal efficiency of TVOCs for APT I and APT III, respectively, and using Apartment
IV as the control apartment, devoid of any indoor plants and ventilation, as a standard
for comparison (Table 3). The removal of indoor air pollutants such as formaldehyde,
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acetone, benzene, and xylene by CAM plants and C3 plants has also been reported in earlier
research [45–49]. However, in this case, we found the average concentration of TVOCs.

Table 3. Reduction Rate (%) of PM10, PM2.5, HCHO, TVOC, and CO2 by indoor plants.

Indoor
Pollutant Apartment Condition Mean ± SE Reduction Rate

(%)

PM10

Apartment I
(APT I)

Ventilation 4 &
Indoor plant

(C3 + CAM) 4

19.4 ± 0.74 67.01%

Apartment II
(APT II)

Ventilation 8 &
Indoor plant

(CAM) 4

21.82 ± 0.21 62.89%

Apartment III
(APT III)

Ventilation 4 &
Indoor plant 8

29.02 ± 0.94 50.65%

Apartment IV
(APT IV)

Ventilation 8 &
Indoor plant 8

58.81 ± 1.66 Control

PM2.5

Apartment I
(APT I)

Ventilation 4 &
Indoor plant

(C3 + CAM) 4

12.64 ± 0.32 64.61%

Apartment II
(APT II)

Ventilation 8 &
Indoor plant

(CAM) 4

17.11 ± 0.13 52.09%

Apartment III
(APT III)

Ventilation 4 &
Indoor plant 8

15.94 ± 0.5 56.63%

Apartment IV
(APT IV)

Ventilation 8 &
Indoor plant 8

35.72 ± 0.96 Control

TVOC

Apartment I
(APT I)

Ventilation 4 &
Indoor plant

(C3 + CAM) 4

56.35±6.59 92.95%

Apartment II
(APT II)

Ventilation 8 &
Indoor plant

(CAM) 4

190.93 ± 7.63 76.14%

Apartment III
(APT III)

Ventilation 4 &
Indoor plant 8

84.42 ± 3.03 89.41%

Apartment IV
(APT IV)

Ventilation 8 &
Indoor plant 8

800.41 ± 14.73 Control

HCHO

Apartment I
(APT I)

Ventilation 4 &
Indoor plant

(C3 + CAM) 4

6.023 ± 0.255 74.89%

Apartment II
(APT II)

Ventilation 8 &
Indoor plant

(CAM) 4

5.98 ± 0.06 75.07%

Apartment III
(APT III)

Ventilation 4 &
Indoor plant 8

34.67 ± 0.35 −30%

Apartment IV
(APT IV)

Ventilation 8 &
Indoor plant 8

23.99 ± 0.32 Control

CO2

Apartment I
(APT I)

Ventilation 4 &
Indoor plant

(C3 + CAM) 4

615.5 ± 2.73 76.47%

Apartment II
(APT II)

Ventilation 8 &
Indoor plant

(CAM) 4

1154.52 ± 10.83 55.87%

Apartment III
(APT III)

Ventilation 4 &
Indoor plant 8

1278.42 ± 9.27 51.13%

Apartment IV
(APT IV)

Ventilation 8 &
Indoor plant 8

2616.36 ± 25.81 Control

Values are means ± SE; (p < 0.0005); (p < 0.0001); (p > 0.0005).



Atmosphere 2022, 13, 1863 10 of 14

3.2.2. Formaldehyde (HCHO) Concentration

The average formaldehyde (HCHO) rates for the whole two-month study are depicted
in Table 3. The variations in average HCHO concentration over time are depicted in Table 3
for several different sets of conditions, such as APTI, APTIV, APT II, and APT III (refer to
Table 1). Average indoor HCHO concentrations are higher in apartments lacking indoor
plants and ventilation than in apartments with these features. For example, APTI has a
value of 6.023 µg m−3, APT II has a value of 5.98 µg m−3, while APT III and APTIV were
found to have values of 34.67 µg m−3 and 23.99 µg m−3 (Table S1). A general decreasing
pattern for average HCHO concentrations was seen with indoor plants in the indoor
testing circumstances (p-value < 0.0001) (APTI–APTIV). Because the plants used in APT
II have already demonstrated their ability to reduce the HCHO content, similar average
formaldehyde concentrations can be found for both APT I and APT II [45–49]. The reduction
rates for APT I and APT II are identical, at 75% and 74%, respectively. Although the average
HCHO level for each apartment was found to be within the ASHRAE-recommended range,
there is a noticeable difference in the concentrations of HCHO in the units with plants.
(Table 3)

3.2.3. Carbon Dioxide (CO2) Concentration

Table 3 illustrates the variation in average CO2 concentration over time for a variety of
various combinations of settings, APTI, APTIV, APT II, and APT III (refer to Table 1). Similar
to other contaminants, it has been found that average indoor CO2 concentrations are higher
in apartments without indoor plants and ventilation than in those that do. Previous studies
have also shown that few Indoor plants reduce CO2 concentration [37,42]. The average CO2
emissions from plants at night are a significant issue when considering phytoremediation
in indoor areas. Combining CAM and C3 plants can dramatically lower the system’s
CO2 emissions [46]. APT III with simply a CAM plant and APT I with combined CAM
and C3 plants appeared to maintain low CO2 concentrations in the apartment, while
apartments without indoor plants and ventilation released higher CO2 (p-value < 0.0001).
Table 3 shows the reduction rate for each apartment, with APT I having the lowest average
CO2 concentration of 615.5 ppm, whereas APTIV has the highest average CO2 concentration
of 2616.36 ppm (Table S1). In CAM plants such as S. trifasciata, moderate light intensity
appeared to cause stomata to open, enhancing CO2 uptake. The C3 plant may produce CO2
simultaneously due to the moderate light intensity [46]. Therefore, it is possible that the
atmosphere in APT I experienced CO2 emission and absorption when CAM and C3 plants
were mixed.

4. Discussion

Interior plants will increasingly be used in indoor areas as people’s awareness of
sustainability grows. A solution for treating indoor air that has the potential to be both
efficient and sustainable is phytoremediation. However, the number of plants utilized,
as well as their mix, affect how well they may reduce indoor air pollution. Total volatile
organic compounds (TVOCs), particulate matter, and oxidants and irritants are some of the
several elements that make up indoor pollution (PM). People dwell indoors for up to 90%
of the time in every country on earth. The interior air quality is, therefore, crucial to limiting
human exposure to pollutants. The ability to lower indoor air pollutants was demonstrated
by potted plants. According to our knowledge, this study is the first to perform real-time
monitoring of indoor and outdoor PM and different indoor air pollutant concentrations
(TVOC, HCHO, and CO2) in a typical Korean apartment throughout the winter. We empha-
size the distinct indoor and outdoor sources by differentiating between the different diurnal
patterns of indoor and outdoor PM levels. The main contributors to indoor formaldehyde,
TVOC, and PM pollution are cigarette use, building materials, and furniture. Furthermore,
there is no association between interior and outdoor PM concentrations, particularly for
PM2.5. The effectiveness of commonly used indoor ornamental plants and ventilation in
eliminating the primary indoor air contaminants is also discovered. Current research has
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shown that C3 and CAM plants work well together to reduce PM2.5, PM10, HCHO, TVOCs,
and CO2 to greater extents, up to 64%, 67%, 75%, 93%, and 76%, respectively (Table 3).

Active botanical biofilters are a recent innovation that has gained popularity for
reducing indoor air pollution [24,25]. This approach involves passing tainted air through a
layer of plants and growth material harboring advantageous bacteria [50]. Therefore, this
technique could be able to control the CO2 content in indoor environments and lower the
number of plants [51]. According to the principles of the botanical biofilter, microorganisms
growing on plant growth material can be crucial in the removal of pollutants in a botanical
biofilter [26] since some pollutants can be adsorbed on the planting material [28]. In
contrast to this, very few researchers have focused on lowering indoor air pollution in
actual settings [52–54]. More research and field tests are required to fully understand the
capability of absorption by house plants in practical situations. The potential of a mixture
of typical CAM and C3 house plants to absorb indoor air pollutants is explained in this
study. The results demonstrate that the average concentration of all indoor air pollutants
caused by diverse daily indoor activities was significantly greater in APT IV (without
ventilation and plants) than in APT I (with ventilation and plants). Even with ventilation
and without plants (APT III), there was a significant variation in the levels of several
pollutants, demonstrating that ventilation cannot completely reduce pollution. The average
value of several pollutants inside APT II is still greater than that of APT I, which also
implies that the combination of both CAM and C3 plants may reach the highest removal
effectiveness.

5. Conclusions

A solution for treating indoor air that has the potential to be both efficient and sustain-
able is phytoremediation. However, using plants to remove interior pollutants instantly still
presents difficulties. Furthermore, having many plants, especially C3 plants, in a room with
air conditioning might also be problematic because they release CO2 into the atmosphere
at night. Mixed plants (CAM and C3) exhibited high pollution removal efficiency with
low CO2 output than single plant species. In this study, we created a system that showed
real-time indoor air phytoremediation in a typical Korean apartment during the winter,
with little CO2 emissions despite activities such as cooking, cleaning, lighting candles, etc.
Condensation, evaporation, and coagulation, dynamic processes that affect the produc-
tion and removal of aerosols, were not considered since they were deemed negligible in
this study when indoor sources were present. Reducing indoor air pollution levels by
using plants may be a simple way to lower lifetime risk and exposure to a wide range of
chemicals.

Furthermore, as most of society spends most of its time indoors, the current research is
essential to improving indoor air quality. The results also show a sustainable and affordable
indoor air pollutant bioremediation system that is simple to integrate into engineering
measures for any building infrastructure, including workplaces, research facilities, schools,
and urban families. Given that plant growth conditions and the effectiveness of the plant
species being employed in pollution removal influence how quickly plants digest air
pollutants, it is necessary to conduct more research on the selection of indoor plant species
based on their morphological, anatomical, and physiological characteristics that have the
potential to phytoremediate air. This will ensure that indoor living has positive health
benefits and will promote learning, productivity, and quality of life. This work sheds light
on the significance of this understanding, particularly in light of its implications for human
health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13111863/s1, Figure S1: Uiwang-si map and sampling
site location. Figure S2: Correlation values of outdoor and indoor PM10 and PM2.5 for APT I (with
ventilation and indoor plants). Figure S3: Correlation values of outdoor and indoor PM10 and
PM2.5 for APT II (without ventilation and only CAM indoor plants). Figure S4: Correlation values
of outdoor and indoor PM10 and PM2.5 for APT III (with ventilation and without indoor plants).
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Figure S5: Correlation values of outdoor and indoor PM10 and PM2.5 for APT IV (without ventilation
and indoor plants). Table S1: Values of various indoor pollutants inside various apartments
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