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Abstract: The survival of humans depends on both natural and manufactured surroundings. Though
most people spend their time indoors, there are constantly new challenges to address, and air
pollution is one of them. This research considered both outdoor and indoor factors that affected
green development agendas. Outdoor factors include fossil fuel combustion, renewable energy
supplies, and carbon emissions, whereas indoor factors include industrial waste management,
chemical use in production, and green technologies. Against the backdrop of the Indian economy,
plagued by severe environmental problems from 1995Q1 to 2020Q4, this research evaluated green
alternatives for indoor and outdoor environments. Carbon emissions rise with the use of chemicals
in production, with the burning of fossil fuels, and with economic expansion, as shown by the
Autoregressive Distributed Lag (ARDL) testing method employed. In contrast, emissions fall when
a nation invests in renewable energy technologies and appropriately manages its industrial waste.
Granger causality estimations validated the feedback link between industrial chemical usage and
carbon emissions while demonstrating a unidirectional causality from chemical use to green energy
demand and fossil fuel combustions. Moreover, burning fossil fuels and energy demand causes
carbon emissions. Carbon emissions and fossil fuel combustion are produced due to industrial
waste handling. The scale of the use of chemicals is expected to have the greatest impact on carbon
emissions over the next few decades, followed by industrial waste, renewable energy supply, fossil
fuel combustion, and renewable energy technologies. In order to achieve environmental sustainability
via emissions reduction, this study proposed policies for a low-carbon economy, renewable energy
source encouragement, and sustainable management. Close attention should be paid to clean energy
and environmental sustainability by investing in research and development (R&D) to create a long-
term sustainable energy strategy that is environmentally benign.

Keywords: carbon emissions; chemical use; industrial waste; renewable energy; green technology; India

1. Introduction

Demand for fossil fuels has increased due to the rapid industrial revolution and growth
in diverse economies across the globe. Widespread fossil fuel combustion results in massive
amounts of carbon emissions, which in turn leads to a host of environmental issues [1,2].
The world’s economies came together in December 2015 to sign the historic United Nations
Climate Change Paris Agreement, which aims to reduce greenhouse gas emissions and
address global environmental problems. The average worldwide temperature in 2020 was
1.2 degrees Celsius higher than its pre-industrial level. There has been a recent, urgent call
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to action to reduce carbon emissions and keep the global average ambient temperature rise
as low as possible due to environmental and climate concerns [3,4].

The highest priority should be given to transferring cutting-edge technology and
increasing climate funding to economies with the worst environmental deterioration
if they improve their climate performance and take effective action to make necessary
changes [5,6]. As a result of the revolutionary environmental framework, wealthy nations
could reach out to developing nations that were also experiencing severe environmental
issues. The outcomes of the 26thConference of the Parties (COP26) reflect India’s priorities,
and India’s clean and climate-resilient economy might be supported by the declaration to
increase climate action in the country [7]. Following the COP26 UN Framework Convention
on Climate Change in Glasgow, the Indian government has implemented the following
nationwide measures [8].

i. Achieve 500GW of non-fossil energy capability.
ii. Renewable sources meet more than 50% of their energy needs.
iii. Reduce anticipated carbon emissions by one billion metric tonnes.
iv. Reduce the country’s carbon intensity by 45%, and
v. Achieve net-zero carbon emissions

As a result of rising energy consumption and industrialization, global carbon emissions
are expected to peak in the near future. Based on energy, economic, and meteorological
statistics, the International Energy Agency [9] predicted that by 2022, emissions would
rise to 36.3 Gigatonnes (Gt), a 6% increase from 2020. Jeon [10] argues that the basis
of renewable energy consumption (REC) rather than fossil fuels is the significance of
environmental sustainability and economic progress. Environmental pollution and carbon
emissions associated with manufacturing may be reduced by increasing REC in highly
polluting industries and using environmentally friendly technology in production. A major
obstacle to a more sustainable future for the planet is the burning of fossil fuels. In low-
and middle-income nations, where there is a dearth of resources and ways to reduce these
consumption-related pollutants, carbon emissions and air pollutants crucial to climate
change are particularly problematic.

Carbon emissions, non-REC, and inefficient use of combustible energy sources are
at the heart of the present investigation. Using REC and other sources is a fundamental
component of environmental sustainability and an effective means of lowering carbon
emissions [11–13]. The current study investigates fossil fuels, REC, combustible energy
waste, green technology, chemical use in manufacturing, and carbon emissions based on the
following preliminary study research questions. First, does the use of energy derived from
fossil fuels affect India’s overall carbon emissions levels? This question asks how the energy
provided by fossil fuels may meet the requirements of a green and sustainable demand
based on the usage of a variety of energy resources in the environment that produce
less carbon. In addition, the best way to maximize resources hinges on increasing and
developing energy resources (fossil fuels) in their natural setting. Second, how much do
REC help India cut its carbon footprint? It explores how REC may be utilized as an effective
method to encourage sustainable development in the process of lowering carbon emissions,
which leads to sustainably increased resources for energy consumption and growth. Third,
does India’s inefficient use of combustible energy sources increase its carbon footprint?
This inquiry probes how choices for climate change, patterns of growth, and environmental
measures are affected by explosive energy use and refuse. More flammable refuse in the
environment also contributes to severe economic and environmental harm. Finally, how
can changes to India’s energy system and cleaner technologies help to lower the country’s
carbon output? The importance of various energy reforms for the future of environmental
sustainability and pollution control by estimating their effects on emissions reduction is
pivotal for sustainable development. The study’s understanding of the function of energy
consumption from fossil fuels within the context of sustainability is based on the research
questions suggested. The potential impact of abundant RE, technology and other sources
on the decarburization goal is also investigated. In conclusion, the research suggested
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several measures to reduce carbon emissions to accomplish sustainability aims. In order to
do this, the following objectives were set:

• To determine the effects of REC and environmentally friendly technologies on national
efforts to reduce carbon emissions.

• To determine how using chemicals, fossil fuels, and economic growth impacts national
carbon emissions, and

• To learn more about how refuse that can be burned affects national carbon emissions.

Building RE infrastructure may help a nation reduce its carbon footprint and ensure
its environmental sustainability.

2. Literature Review

The review of the literature is sub-divided into three main components:

I. Renewable energy technology and mitigating carbon emissions.
II. The use of fossil fuel energy in pollution damage function; and
III. Industrial waste and its repercussion on the natural environment.

The stated domain helps to reach sustainable solutions to show the way forward to
improve indoor and outdoor environmental quality.

2.1. Literature on Cleaner Technologies and Carbon Reduction

Sustainable economic policies that consider the long-term benefits of REC for improv-
ing environmental quality have been shown to impact agreed minimum goals positively.
With the help of cleaner technology, the decarbonization process was sped up, and the
world’s average temperature was kept below a certain threshold. Using data from 2003 to
2015, Kocaket al. [14] studied the effects of R&D spending on energy efficiency, alternative
energy consumption, and fossil fuels energy of 19 OECD economies on carbon emissions.
The results reveal that using REC does not significantly increase the amount of carbon
dioxide released into the atmosphere. In addition, research indicates a promising positive
correlation between CO2 emissions and R&D dollars spent on energy efficiency. In addition,
there is an inverse correlation between the use of energy derived from fossil fuels and
the release of carbon. The research suggested prioritizing the use of REC resources in
order to achieve long-term economic development without increasing the cost to society
via increased carbon dioxide emissions. Musah et al. [15] used data from 1990 to 2018 to
analyze how urbanization, income, and alternative energy use affected carbon emissions in
North African nations. The data shows a positive and statistically significant correlation
between REC and carbon emissions. In addition, growing cities produce more carbon
dioxide over time. The correlation between economic expansion and carbon emissions
is positive. Similarly, urbanization leads to economic expansion, while economic growth
causes clean energy. Reducing carbon emissions and ensuring the long-term health of our
planet may be achieved by switching to RE sources. In a study covering 44 Sub-Saharan
nations from 2000 to 2015, Mentel et al. [16] found a correlation between industrial value-
added GDP per capita, renewable power use, and carbon emissions. The empirical analysis
reveals a negative correlation between the generation of renewable power and the release
of greenhouse gases. Furthermore, REC has a moderating influence on both industrial
production and CO2 emissions. Carbon emissions are positively correlated with economic
growth. The correlation between GDP expansion and carbon emissions is also U-shaped. A
rise in economic complexity indexes and the incorporation of novel environmental welfare
policies into development plans and the organizational structure of countries are among the
recommendations of the research. Using data from 2000 to 2017, Jiang et al. [17] examined
the impact of economic growth and non-renewable and REC on the environment in 28 of
the world’s most polluted nations. The findings prove that RE sources do not contribute to
increased carbon emissions. In addition, using fossil fuels to generate electricity increases
the amount of carbon released into the atmosphere. As the economy expands, so do its
carbon emissions. Growth in the economy, green energy, and carbon emissions go hand
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in hand in all emerging nations. In contrast, development, non-REC, and carbon emis-
sions go in the same direction. Increasing funding for green activities is necessary to keep
environmental sustainability and speed up the transition to using fewer fossil fuels and
more REC to cut down on carbon emissions. Umar et al. [18] analyzed real GDP, fossil fuel
energy consumption, and biomass energy consumption to determine their effects on carbon
emissions in the United States from 1981Q1 to 2019Q2. The research found a negative
correlation between the use of biomass for energy production, economic development,
and carbon emissions. In addition, a positive correlation exists between the use of fossil
fuels for energy and the release of carbon dioxide. Similarly, there is a causal relationship
between real GDP and carbon emissions and the use of biomass and fossil fuels to generate
electricity. According to the study’s findings, the transportation industry, in particular,
must put more attention and resources into creative development if the world will succeed
in cutting energy-related carbon emissions.

Using data from 42 countries in sub-Saharan Africa between 1995 and 2011, Apergis et al. [19]
found a correlation between per capita gross domestic product, health spending, REC, and
carbon dioxide emissions. The empirical research reveals that the relationship between
REC and carbon emissions is causal in both directions. In addition, there is negative and
two-way causation between healthcare spending and emissions. Carbon emissions are
positively correlated with economic growth, and the relationship between RE expansion
and increased carbon emissions is also unidirectional. These nations can improve the lives
of their citizens, reduce their carbon footprints, and combat climate change by maintaining
their per capita growth while investing in healthcare and RE initiatives. In their research
on the effects of trade intensity, financial openness, GDP per capita, capital formation,
RE use, and CO2 emissions in Commonwealth independent state economies from 1992
to 2015, Rasoulinezhad and Saboori [20] found mixed results. It has been shown that
RE sources have a negative impact on carbon dioxide emissions. Additionally, economic
growth and CO2 emissions both tend to go down. Similarly, there is bidirectional causa-
tion from fossil fuel energy use to RE and carbon emissions, as well as from economic
development to financial openness and trade openness. The research suggested switching
from fossil fuels to RE sources to reduce carbon emissions. Using data from 1996 to 2012,
Hu et al. [21] examined the impact of 25 developing nations’ international commercial
services trade, GDP per capita, and usage of RE on carbon emissions. The data support
the EKC theory fora given nation. In addition, RE sources are inversely correlated with
carbon dioxide release, and in addition, the exchange of commercial services across borders
is inversely correlated with carbon emissions. There is a positive and strong relationship
between economic expansions and carbon emissions, and carbon emissions and economic
expansion powered by RE sources only go in one direction. The research concluded that
low-carbon and accelerated economic development might be achieved if emerging nations
promoted commercial services trade and the usage of RE. Studies have shown a negative
and statistically significant correlation between the use of RE and carbon emissions [22–24].

The primary hypothesis of the research is as follows, based on the above literature review:

H1: To maintain environmental sustainability and offer a path to low carbon emissions, the
percentage of consumption from RE sources will probably rise as part of the energy transition, and

H2: The use of RE sources helps to minimize carbon emissions, which advances environmental goals.

2.2. Literature on Fossil Fuel Combustions and Carbon Emissions Intensity

Industrial production needs renewable fuels to replace the fossil fuels that damage the
indoor and outdoor natural environments. Uzair et al. [25] used data from 1971 to 2014 to
examine the connections between economic growth, fossil fuel use, population density, and
carbon emissions in India, Pakistan, and Bangladesh. The findings support the U-inverted
EKC theory, which states that rising economic prosperity is inversely related to increasing
carbon emissions. Carbon emissions are positively correlated with the use of fossil fuels.
Further, a higher population density is associated with higher levels of carbon dioxide
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release. Similarly, a positive and strong long-term link exists between FDI, total exports,
and carbon emissions. There is also a short-term causal relationship between economic
development and population density, and CO2 and population density. According to the
findings, carbon emissions may be lowered, and environmental sustainability preserved, by
adopting efficient technologies and producing low levels of carbon dioxide. It was reported
by Rehman et al. [26] that between 1975 and 2019, they found a correlation between
Pakistan’s GDP per capita, nuclear energy source, power output, and carbon emissions.
The empirical research reveals that using RE sources, energy from fossil fuels, and carbon
emissions all have a positive, substantial, and long-term relationship with one another.
In addition, using fossil fuels for energy increases CO2 emissions over time. In addition,
a rising economy is positively correlated with more carbon output. In order to meet the
country’s energy needs and reduce carbon emissions, the study recommended that the
economy adopt practical, progressive policies aimed at the energy and power sectors. The
effects of fossil fuels, GDP per capita, economic complexity, foreign direct investment, RE
usage, and environmental quality on the Spanish economy were studied by Adebayo [27]
for the years 1970 to 2017. The research found a negative correlation between RE and
carbon output over the short and medium term. Furthermore, there is a positive association
between fossil fuels and environmental quality in the short to medium term. Furthermore,
FDI is inversely related to ecological health. The economy also has a short-, medium-,
and long-term impact on environmental quality. Improving environmental assessment
instruments to lessen the impact of fossil fuels and locating new instruments to design
environmentally friendly RE are needed for sustainable development. Jiang et al. [28] used
data from 1995 to 2018 to examine the correlation between fossil fuels, GDP per capita,
financial development, urbanization, REC, natural resource use, and carbon emissions
in 57 countries along the Belt and Road. The data shows that using RE sources reduces
carbon emissions. Moreover, comprehensive natural resources and fossil fuel use positively
correlate with carbon emissions. In addition, urbanization tends to increase exports of fuel,
which in turn increases carbon emissions. In order to reduce environmental pollution, the
study recommends that the governments of these countries have joint conversations about
the challenges of rapid urbanization, build the necessary institutions, and reduce their
reliance on fossil fuels. Dumoret al. [29] studied the relationship between GDP per capita,
fossil energy use, trade, human development, FDI, REC, and carbon emissions in EAC
nations between 1970 and 2016. According to the findings, long-term carbon emissions
arestrongly related to fossil energy, commerce, human development, and economic growth.
Furthermore, the use of fossil fuels, GDP expansion, and carbon emissions are all negatively
correlated, and FDI tends to decrease carbon emissions. The study recommended increasing
investments in energy-efficient technologies and expanding access to RE sources that do
less damage to the environment.

Li and Haneklaus [30] looked at the Chinese economy from 1990 to 2020 to see how
several factors, including GDP growth, fossil fuel use, RE adoption, and urbanization,
affected the country’s carbon emissions. The findings of this analysis support the U-inverted
EKC hypothesis that there is a positive relationship between carbon emissions and economic
expansion over the medium- to long-term. Furthermore, RE and carbon output have a
negative, short-term connection. Carbon emissions are inversely proportional to the use of
fossil fuels. In addition, rising GDP tends to go hand in hand with increased CO2 emissions.
As a result of the study’s findings, it was suggested that RE be encouraged as part of the
energy mix to cut down on carbon emissions in the near term, which is associated with the
sector’s explosive growth and the introduction of new, cutting-edge technologies. Using
data from 1990 to 2013, Hanif et al. [31] examined the connection between 15 emerging
Asian nations’ fossil fuel use, FDI, economic development, and carbon emissions. The
findings of this research provide more evidence of the positive correlation between regional
fossil fuel usage and carbon emissions. Furthermore, the positive correlation between
FDI and domestic carbon emissions supports the pollution haven theory. Evidence for
the EKC theory is also seen in the positive correlation between economic development
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and carbon emissions in these emerging nations. According to the findings, improving
environmental sustainability in a growing region requires less reliance on fossil fuels and
the promotion of environmentally friendly new technologies. Mensah et al. [32] used data
from 1990 to 2015 to study the correlation between GDP per capita, fossil fuels energy use,
oil prices, and carbon emissions in 22 African nations. The empirical analysis indicates a
long- and short-term panel causal relationship between fossil fuel energy use and economic
development, and between fossil fuel energy consumption and carbon emissions. There is
also bidirectional causation to the pricing of nonoil exports and a long-term unidirectional
causality from economic expansion to carbon emissions. Furthermore, long- and short-
term causal relationships exist between oil prices and economic growth, energy use, and
carbon emissions, across all panel nations. Using data from 1960 to 2011, Gokmenoglu
and Sadeghieh [33] studied the connection between Turkey’s fossil fuel usage, GDP per
capita, and carbon emissions. According to the findings, there is a positive short-to-long-
term elastic connection between fossil fuel use and carbon output. Furthermore, there
is a significant negative relationship between economic expansion and carbon emissions
over the long-term. In addition, the combined effects of rising prosperity, fossil fuel use,
and improved banking infrastructure result in a 16.97% annual rate of change in the long-
term equilibrium level of carbon emissions. The research was submitted covering and
regulating the probable environmental impacts of economic indicators and charting a
course to low carbon intensity on a tight budget. Using data from 1990 to 2014, Hanif [2]
found a correlation between GDP per capita, urbanization, energy consumption from fossil
fuels, and carbon emissions in 12 East Asian and Pacific nations. According to the data, the
consumption of fossil fuels is correlated negatively with carbon emissions. Furthermore,
urbanization is associated with increased CO2 emissions. In addition, a rising economy is
positively correlated with more carbon output. In addition, the EKC hypothesis is true in
the area even though there is a U-shaped inversion of the link between carbon emissions
and economic development. In order to meet expanding energy demands and broaden
the stimulus of governmental policies in lowering carbon emissions, the research suggests
promoting RE sources. Bandyopadhyay and Rej [34] analyzed the inverse link between
nuclear energy fuels and carbon emissions. Kartal [35] looked at the function of energy
fossil fuels usage and found that it raises carbon emissions. The current study’s third
research hypothesis is based on the above literature review:

H3: To reduce carbon emissions, increasing the use of fossil fuels is hypothesized to have adverse
environmental effects.

2.3. Literature on Industrial Waste Management, Chemical Use, and Carbon Emissions

Reducing the number of chemicals used in production and making better use of in-
dustrial waste will assist in lessening the global impact of carbon emissions. Adding it
to the waste recycling process, synthesizing green instruments, and cleaner fuels would
significantly benefit the interior and outdoor environment. Ali et al. [36] looked at 2008–
2020 data on GDP per capita, combustible energy waste use, and carbon emissions in
Balkan countries to arrive at that conclusion. The findings of the research indicate a strong
positive correlation between the use of combustible energy waste and economic expansion.
Combustible energy waste has also been shown to have a counterproductive impact on
greenhouse gas production. Carbon emissions are linked to rising economic activity and
the rising use of waste fuels that may be burned. The study suggested prioritizing economic
development above unanticipated increases in CO2 emissions from various industries by
using energy generation from basic biowaste and paying greater attention to defining cli-
mate and RE policy objectives. By analyzing data from 1980 to 2011, Jebli and Belloumi [37]
found a correlation between the real GDP per capita, combustible renewables and waste
consumption, sea and rail mobility, and carbon emissions in countries in Tunisia. Long-term
carbon emissions are positively correlated with the use of combustible renewables and
refuse, according to the results of an empirical investigation. Additionally, both marine
and rail transportation contribute to CO2 emissions. There is also a negative relationship
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between economic expansion and carbon emissions over the long term. Similarly, real GDP,
combustible renewables, refuse consumption, and rail transport all lead to CO2 emissions
in a unidirectional fashion. In contrast, marine and rail travel leads to carbon emissions in
both directions in the short term. For the sake of maintaining a high degree of sustainability,
the research suggests that carbon emissions be lowered by increased use of renewable
and waste energy sources and their novel frameworks and technologies. Studying 80
industrialized and emerging nations, Solarin et al. [38] looked at how changes in biomass
energy use affected GDP, fossil fuel use, hydropower generation, urbanization, population
growth, FDI flows, and carbon emissions. According to the findings, using both biomass
and fossil fuels increases carbon emissions. In addition, urbanization, economic expansion,
and population increase are all positively correlated with carbon emissions. Furthermore,
hydroelectricity, foreign direct investment, and trade openness negatively correlate with
CO2 carbon emissions. There is also evidence that the EKC and the Kyoto Protocol work
to reduce carbon emissions. The research concluded that to reduce carbon emissions and
maintain a high degree of sustainability, replacing fossil fuels with other renewable energy
sources rather than biomass energy would be preferable.

Utilizing data from 1971 to 2013, Sun et al. [39] investigated the effects of combustible
renewables, power generation, trade openness, GDP per capita, urban population, and
REC on carbon emissions in Ghana. The data shows a negative correlation between using
RE sources, combustible renewables, using electricity generated from fossil fuels, and emit-
ting carbon dioxide. In addition, using fossil fuels increases carbon dioxide output. The
rise in urbanization and industrialization has been linked to increased carbon emissions.
Additionally, Granger causality does exist in the long run between all study variables.
From 1990 to 2011, Larsen et al. [40] reported that the economy of Tunisia was studied
for its effects on real GDP per capita, health index, combustible renewables and refuse
consumption, rail travel, and carbon emissions. Real production, combustible renewables,
and refuse consumption were all shown to have a positive and statistically significant
link with health indices over the long term. Moreover, a negative correlation between
health indices and rail transportation’s carbon emissions may be seen. Moreover, real GDP
is causally related to health indices, but only in the short term and in a unidirectional
fashion. Combustible renewables and refuse consumption negatively correlate with health
indicators unidirectionally. RE investment projects are valuable ideas for contributing
to growth and carbon emissions reduction connected to combustible refuse, as well as
reducing energy dependency on other energy supply sectors. In a study spanning the
years 2001 to2015, Feng et al. [41] found a correlation between carbon efficiency and 55 dif-
ferent nations’ service trade, exports, and imports. The empirical research demonstrates
a favorable and statistically significant link between service trade and carbon efficiency.
Carbon efficiency in many nations and sectors positively correlates with export and import
services. Promotional links have also been shown between the monetary crisis and shifts
in national leadership on carbon efficiency. The relationship between RE expansion and
increased carbon emissions is also unidirectional. The research suggested that promoting
carbon efficiency and expanding worldwide free carbon emissions trade in service might
help the environment in the long run. From 1980 to 2013, Sun et al. [42] studied 30 nations
to determine how openness in the service trade affected energy efficiency, developing
service industries, and carbon emissions. According to the findings, an increase in the
free flow of services is associated with a lower carbon emissions rate. In addition, the
growing importance of the service economy has been linked to an increase in greenhouse
gas production. There is a positive correlation between the use of conventional services
and the release of greenhouse gases. The gap between industrialized and developing
countries regarding energy and carbon emissions efficiency is also subject to a catch-up
effect. Low-carbon globalization in less-developed nations should drive energy and carbon
emissions efficiency improvements for global prosperity. There was a correlation between
GDP per capita, trade in services, and carbon emissions in 47 African nations, as reported
by Ibrahim et al. [43]. A positive correlation between the scale effect and carbon emissions
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was found in the empirical research. In addition, there is N-shaped evidence between
GDP per capita and CO2 emissions and a negative relationship between the technological
impact and emissions. To add fuel to the fire, there is a positive and statistically significant
correlation between commerce and carbon output in support of the legitimacy of the pollu-
tion haven theory. Trade also hurts energy intensity and greenhouse gas emissions. This
research suggests that green investment may mitigate the negative environmental impact
of economic expansion and the service trade. Using data from 2000 to 2014, Longe et al. [44]
found a correlation between national income per person, usage of RE, exports and imports,
and environmental deterioration across 21 nations. The empirical research reveals that RE
sources are linked to environmental damage. Environmental deterioration is positively
correlated with trade and transportation services, and another negative correlation exists
between imports and environmental damage. The research recommended enhancing the
technology to satisfy the region’s sustainability aim better while also ameliorating the
mixed impact of commerce and transit services on the environment.

The following are the hypotheses of the research based on the above literature review:

H4: Growing energy and refuse that may be burned are anticipated to raise environmental and
carbon emissions issues.

H5: Chemical value-added utilized in production is expected to rise, posing environmental risks, and

H6: The natural environmental damage in a nation is expected to rise in proportion to the per
capita GDP.

The study model built on the proposed hypotheses differs from prior studies in several
ways. First, the study uses a combination of renewable energy and the combustion of
fossil fuels in its carbon mitigation models. This combination has not been fully employed
before. Climate change is exacerbated by human activities, which raise the atmospheric
concentration of carbon and, in turn, the global average temperature. The use of fossil fuels
for the generation of energy and propulsion accounts for a disproportionate share of global
CO2 emissions [45–47]. This is because it provides a fossil fuels framework for reorienting
environmentally damaging high-carbon production activities toward those more in line
with the goals of the Paris Climate Agreement on climate change. A climate-neutral shift
can only be maintained with widespread belief and consensus. Capital inflows must be
redirected, and regulators can help make that happen. However, they can be in a precari-
ous position, straddling the line between sky-high hopes and the realities of their limited
resources and public policy [48–50]. The reason for this is that it presents a framework for
fossil fuels. Second, the research goes beyond its initial focus on environmental technical
elements by integrating RE technology as a moderating element that promotes environ-
mental quality in green energy and R&D investment. This increases the research scope
and allows it to grow beyond its original focus on environmental technical aspects. The
worldwide community must undertake extraordinary adjustments to the human intellect,
economy, and means of transportation to reach the aim of keeping the surface temperature
rise below 2 ◦C in the climate change Paris Agreement. It requires fostering innovation
to use as-yet-untapped resources such as wind and ocean power [51–53]. Investment in
research and development within the energy sector to build RE technologies that will serve
as the industry standard to guarantee the highest possible degree of sustainability with
the fewest possible adverse effects on the environment is required [54–56]. This is the
idea behind the plan. In conclusion, the use of chemicals, the expansion of the economy,
and the accumulation of industrial waste all contribute to the pollution problem in India;
nevertheless, the effects of this problem on the economy of the country have only been
somewhat investigated in earlier research [57,58]. In the framework of the Indian economy,
the research was initiated to choose the critical components to establish long-term policies
for conserving the natural environment both inside and outside the country.
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3. Materials and Methods
3.1. Theoretical Framework

Before beginning work on the econometric model, we first construct the conceptual
framework of environmental theories and models used in this research to aid with the
model variables.

3.1.1. Values on the Frondel and Schmidt Index

Frondel and Schmidt [59] established this index to illustrate the hazards associated
with a country’s fuels, fossil and biofuel production, renewable power, and total energy
supply. The model considers the interconnectedness of exporting oil supplies and other
fossil fuels and energy sources. Indexes xij and xid are used to determine the relative
contributions of nation j, the exporter, and country ‘i’, the supplier of energy resources.
Estimating the potential danger to a country’s fuel supply is achieved as follows:

TRxi = xid 2 rd + ∑ xij 2 j = 1rj (1)

where, rj is the risk factor, and rd is the domestic supply of energy resources.

3.1.2. Energy Security Price Index (ESPI)

Lefevre’s [60] ESPI calculates the potential and risk associated with each country’s
portion of the global energy export market in terms of fossil fuel energy. The fuel-specific
indicators are multiplied by the country’s total primary energy supply in this model, i.e.,

ESPI = ∑(E f TPES f )ESMCpol − f withESMCpol − f = ∑(rcwc f 2c) (2)

where; EfTPESf is the share of total fuel in the total primary energy supply, rc is the potential
risk of energy and fuel demand, wcf is the share of the export country, and c is the net
energy potential of the country.

Jansen et al. [61] suggested that this index explains the four indications of long-term
energy security:

• Extra components of long-term energy security,
• Long-term political stability,
• Diversification of energy sources and imports concerning imported energy sources, and
• Import volatility

Indicators with values greater than one indicate a diverse and balanced fuel supply.

I I = ∑(ciIpiLnpi)i (3)

where II is the energy supply security indicator, pi is the share of primary energy source i in
total primary energy supply, i = 1 . . . , n is the primary energy source index, and ciI is the
correction factor to pi for indicator II.

3.1.3. Model of Human Interaction with the Environment

Stem [62] created a model of how people engage with their surroundings. There are
different ways in which human actions affect the natural world that is accounted for by
this model. One such source is the environment, which provides essential materials such as
minerals, energy, food, fibers, and water for commercial activity. Continual manufacturing
uses natural resources and wears out environmental ones, and using natural resources and
generating pollution and refuse are byproducts of industrial production. The disorganized
environmental system provides life support to counteract the degrading effects of human
activities and lower environmental pollution levels. Finally, the deterioration of the envi-
ronment negatively influences human wellbeing due to the adverse effects of increased
pollution and water scarcity on human health and economic prosperity.
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3.1.4. Technology Acceptance Model (TAM)

Davis [63] created the Technology Acceptance Model (TAM) to describe the attitudes
of technology users: why some people embrace new tools, while others reject them outright,
and what can be done to improve the usability and effectiveness of technological products.
Achieving sustainable and green investment decision objectives, improving logistical
performance, exporting capabilities, technological progress, resource inputs, and boosting
competitiveness are all made possible by the renewable energy TAM extension. Research
and development are bolstered, and a more positive outlook on green and innovative
systems is fostered, thanks to the growing need for sustainable energy.

3.2. Data Source and Econometric Modeling

The study employed the time series data from 1995Q1 to 2020Q4 collected from World
Development Indicators [64]. The study used carbon (CO2) emissions in metric tonnes per
capita as the dependent variable, and the independent variables are given below:

• Chemical use
• Renewable energy consumption
• Fossil fuel energy consumption
• Square of fossil fuel energy consumption
• Combustible renewable and waste
• Renewable energy technology, and
• Real GDP.

Table 1 shows the list of variables for ready reference.

Table 1. List of Variables and Measurement.

Variables Symbol Measurement/Units

Carbon emissions CO2 Metric tonnes per capita

Chemical used CHM % of value added in manufacturing

Renewable energy consumption REC % of total final energy consumption

Fossil fuel energy consumption FFC % of total energy consumption

Square of fossil fuel energy consumption SQFFC % of total energy consumption

Combustible renewable and waste CRW % of total energy

Renewable energy technology RET
Research and development expenditure
(Patent applications, residents) ×
Renewable energy consumption

Real GDP RGDP Constant 2015 US$
Source: WDI [64].

Econometric Modeling

The ADF unit root test and the AR(1) model are used to evaluate the stationary time
series of the relevant variables, allowing for the identification of one of three possible
results. First, the series is stationary at the level; next, it is stationary at the difference, and
finally, it is not stationary at the second difference. The ADF equation is shown for quick
reference in Equation (4), which reads as follows:

∆CO2t + α + βTIME + ϑCO2t−1 + σ1CO2t−1 + . . . + σδ−1∆CO2t−δ−1 + et (4)

∆CHMt + α + βTIME + ϑCHMt−1 + σ1CHMt−1 + . . . + σδ−1∆CHMt−δ−1 + et

∆ RECt + α + βTIME + ϑRECt−1 + σ1RECt−1 + . . . + σδ−1∆RECt−δ−1 + et

∆FFCt + α + βTIME + ϑFFCt−1 + σ1FFCt−1 + . . . + σδ−1∆FFCt−δ−1 + et

∆SQFFCt + α + βTIME + ϑSQFFCt−1 + σ1SQFFCt−1 + . . . + σδ−1∆SQFFCt−δ−1 + et

∆CRWt + α + βTIME + ϑCRWt−1 + σ1CRWt−1 + . . . + σδ−1∆CRWt−δ−1 + et
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∆RETt + α + βTIME + ϑRETt−1 + σ1RETt−1 + . . . + σδ−1∆RETt−δ−1 + et

∆GDPPCt + α + βTIME + ϑGDPPCt−1 + σ1GDPPCt−1 + . . . + σδ−1∆RGDPt−δ−1 + et

where α is an intercept, β is the time-varying coefficient, and σ represents the lagged AR
process. AIC lagged criterion is employed for selectingthe suitable lag length for variables
estimation.

Pesaran and Shin [65], Pesaran et al. [66], and Pesaran et al. [67] proposed a technique
known as Autoregressive Distributed Lag (ARDL), which is adopted in the current research.
If the underlying independent variables are [I(0); I(1)] or mutually co-integrated in direction,
then the ARDL approach may be used to identify both the short- and long-term connection
between the variables in a more unified fashion than other methods. The ARDL description
in the short term, shown by Equation (5), is as follows:

In(CO2) = α0+
p
∑

i=0
γ∆In(CO2)t−1 +

p
∑

i=0
γ∆In(CHM)t−1 +

q
∑

i=0
γIn(REC)t−1 +

r
∑

i=0
γIn(FFC)t−1

+
S
∑

i=o
γIn(SQFFC)t−1 +

u
∑

i=0
γIn(CRW)t−1 +

v
∑

i=0
γIn(RET)t−1 +

n
∑

i=0
γIn(RGDP)t−1

+∅1 In(CHM)t +∅2 In(REC)t +∅3 In(FFC)t . +∅4 In(SQFFC)t +∅5 In(CRW)t
+∅6 In(RET)t +∅7 In(RGDP)t + εt

(5)

where p shows optimal lag length. The Wald F-statistics are employed to explore the null
and alternative hypotheses, i.e.,

H0; δ1 = δ2 = δ3 = δ4 = δ5 = δ6 = δ7

H0; δ1 6= δ2 6= δ3 6= δ4 6= δ5 6= δ6 6= δ7

An error correction factor has been introduced to Equation (6) to ensure that the model
converges to equilibrium under all possible long-term parameter combinations, i.e.,

In(CO2) = α0+
p
∑

i=0
γ∆In(CO2)t−1 +

p
∑

i=0
γ∆In(CHM)t−1 +

q
∑

i=0
γIn(REC)t−1 +

r
∑

i=0
γIn(FFC)t−1

+
S
∑

i=o
γIn(SQFFC)t−1 +

u
∑

i=0
γIn(CRW)t−1 +

v
∑

i=0
γIn(RET)t−1 +

n
∑

i=0
γIn(RGDP)t−1

+∅1 In(CHM)t +∅2 In(REC) +∅3 In(FFC)t . +∅4 In(SQFFC)t +∅5 In(CRW)t +∅6 In(RET)t

+∅7 In(RGDP)t + ωECTt−1 + εt

(6)

where ECTt−1 is the error correction term, and ω isthe model’s adjustment parameter.
Following the estimation of findings, the VAR Granger causality test was conducted,

yielding four distinct outcomes, one of which would be true in the variables connected, i.e.,

(i) Unidirectional Causality: CO2 Granger causes CHM, REC, FFC, CRW, RET, and RGDP,
but this causality does not become true in the opposite direction.

(ii) Reverse Causality: CHM, REC, FFC, CRW, RET, and RGDP connect to CO2 but not
vice versa.

(iii) Bidirectional Causality: The studied variables have two-way associations.
(iv) Neutrality: No cause-effect association has been recognized in the given analysis.
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

ln(CO2)t
ln(CHM)t
ln(REC)t
ln(FFC)t

ln(SQFFC)t
ln(CRW)t
ln(RET)t
ln(RGDP)t


=



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8


∑

p
i=1



σ11tσ12tσ13tσ14tσ15t
σ21tσ22tσ23tσ24tσ25t
σ31tσ32tσ33tσ34tσ35t
σ41tσ42tσ43tσ44tσ45t
σ51tσ52tσ53tσ54tσ55t
σ61tσ62tσ63tσ64tσ65t
σ71tσ72tσ73tσ74tσ75t
σ81tσ82tσ83tσ84tσ85t


+ ×



ln(CO2)t−1
ln(CHM)t−1
ln(REC)t−1
ln(FFC)t−1

ln(SQFFC)t−1
ln(CRW)t−1
ln(RET)t−1
ln(RGDP)t−1


+ ∑dmax

j=p+1



θ11jθ12jθ13jθ14jθ15j
θ21jθ22jθ23jθ24jθ25j
θ31jθ32jθ33jθ34jθ35j
θ41jθ42jθ43jθ44jθ45j
θ51jθ52jθ53jθ54jθ55j
θ61jθ62jθ63jθ64jθ65j
θ71jθ72jθ73jθ74jθ75j
θ81jθ82jθ83jθ84jθ85j


×



ln(CO2)j−1
ln(CHM)j−1
ln(REC)j−1
ln(FFC)j−1

ln(SQFFC)j−1
ln(CRW)j−1
ln(RET)j−1
ln(RGDP)j−1


+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8



(7)

For Granger causality, the VAR framework is used, i.e., Equation (8) shows Granger
causality for a multivariate system, i.e.,

CO2t

= ct +
2
∑
i=t

β1CO2i=1 +
2
∑

i=1
β2CHMi=1 +

2
∑

i=1
β3RECi=1 +

2
∑

i=1
β4FFCi=1 + QSqFFCi=1 +

2
∑

i=1
β6CRWi=1

+
2
∑
i=t

β7RETi=1

+
2
∑
i=t

β87FCFPCEPT, eI (0), purelya (2021)2021) ; WangandZhu (2020). 2020) ; AnwarandEl f aki (2021) mentRGDPi=1 + ε

(8)

CHMt = c1 +
2
∑

i=1
β1CHMi=1 +

2
∑
i=t

β2CO2i=1 +
2
∑

i=1
β3RECi=1 +

2
∑

i=1
β4FFCi=1 +

2
∑

i=1
β5SQFFCi=1

+
2
∑

i=1
β6CRWi=1 +

2
∑
i=t

β7RETi=1 +
2
∑
i=t

β87FCFPRGDPi=1 + ε

RECt = c1 +
2
∑

i=1
β1RECi=1 +

2
∑

i=1
β2CO2i=1 +

2
∑

i=1
β3CHMi=1 +

2
∑

i=1
β4FFCi=1 +

2
∑

i=1
β5SQFFCi=1

+
2
∑

i=1
β6CRWi=1 +

2
∑
i=t

β7RETi=1 +
2
∑
i=t

β87FCFPGDPPCi=1 + ε

FFCt = c1 +
2
∑

i=1
β1FFCi=1 +

2
∑
i=t

β2CO2i=1 +
2
∑

i=1
β3CHMi=1 +

2
∑

i=1
β4RECi=1 +

2
∑

i=1
β5SQFFCi=1

+
2
∑

i=1
β6CRWi=1 +

2
∑
i=t

β7RETi=1 +
2
∑
i=t

β87FCFPRGDPi=1 + ε

SQFFCt = c1 +
2
∑

i=1
β1SQFFCi=1 +

2
∑
i=t

β2CO2i=1 +
2
∑

i=1
β3CHMi=1 +

2
∑

i=1
β4RECi=1 +

2
∑

i=1
β5FFCi=1

+
2
∑

i=1
β6CRWi=1 +

2
∑
i=t

β7RETi=1 +
2
∑
i=t

β87FCFPRGDPi=1 + ε

CRWt = c1 +
2
∑

i=1
β1CRWi=1 +

2
∑
i=t

β2CO2i=1 +
2
∑

i=1
β3CHMi=1 +

2
∑

i=1
β4RECi=1 +

2
∑

i=1
β5FFCi=1

+
2
∑

i=1
β6SQFFCi=1 +

2
∑
i=t

β7RETi=1 +
2
∑
i=t

β87FCFPRGDPi=1 + ε
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RETt = c1 +
2
∑

i=1
β1RETi=1 +

2
∑
i=t

β2CO2i=1 +
2
∑

i=1
β3CHMi=1 +

2
∑

i=1
β4RECi=1 +

2
∑

i=1
β5FFCi=1

+
2
∑

i=1
β6SQFFCi=1 +

2
∑
i=t

β7CRWi=1 +
2
∑
i=t

β87FCFPRGDPi=1 + ε

RGDPt = c1 +
2
∑

i=1
β1RGDPi=1 +

2
∑
i=t

β2CO2i=1 +
2
∑

i=1
β3CHMi=1 +

2
∑

i=1
β4RECi=1 +

2
∑

i=1
β5FFCi=1

+
2
∑

i=1
β6SQFFCi=1 +

2
∑
i=t

β7CRWi=1 +
2
∑
i=t

β87FCFPRETi=1 + ε

Finally, the data set was subjected to a variance decomposition analysis in order to
project future estimations. This lead to the VDA version of Equation (9), which is:

Var(σ(CO2, CVM = Var (E[σ
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 

CHM)] + E[VAR(σ

Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 28 
 

 

𝑅𝐸𝑇௧ =  𝑐ଵ + ෍ 𝛽ଵ𝑅𝐸𝑇௜ୀଵଶ
௜ୀଵ + ෍ 𝛽ଶଶ

௜ୀ௧ 𝐶𝑂2௜ୀଵ + ෍ 𝛽ଷଶ
௜ୀଵ 𝐶𝐻𝑀௜ୀଵ + ෍ 𝛽ସ𝑅𝐸𝐶௜ୀଵ +ଶ

௜ୀଵ ෍ 𝛽ହଶ
௜ୀଵ 𝐹𝐹𝐶௜ୀଵ

+ ෍ 𝛽଺ଶ
௜ୀଵ 𝑆𝑄𝐹𝐹𝐶௜ୀଵ + ෍ 𝛽଻ଶ

௜ୀ௧ 𝐶𝑅𝑊௜ୀଵ  + ෍ 𝛽଼ଶ
௜ୀ௧ 𝑅𝐺𝐷𝑃௜ୀଵ + 𝜀 

𝑅𝐺𝐷𝑃௧ =  𝑐ଵ + ෍ 𝛽ଵ𝑅𝐺𝐷𝑃௜ୀଵଶ
௜ୀଵ + ෍ 𝛽ଶଶ

௜ୀ௧ 𝐶𝑂2௜ୀଵ + ෍ 𝛽ଷଶ
௜ୀଵ 𝐶𝐻𝑀௜ୀଵ + ෍ 𝛽ସ𝑅𝐸𝐶௜ୀଵ +ଶ

௜ୀଵ ෍ 𝛽ହଶ
௜ୀଵ 𝐹𝐹𝐶௜ୀଵ

+ ෍ 𝛽଺ଶ
௜ୀଵ 𝑆𝑄𝐹𝐹𝐶௜ୀଵ + ෍ 𝛽଻ଶ

௜ୀ௧ 𝐶𝑅𝑊௜ୀଵ  + ෍ 𝛽଼ଶ
௜ୀ௧ 𝑅𝐸𝑇௜ୀଵ + 𝜀 

Finally, the data set was subjected to a variance decomposition analysis in order to 
project future estimations. This lead to the VDA version of Equation (9), which is: 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐶𝑉𝑀 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐶𝐻𝑀)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐶𝐻𝑀)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐶𝐻𝑀)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐶𝐻𝑀)ሿ (9)𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐸𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐸𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐸𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐸𝐶)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐸𝐶)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐹𝐹𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐹𝐹𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐹𝐹𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐹𝐹𝐶)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐹𝐹𝐶)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑆𝑄𝐹𝐹𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑆𝑄𝐹𝐹𝐶)ሿ 

𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐶𝑅𝑊 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐶𝑅𝑊)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐶𝑅𝑊)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐶𝑅𝑊)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐶𝑅𝑊)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐸𝑇 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐸𝑇)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐸𝑇)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐸𝑇)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐸𝑇)ሿ 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐺𝐷𝑃 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐺𝐷𝑃)ሿ 
4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 

CHM)]→ Var(E[σ
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
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Finally, the data set was subjected to a variance decomposition analysis in order to 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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Finally, the data set was subjected to a variance decomposition analysis in order to 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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Finally, the data set was subjected to a variance decomposition analysis in order to 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
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a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
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Finally, the data set was subjected to a variance decomposition analysis in order to 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 

CRW)] ≤ Var(σE[CO2, CRW)],
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 
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Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
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Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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Finally, the data set was subjected to a variance decomposition analysis in order to 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 

RET)] ≤ Var(σE[CO2, RET)]
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Finally, the data set was subjected to a variance decomposition analysis in order to 
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4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 
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Finally, the data set was subjected to a variance decomposition analysis in order to 
project future estimations. This lead to the VDA version of Equation (9), which is: 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐶𝑉𝑀 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐶𝐻𝑀)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐶𝐻𝑀)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐶𝐻𝑀)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐶𝐻𝑀)ሿ (9)𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐸𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐸𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐸𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐸𝐶)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐸𝐶)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐹𝐹𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐹𝐹𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐹𝐹𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐹𝐹𝐶)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐹𝐹𝐶)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑆𝑄𝐹𝐹𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑆𝑄𝐹𝐹𝐶)ሿ 

𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐶𝑅𝑊 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐶𝑅𝑊)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐶𝑅𝑊)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐶𝑅𝑊)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐶𝑅𝑊)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐸𝑇 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐸𝑇)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐸𝑇)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐸𝑇)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐸𝑇)ሿ 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐺𝐷𝑃 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐺𝐷𝑃)ሿ 
4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 

RGDP)]→ Var(E[σ

Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 28 
 

 

𝑅𝐸𝑇௧ =  𝑐ଵ + ෍ 𝛽ଵ𝑅𝐸𝑇௜ୀଵଶ
௜ୀଵ + ෍ 𝛽ଶଶ

௜ୀ௧ 𝐶𝑂2௜ୀଵ + ෍ 𝛽ଷଶ
௜ୀଵ 𝐶𝐻𝑀௜ୀଵ + ෍ 𝛽ସ𝑅𝐸𝐶௜ୀଵ +ଶ

௜ୀଵ ෍ 𝛽ହଶ
௜ୀଵ 𝐹𝐹𝐶௜ୀଵ

+ ෍ 𝛽଺ଶ
௜ୀଵ 𝑆𝑄𝐹𝐹𝐶௜ୀଵ + ෍ 𝛽଻ଶ

௜ୀ௧ 𝐶𝑅𝑊௜ୀଵ  + ෍ 𝛽଼ଶ
௜ୀ௧ 𝑅𝐺𝐷𝑃௜ୀଵ + 𝜀 

𝑅𝐺𝐷𝑃௧ =  𝑐ଵ + ෍ 𝛽ଵ𝑅𝐺𝐷𝑃௜ୀଵଶ
௜ୀଵ + ෍ 𝛽ଶଶ

௜ୀ௧ 𝐶𝑂2௜ୀଵ + ෍ 𝛽ଷଶ
௜ୀଵ 𝐶𝐻𝑀௜ୀଵ + ෍ 𝛽ସ𝑅𝐸𝐶௜ୀଵ +ଶ

௜ୀଵ ෍ 𝛽ହଶ
௜ୀଵ 𝐹𝐹𝐶௜ୀଵ

+ ෍ 𝛽଺ଶ
௜ୀଵ 𝑆𝑄𝐹𝐹𝐶௜ୀଵ + ෍ 𝛽଻ଶ

௜ୀ௧ 𝐶𝑅𝑊௜ୀଵ  + ෍ 𝛽଼ଶ
௜ୀ௧ 𝑅𝐸𝑇௜ୀଵ + 𝜀 

Finally, the data set was subjected to a variance decomposition analysis in order to 
project future estimations. This lead to the VDA version of Equation (9), which is: 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐶𝑉𝑀 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐶𝐻𝑀)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐶𝐻𝑀)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐶𝐻𝑀)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐶𝐻𝑀)ሿ (9)𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐸𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐸𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐸𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐸𝐶)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐸𝐶)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐹𝐹𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐹𝐹𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐹𝐹𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐹𝐹𝐶)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐹𝐹𝐶)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑆𝑄𝐹𝐹𝐶 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑆𝑄𝐹𝐹𝐶)ሿ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑆𝑄𝐹𝐹𝐶)ሿ 

𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝐶𝑅𝑊 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝐶𝑅𝑊)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝐶𝑅𝑊)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝐶𝑅𝑊)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝐶𝑅𝑊)ሿ, 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐸𝑇 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐸𝑇)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐸𝑇)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐸𝑇)ሿ ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐸𝑇)ሿ 𝑉𝑎𝑟(𝜎(𝐶𝑂2, 𝑅𝐺𝐷𝑃 = 𝑉𝑎𝑟 (𝐸ሾ𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ  + 𝐸ሾ𝑉𝐴𝑅(𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ → 𝑉𝑎𝑟(𝐸ሾ𝜎 ⫠ 𝑅𝐺𝐷𝑃)ሿ≤ 𝑉𝑎𝑟(𝜎𝐸ሾ𝐶𝑂2, 𝑅𝐺𝐷𝑃)ሿ 
4. Results 

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions, 
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean 
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and 
a positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value 
of the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value 
is 17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of 
REC is 32.410%, associated with a mean value of 41.277%, a standard deviation value of 
7.663%, a low positive skewness, and a medium kurtosis. 

Table 2. Descriptive Statistics. 

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP 
Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256151.9 1.36 × 1012 

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238249.4 1.23 × 1012 
Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640620.2 2.69 × 1012 
Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83070.65 5.54 × 1011 
Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157096.6 6.58 × 1011 
Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602 
Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158 

RGDP)]
≤ Var(σE[CO2, RGDP)]

4. Results

Table 2 provides descriptive statistics of the variables. In terms of carbon emissions,
the range is from 0.765 metric tonnes per capita up to 1.812 metric tonnes, with a mean
and standard deviation of 1.236 metric tonnes and 0.374 metric tonnes, respectively, and a
positive skewness and a low-tailed kurtosis distribution. In addition, the lowest value of
the chemical utilized is 13.617%, while the maximum value is 23.700%. The mean value is
17.947%, and the standard deviation is 2.4593%. In addition, the minimum value of REC is
32.410%, associated with a mean value of 41.277%, a standard deviation value of 7.663%, a
low positive skewness, and a medium kurtosis.

Table 2. Descriptive Statistics.

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP

Mean 1.236 17.947 41.277 68.727 4743.743 53.266 256,151.9 1.36 × 1012

Median 1.158 18.042 40.450 70.074 4911.552 52.248 238,249.4 1.23 × 1012

Maximum 1.812 23.700 54.484 73.576 5413.572 57.663 640,620.2 2.69 × 1012

Minimum 0.765 13.617 32.410 60.825 3699.700 49.735 83,070.65 5.54 × 1011

Std. Dev. 0.374 2.459 7.663 4.596 625.987 2.497 157,096.6 6.58 × 1011

Skewness 0.273 0.488 0.362 −0.290 −0.249 0.509 0.738571 0.602

Kurtosis 1.507 2.931 1.703 1.499 1.456596 1.792685 2.644313 2.158

Note: CO2: carbon emissions, CHM: chemical use, REC: renewable energy, FFC: fossil fuel consumption, SQFFC:
square of FFC, CRW: combustible renewable waste, RET: renewable energy technology, and RGDP: real GDP.

Trend analysis of the variables in natural log form is shown in Figure 1 for ready reference.
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Figure 1. Trend analysis of the variables. Source: authors’ calculation. The blue line shows the 
variable’s observations. 

In addition, the negative skewness and low platy kurtosis distribution values of 
mean FFC and Square FFC are 68.727% and 4743.743%, respectively. The range of values 
for CRW, RET, and RGDP is from 49.735% to 57.663%, with a standard deviation of 
2.497%, a mean value of 256151.9%, and a standard deviation of 6.58 × 1011%, respectively. 
The correlation matrix of the research is shown in Table 3. Chemical consumption is 
negatively correlated with carbon emissions, suggesting that a country’s per-capita 
chemical use might be used as a proxy for its overall commitment to reducing carbon 
emissions. 

Table 3. Correlation Matrix. 
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REC −0.984 0.388 1 
FFC 0.971 −0.476 −0.985 1 

SQFFC 0.970 −0.477 −0.985 0.999 1 

Figure 1. Trend analysis of the variables. Source: authors’ calculation. The blue line shows the
variable’s observations.

In addition, the negative skewness and low platy kurtosis distribution values of mean
FFC and Square FFC are 68.727% and 4743.743%, respectively. The range of values for CRW,
RET, and RGDP is from 49.735% to 57.663%, with a standard deviation of 2.497%, a mean
value of 256151.9%, and a standard deviation of 6.58 × 1011%, respectively. The correlation
matrix of the research is shown in Table 3. Chemical consumption is negatively correlated
with carbon emissions, suggesting that a country’s per-capita chemical use might be used
as a proxy for its overall commitment to reducing carbon emissions.

Table 3. Correlation Matrix.

Variables CO2 CHM REC FFC SQFFC CRW RET RGDP

CO2 1

CHM −0.333 1

REC −0.984 0.388 1

FFC 0.971 −0.476 −0.985 1

SQFFC 0.970 −0.477 −0.985 0.999 1

CRW −0.906 0.546 0.944 −0.958 −0.959 1

RET 0.970 −0.363 −0.945 0.947 0.947 −0.890 1

RGDP 0.988 −0.314 −0.978 0.964 0.964 −0.908 0.977 1

Note: CO2: carbon emissions, CHM: chemical use, REC: renewable energy, FFC: fossil fuel consumption, SQFFC:
square of FFC, CRW: combustible renewable waste, RET: renewable energy technology, and RGDP: real GDP.
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Additionally, a negative correlation between REC and carbon emissions suggests
that the latter decreases as the former increases. Consistent with the findings of prior
research by Nakhil et al. [68], Sheraz et al. [69], and Adebayo et al. [70]. The research
concluded that to slow the rate of environmental deterioration; more attention should
be paid to public education on environmental concerns and the promotion of renewable
energy sources. Further, energy security, clean and greener energy, clean production, and
environmental sustainability should be prioritized in the development of environmental
regulations, and this would help achieve the desired carbon neutrality. Furthermore, a
favorable association between FFC and its square term and carbon emissions indicated that
both sources contribute to a country’s total carbon output. The study results are related
to those of earlier research by Uzair et al. [25] and Tan et al. [71]. Recent research has
linked rising GDP to higher carbon emissions, suggesting that technological advancement
is necessary to counteract the size and composite impact. In addition, promoting energy
efficiency and the effective use of natural resources may help mitigate climate change’s
adverse environmental effects.

Additionally, it has been shown via analysis of the relationship between CRW and
carbon emissions that the value of CRW decreases carbon emissions in an economy, in
common with previous research by Ali et al. [72] and Ben Jebil and Ben Youssef [73]. Based
on these findings, it is advised that new RE sources be investigated and that existing
technological innovations in the green and clean energy industry be implemented. In
addition, governments and businesses should be held to the same standards for developing
and disseminating green technology, particularly in energy production. Additionally, a
positive association between GDP per capita and carbon emissions demonstrated that as a
country’s standard of living rises, so does its carbon footprint. The findings of this research
are consistent with those of previous investigations by Leitao and Lorente [74] and Aydogan
and Vardar [75]. According to the findings, if we want to solve environmental and economic
growth problems, we need to advance the ICTs in industrial production and employ a
massive investment in economic growth and carbon-led reduction efforts. Moreover, the
effort of high-tech FDI should be increased to affirm stronger environmental sustainability
and to use it as an essential tool to reach the goal of sustainable economic development.

Table 4 reports the testing results for the ADF’s unit root. According to the ADF unit
root test findings, CO2 and RET are I(0) variables (stationary at the level). However, I(1)
variables (CHM, REC, FFC, SQFFC, CRW, and RGDP) are stationary. The ARDL-Bounds
testing model, which did well under a mixed order of integration, was validated by the
discovery of a mixed order of integration I(0) and I(1)] between the research variables.

Table 4. ADF Unit Root Estimates.

Variables
Level First Difference Decision

Constant Constant and Trend Constant Constant and Trend

CO2 −0.397(0.895) −4.556(0.008) −3.978(0.005) −3.875(0.029) I(0)

CHM −1.860(0.344) −1.244(0.877) −6.129(0.000) −6.117(0.000) I(1)

REC −1.390(0.570) −0.584(0.971) −2.578(0.111) −4.547(0.007) I(1)

FFC −2.134(0.233) −0.157(0.990) −4.377(0.002) −4.988(0.002) I(1)

SQFFC −2.189(0.214) −0.157(0.990) −4.378(0.002) −5.023(0.002) I(1)

CRW −1.670(0.433) −1.132(0.902) −5.281(0.000) −5.642(0.000) I(1)

RET 0.640(0.988) −3.413(0.073) −3.654(0.012) −3.659(0.045) I(0)

RGDP 0.071(0.956) −2.821(0.203) −4.255(0.003) −4.168(0.016) I(1)

Note: CO2: carbon emissions, CHM: chemical use, REC: renewable energy, FFC: fossil fuel consumption, SQFFC:
square of FFC, CRW: combustible renewable waste, RET: renewable energy technology, and RGDP: real GDP.
Small brackets: probability values.
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Table 5 shows the results of the ARDL–Bound test model using five alternative lag
length selection criteria: AIC, SIC, HQ, FPE, and LR. The shortest lag time among the
available lag times is the one we should choose for our model, as determined by the
Average Root-Mean-Square Error (ARDL) lag length selection criteria. Our study’s optimal
lag duration was determined using the AIC value, which reported the smallest number
compared to the other lag selection criteria.

Table 5. Lag Length Selection Criteria.

Lag LogL LR FPE AIC SC HQ

1 471.199 NA 3.74 × 10−26 −38.683 −38.339 −38.592

2 657.306 248.142 4.91 × 10−31 −50.108 −47.360 −49.379

3 763.092 79.339 * 1.63 × 10−32 * −54.841 * −49.687 * −53.473 *
Source: Authors’ calculation. * indicates appropriate lag length.

Table 6 displays the ARDL-Bound testing short-term and long-term estimates. The
findings indicate a positive and statistically significant link between CHM and carbon
output over the medium to long term. Increasing CHM use is associated with a rise in a
country’s carbon emissions, as shown by the positive sign of the coefficient and the statis-
tical significance of the resulting link. The findings are consistent with those of previous
research by Zhao et al. [76], Wei et al. [77], Costa and Ribeiro [78], and Zheng et al. [79].
Based on the findings, it is recommended that regulations be put in place to ensure the
long-term health of our planet’s natural resources while encouraging innovative economic
practices that entirely use these assets while reducing their consumption. Further, by
decreasing the distance between factories, and altering the spatial pattern of factories,
carbon emissions reduction can be made more sensitive to the likely pattern of future
industrialization. Increasing incentives to develop a green and clean environment through
higher and optimal use of resources is needed for sustained growth.

Similarly, there is a positive link between REC and carbon emissions in the short and
long term, which aligns with the findings of Khochiani and Nademi [80], Usman et al. [81],
Nguyen and Kakinaka [82], Jebli & Belloumi et al. [37], and Nawaz et al. [83]. Studies
found that reducing reliance on fossil fuels and non-renewable sources may be achieved
without jeopardizing economic growth if appropriate policies are designed and structured.
The Paris Agreement aims to reduce greenhouse gas emissions and bolster the Sustainable
Development Goals (SDGs). Thus, it is essential to spotlight technological advancements
and innovative ideas in the renewable energy sector.

Additionally, RET has a substantial and negative correlation with CO2 emissions in the
short and long term, suggesting that increasing a country’s investment in green technology
enhances environmental quality. Previous research by Shao et al. [84], Chien et al. [85],
Shan et al. [86], and Khan et al. [87] are in line with the stated results. The earlier re-
search discovered a correlation between REC and GHG emissions. They proposed that
more strategic energy usage might mitigate these emissions’ consequences and spur the
development of cutting-edge tools to boost renewable power’s productivity. Moreover,
the efficiency of clean energy in a nation is enabled by the implementation of inexpensive
renewable energy pricing and the ease of access to new renewable technology in the public
and private sectors.

The linear association between FFC and carbon emissions and the negative relation-
ship between the square of FFC and carbon emissions are statistically significant in the
short and long term. This supports the inverted U-shaped EKC theory for a given na-
tion. The findings are consistent with prior research by Rani et al. [88], Ali et al. [89],
Isik et al. [90], and Raza et al. [91]. In order to effectively reduce the impact of high fossil
fuel reliance and carbon emissions, these studies advocated for the innovation and provi-
sion of technology to high carbon-producing sectors and the building sector. In addition, a
green energy economic framework should be created and carbon reduction objectives estab-
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lished for individual industries. Moreover, carbon-leading technology used in fossil fuels
should be modernized, and the industrial structure should be organized to accommodate
carbon-neutral production methods. Further, a government may boost its environmental
policies for the long-term by reducing carbon emissions and developing a comprehensive
program for bolstering environmental sustainability via green technology innovation and
renewable energy.

Table 6. ARDL Short- and Long-Term Estimates.

Dependent Variable: CO2

Selected Model: ARDL

Variables Coefficient Std. Error t-Statistic Prob.

CO2(−1) * −0.632 0.106 −5.931 0.004

CHM(−1) 0.103 0.062 1.665 0.171

REC(−1) 3.449 0.677 5.094 0.007

FFC(−1) 34.601 6.961 4.970 0.007

SQFFC(−1) −119.468 24.491 −4.877 0.008

CRW(−1) −2.759 0.4595 −6.004 0.003

RET(−1) −0.165 0.042 −3.904 0.017

RGDP(−1) 1.044 0.224 4.644 0.009

D(CHM) 0.184 0.035 5.156 0.006

D(CHM(−1)) 0.082 0.035 2.326 0.080

D(REC) 2.305 0.404 5.700 0.004

D(FFC) 119.158 45.414 2.623 0.058

D(FFC(−1)) 95.343 38.885 2.451 0.070

D(SQFFC) −501.466 192.860 −2.600 0.060

D(SQFFC(−1)) −408.469 165.050 −2.474 0.068

D(CRW) −0.627 0.215 −2.914 0.043

D(RET) −0.212 0.043 −4.917 0.007

D(RET(−1)) −0.049 0.012 −3.840 0.018

D(RGDP) 0.923 0.196 4.706 0.009

D(RGDP(−1)) 1.284 0.275 4.660 0.009

Long run Coefficient estimates

CHM 0.164 0.104 1.575 0.190

REC 5.451 0.822 6.626 0.002

FFC 54.685 6.723 8.133 0.001

SQFFC −188.814 24.042 −7.853 0.001

CRW −4.361 0.824 −5.289 0.006

RET −0.261 0.056 −4.652 0.009

RGDP 1.651 0.271 6.086 0.003
Note: * shows variable converge to equilibrium. CO2: carbon emissions, CHM: chemical use, REC: renewable
energy, FFC: fossil fuel consumption, SQFFC: square of FFC, CRW: combustible renewable waste, RET: renewable
energy technology, and RGDP: real GDP.

CRW and carbon emissions have a negative and substantial link, both in the short
and long term, suggesting that industrial waste management aids in lowering carbon
emissions. Previous research by Anser et al. [92] and Sasmoko et al. [93] are referenced in
this article. According to these findings, environmental policy should prioritize a green
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and inclusive ecological economy, swiftly implementing guiding principles and actions
that lead to low-carbon energy. This method, which employs sustainable knowledge and
chemical reactions to create ecological resources and a sustainable economy, also eliminates
the sources of carbon emissions from the waste formation while recycling combustible
refuse into clean and green energy.

Furthermore, long-term and short-term carbon emissions are positively and signifi-
cantly related to GDP per capita. Adams [94], Raihan [95], Do [96], and Ali [97] confirmed
the findings with the studied results). Based on the results of these analyses, it is feasible to
decrease public and private sector demand for fossil fuels if technical progress is imple-
mented to meet the expanding demand for renewable energy and bring down the cost of
renewable energy. Table 7 shows the ARDL-Bounds estimate for ready reference.

Table 7. ARDL-Bounds Estimates.

Test Statistic Value k

F-statistic 10.084 7

Critical Value Bounds

Significance I(0) Bound I(1) Bound

10% 1.70 2.83

5% 1.97 3.18

2.5% 2.22 3.49

1% 2.54 3.91
Source: Authors’ Calculation.

The F-statistic value of 10.040 in the ARDL bound testing estimate, which is more than
the upper limit critical value, indicates that a long-term connection does exist between the
research variables. There is no evidence of heteroskedasticity in the model, according to the
findings of the Breusch–Pagan–Godfrey Heteroskedasticity test and the other diagnostic
tests included in Table 8. According to the Ramsey RESET test findings, the model is likely
to remain stable for a considerable amount of time. The results of the Jarque–Bera normality
test confirmed that the model is normally distributed when the significance threshold is set
at 5% or above.

Table 8. Diagnostic Tests Estimates.

Heteroskedasticity Test: Breusch-Pagan-Godfrey 0.550

F-statistic 0.730 Prob. F(20, 3) 0.717
Accept HoObs × R-squared 16.178 Prob. Chi-Square(20) 0.511

Scaled explained SS 0.550 Prob. Chi-Square(20) 1.000

Ramsey RESET Test

Value d.f Prob.
Accept HoF-statistic 2.248 3 0.110

Likelihood ratio 5.053 (1, 3) 0.110

Jarque-Bera normality test
Accept HoJarque-Bera value 0.862

Prob. 0.649

Source: Authors’ Calculation.

Figure 2 shows the results of the CUSUM and CUSUM square tests that found that the
model is stable at a 5% significance level.
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Figure 2. CUSUM and CUSUM Square Test Estimates. Source: Authors’ calculation. Red line shows
critical level, blue line shows target value, and black horizontal line shows the sigma value.

Figure 3 shows the stability of the recursive coefficients estimates for ready reference.
The Granger causality test demonstrates the causation between the variables in Table 9
after the examination of diagnostic tests. There is a bidirectional causality between CHM
and CO2 emissions. Furthermore, a unidirectional causality exists between FFC, SQFFC,
REC, CHM, and RGDP, and CO2 emissions in a country. The results are consistent with
the previous studies of Saidi and Omri [98], Yousaf et al. [99], Otim et al. [100], and
Baz et al. [101]. Research deepens and broadens our knowledge of FFC and its relevance to
long-term growth and recommends using clean technology, equipment, and energy sources
to reduce carbon emissions. Countries should boost renewable energy generation while
simultaneously eliminating subsidies to ensure environmental sustainability in the long
run. As an additional step, we should speed up clean energy technology development,
push for greater energy efficiency, and create robust institutions and human capacity to
deal with environmental concerns. Moreover, there is unidirectional causation connecting
CHM to REC, CHM to FFC, FFC to REC, SQFFC to RET, CRW to SQFFC, and RGDP to
CRW. Finally, VDA estimates are presented in Table 10.
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Table 9. Granger Causality Estimates.

Null Hypothesis F-Statistics p-Value Decision

CHM↔CO2
7.716 0.003

Bidirectional causality
3.142 0.006

REC→CO2 2.147 0.144 Neutral

FFC→CO2 25.570 4 × 10−6 Unidirectional causality

SQFFC→CO2 25.575 4 × 10−6 Unidirectional causality

CRW→CO2 6.891 0.005 Unidirectional causality

RGDP→CO2 0.557 0.581 Neutral

CHM→REC 3.791 0.041 Unidirectional causality
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Table 9. Cont.

Null Hypothesis F-Statistics p-Value Decision

CHM→FFC 6.551 0.006 Unidirectional causality

SQFFC→CHM 0.976 0.394 Neutral

CRW→CHM 0.336 0.718 Neutral

FFC→REC 15.163 0.000 Unidirectional causality

SQFFC→RET 15.805 9 × 10−5 Unidirectional causality

SQFFC↔FFC
2.978 0.075

Bidirectional causality
2.942 0.077

CRW→FFC 11.572 0.000 Unidirectional causality

CRW→SQFFC 11.169 0.000 Unidirectional causality

RGDP→SQFFC 1.113 0.349 Neutral

RGDP→CRW 0.418 0.663 Neutral
Note: CO2: carbon emissions, CHM: chemical use, REC: renewable energy, FFC: fossil fuel consumption, SQFFC:
square of FFC, CRW: combustible renewable waste, RET: renewable energy technology, and RGDP: real GDP.
↔ isbidirectional,→ isunidirectional.

Table 10. VDA Estimates.

Years S.E. CO2 CHM REC FFC SQFFC CRW RET RGDP

2022 0.016 100 0 0 0 0 0 0 0

2023 0.025 78.198 7.208 4.291 8.438 0.379 1.281 0.201 1.58 × 10−10

2024 0.029 60.875 24.057 3.542 6.652 2.743 1.919 0.209 2.24 × 10−10

2025 0.037 38.191 46.689 4.871 7.093 1.702 1.177 0.272 1.69 × 10−10

2026 0.044 29.588 52.556 5.538 5.128 1.974 4.643 0.570 2.96 × 10−10

2027 0.051 28.005 55.509 4.091 4.585 1.848 5.281 0.677 2.95 × 10−10

2028 0.059 32.738 52.797 3.509 3.536 1.448 5.271 0.697 2.68 × 10−10

2029 0.065 36.920 49.335 3.342 2.896 1.279 5.548 0.677 2.55 × 10−10

2030 0.071 38.982 48.417 2.848 2.595 1.234 5.272 0.649 2.34 × 10−10

2031 0.077 41.874 46.360 2.556 2.316 1.107 5.157 0.628 2.21 × 10−10

Note: CO2 shows carbon emissions, CHM shows chemical use, REC shows renewable energy, FFC shows fossil
fuel consumption, SQFFC shows the square of FFC, CRW shows combustible renewable waste, RET shows
renewable energy technology, and RGDP shows real GDP.

With a variance of 46.360%, the findings indicated that CHM would likely have the
greatest effect on carbon emissions, followed by CRW, REC, and FFC. Many factors will
affect carbon emissions during the next decade, although RGDP will be the least affected.

5. Conclusions

The impact of chemicals, green energy consumption, consumption of fossil fuels
consumption, industrial waste, energy technologies, and GDP per capita on India’s carbon
emissions are analyzed in this research spanning 1995Q1 to 2020Q4. A positive and
statistically significant correlation between chemical use and CO2 output was found in
the investigation. Carbon emissions are positively correlated with the use of renewable
energy sources. As with fossil fuels, using renewable energy sources increases pollution
levels. Furthermore, the inverted U-shaped EKC theory is supported by the positive and
substantial association between fossil fuel energy consumption and carbon emissions and
the negative and significant relationship between square fossil fuel and carbon emissions
in a nation. Furthermore, there is a positive and substantial association between GDP per
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capita and carbon emissions. In contrast, there is a negative and significant link between
combustible renewable and waste and carbon emissions. Additionally, the relationship
between chemical use and carbon emissions is not one-way but rather two-way. There is a
clear correlation between fossil fuels, renewable energy, chemicals, GDP per capita, and the
release of greenhouse gases. The research bolsters and broadens our knowledge of fossil
fuel energy consumption and its relevance to sustainable development. It recommends
using clean technology, equipment, and energy sources to decrease carbon emissions.

The following initiatives are proposed to clean up the Indian economy and protect the
environment from carbon pollution:

- Establishment of a carbon emissions reduction framework to maintain environmental
sustainability agenda:

• In order to achieve the long-term objectives outlined in the Paris Agreement and
the Sustainable Production Goals (SDGs), progress must be made in the area of
renewable energy development, and this topic has been given special attention.

• Raise public consciousness about the need to reduce reliance on fossil fuels
and increase the use of renewable energy sources for the sake of protecting the
environment and ensuring the planet’s long-term existence, and

• Create a flexible and adaptable program to help reduce carbon emissions and
improve environmental conditions.

- Establishment of a renewable energy system and improve energy transition:

• Make it possible for the public and commercial sectors to have ready access to
cutting-edge renewable energy technologies at competitive rates, maximizing
clean energy’s efficacy.

• Long-term environmental sustainability necessitates both an increase in the gener-
ation of renewable energy and a gradual reduction in government subsidies, and

• Increasing environmental resilience via renewable power and cutting-edge eco-tech.

- Establishment of a technology innovation structure to curb the effect of fossil fuels
carbon emissions as possible:

• Expanding and comprehending the complexity of the technologies with the clean
energy mix to achieve climatic and environmental objectives.

• Reducing reliance on fossil fuels and other non-renewable sources may be
achieved by well-planned and implemented policies.

• Two ways that may aid people are benefiting the environment and lowering a country’s
reliance on fossil fuels, i.e., solar panel installation and green electricity, and

• Carbon emissions from fossil fuels may be mitigated by increasing the use and
production of renewable energy sources, including solar, hydroelectric, and
wind power.

Incentives should be provided so businesses can quickly embrace alternative energy
sources. This may be done by providing communities with funds to install renewable
power-producing appliances, tariff credits for communities that increase their proportion
of electricity consumption, or both. Additionally, increased public funding for energy
R&D is needed to support eco-friendly innovations. A significant reduction in the price
of clean energy sources is possible with creative thinking in this area. CO2 emissions
are decreased by the positive stimulation of scientific advances but are increased by the
negative shock. Thus, spending more on science and technology via tech advancements
will aid in introducing more ecologically and power-efficient tools and methodologies, thus
reducing CO2 emissions. More funding for digitalization necessitates the implementation
of appropriate governmental measures.
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