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Abstract: Understanding correctly the factors influencing the urban thermal environment is a prereq-
uisite and basis for formulating heat-island-effect mitigation policies and studying urban ecological
issues. The rapid urbanization process has led to the gradual replacement of natural landscapes
by products of socioeconomic activities, and although previous studies have shown that natural
conditions and socioeconomic intensity can significantly influence land surface temperature (LST),
few studies have explored the combined effects of both on LST, especially at a fine scale. Therefore,
this study investigated the relationship between natural conditions/socioeconomic and summer
daytime LST based on big data and a random forest (RF) algorithm using the city of Jinan as the study
area. The results showed that the spatial pattern of LST, natural condition characteristics of the city,
and socioeconomic characteristics are consistent in spatial pattern and have significant correlation.
In the RF model, the fitted R2 of the regression model considering two influencing factors reaches
0.86, which is significantly higher than that of the regression model considering only one influencing
factor. In the optimal regression model, topographic factors in natural conditions and socioeconomic
factors in buildings and roads are very important factors influencing the urban thermal environment.
Based on the results, strategies and measures for developing and managing measures related to the
thermal environment are discussed in depth. The results can be used as a reference for mitigating
urban heat islands in the study area or other cities with similar characteristics.

Keywords: land surface temperature; random forest; geographic big data

1. Introduction

The urban heat island effect is a phenomenon in which the temperature of a city’s
downtown area is significantly higher than that of its suburbs [1]. With accelerated urban-
ization and continuous expansion, the urban heat environment issue is receiving increasing
attention [2]. In recent decades, global warming has become a major threat to the sus-
tainable development of human society, and relevant assessment reports indicate that
global temperature will increase by 0.2–0.5 ◦C per decade within this century [3]. In this
context, urban thermal environment monitoring has become a research hotspot in ecology,
atmospheric science, and other disciplines [4]. Information quantifying the driving forces
of temperature change within cities is critical to improving the urban thermal environ-
ment [5] in mid- and low-latitude regions, where significantly high temperatures can have
significant adverse effects on urban ecosystems and public health [6,7]. Therefore, accurate
analysis of the spatial pattern of the urban thermal environment and its influencing factors
becomes critical to address this issue, and the results can provide insights to urban planners
and designers [8], such as how to mitigate surface UHI (SUHI) effects during the summer
daytime through sound landscape design and urban management.
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The traditional method of monitoring the urban thermal environment relies on ground-
based monitoring stations [9], but due to the specificity of the monitoring stations, it is
practically impossible to provide values over large areas. With the continuous maturation
of Earth observation technology and the rapid development of thermal infrared remote
sensing, LST is gradually becoming a key parameter in physical processes on land surfaces
from a local to a global scale [10,11]. The importance of LST is increasingly recognized, and
it is used in a wide range of applications. Different satellite sensors, such as MODIS and
Landsat, are widely used for LST retrieval. However, there are still some limitations in
using LST inversion results from thermal sensors, such as the trade-off between spatial and
temporal resolution of the images [12], where too high a spatial resolution often implies
a long revisit period of the images, which makes it a topic of interest for future research.
However, in general, inversion of LST employing remote sensing has become a widely used
method, and provides the best data source for studying the urban thermal environment on
a large scale [13].

With the application of remote sensing technology, many studies have focused on
the analysis of the influencing factors of urban LST [14], and there is sufficient evidence
that the urban thermal environment is an urban climate phenomenon that is influenced
not only by overall climate change but also by the internal factors of the city itself, which
is a collaborative effect of internal and external factors [15,16]. In general, the factors
influencing the urban thermal environment include human activities in the urbanization
process and the natural surface conditions themselves [17]. Specifically, human production
and living activities generate a large amount of anthropogenic heat release, such as indus-
trial production activities, motor vehicle exhaust emissions, and winter heating in cities,
which will emit heat into the near-Earth layer of cities and have a significant impact on the
urban LST [18,19]. Numerous researchers have achieved a series of results in analyzing the
thermal effects of human activities, such as Giorgio et al., who confirmed the prevalence of
the urban heat island phenomenon in industrialized areas by analyzing the thermal envi-
ronment of industrial areas [20]. Some researchers have explored the driving mechanism
of socioeconomic factors in the urban thermal environment and revealed the mechanism
of human activities in the urban thermal environment [21,22]. Others have studied the
synergistic relationship between human activities and the urban heat island effect and
reached consistent conclusions that high-intensity human activities can deteriorate the
urban thermal environment [23]. At the same time, there is evidence that city size and
urban heat islands tend to show a positive correlation [24], which reflects that changes in
natural conditions due to urbanization are also one of the main factors in the deterioration
of the urban thermal environment [25]. For example, some researchers have analyzed the
correlation between LST and topographic elements [26], and Chun, Bumseok et al. [27]
confirmed through statistical analysis of building morphology and the urban thermal
environment that high-density buildings exacerbate the heat island effect, and some studies
have confirmed that hard impermeable surfaces, such as pavements, change the urban
subsurface structure and consequent changes in urban morphology and development
intensity of various types of land in cities. Both qualitative and quantitative analyses show
that changes in natural conditions/socioeconomic characteristics respond to the heat island
effect, which poses new requirements for an integrated analysis of the effects of both on
the thermal environment. However, accurate quantification of both characteristics requires
high data requirements, especially the identification of socioeconomic characteristics, which
demands data at finer scales and enriched with more attributes.

In recent years, with the widespread use of online electronic maps, POIs (points of
interest), online data open platforms, and other software, new data support for geographic
research has been provided [28,29], generating a large amount of multisource geographic
data with location information, which contain rich information on urban characteristics,
such as the location and time of urban elements [30]. Compared with remote sensing
images, multisource geographic data have the characteristics of high presentability, fast
dissemination, and low acquisition cost, which can provide new reference information
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for various fields of urban research (such as feature measurement, classification, change
detection, etc.) and provide a new data source for relevant research in the field of geogra-
phy [31]. The processing and application of multisource geographic data have gradually
received wide attention in recent years, and many researchers have already tried to apply
multisource geographic data to urban research, such as applying it to perceive the spa-
tial differentiation of cities [31], detection of urban hotspot areas [32], research of urban
spatial structure [33], land use classification [34], etc., which fully proves that multisource
geographic data can portray social, economic, humanistic and other nonnatural elements.

Based on the above background, there is a lack of reported research on natural con-
ditions/socioeconomic indicators and quantitative models of the thermal environment,
mainly because of the complex potential nonlinear relationships between LST and indicator
components [35], which makes it a serious technical challenge to accurately assess the
urban thermal environment situation. Therefore, this study introduces multisource data to
comprehensively assess the impact of natural conditions/socioeconomic indicators on the
urban thermal environment, using the central urban area of Jinan as the study area. Specifi-
cally, this study proposes an analytical framework of natural conditions/socioeconomic
measures and their thermal environment impacts based on multisource geographic data,
further refines the measurement criteria of natural-unnatural characteristics of the city,
analyzes the spatial pattern characteristics of LST, and finally explores the impact of the
indicators on the urban thermal environment by implementing a nonlinear regression
through an RF model. The results provide decision support for urban planners and man-
agers and provide a basis for subsequent research on the influence mechanism of the urban
thermal environment.

The rest of the study is organized as follows. Section 2 explains the methodology
used in the research framework, how the LST was retrieved and set to calculate the natural
conditions/socioeconomic impact factors, and how the RF-based regression analysis model
was constructed. Section 3 presents the experimental data and the analysis results. Section 4
discusses in detail the thermal environmental management measures and methods that
can be explored for application given the results of this study, as well as the limitations
of this study and possible directions for future improvement. Section 5 summarizes the
conclusions of this study.

2. Methodology

The analysis process of this study consists of three main parts, as shown in Figure 1.
The first part is the simulation of the urban thermal environment, which is characterized
by using Landsat 8 image retrieval LST, where the images were acquired in summer
on 28 August 2020. T the second part is the setting and measurement of the natural
conditions/socioeconomic factors, which is based on the widely accepted neighborhood
scale of OSM road network division and the measurement of the impact factors within each
study unit. The third part is the construction of the RF-based impact factor assessment
model, the optimization of its parameters, and evaluation of the results.

2.1. Study Area and Data

Located in east China and the central-western part of Shandong Province, Jinan is
situated in the midlatitude zone, and due to the influence of solar radiation and geography,
it belongs to the warm temperate continental monsoon climate zone with warm and rainy
summers, making it one of the hottest cities in China in summer. Jinan has 10 municipal
districts and 2 counties under its jurisdiction. The study area for this study is the central
district of Jinan (Figure 1), with an area of 536 km2 and a population of approximately
5.6 million. The high density of buildings and population in the area has influenced and
shaped the hot climate and weather in the area, making it one of the cities with the most
severe heat island effect in China (Figure 2).
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Figure 2. Study area and basic data.

The research data used in this study are shown in Table 1. The remote sensing image
data, road network data, electronic map data, and POI data involved are all freely available
online, and the spatial extent of the data covers the entire study area. Among them,
225,407 POI points and 5488 road data were collected in the study area. The POI and road
network data were then preprocessed to remove duplicate points, sidewalks and invalid
data records, and 1206 study units were delineated using the OSM road network.

2.2. Retrieval of Land Surface Temperature

The radiative transfer equation method uses the thermal infrared band data from
satellites to achieve LST retrieval, and the calculation of the brightness value of the thermal
radiation received by the satellite sensors is the radiative transfer equation. This method
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retrieves the LST by estimating the atmospheric influence and deducting some of the errors.
Its specific equation is as follows [36,37].

Ts =
K2

ln
(

K1
B(Ts)

+ 1
)′ (1)

B(Ts) =

[
Lλ − L↑ − τ(1− ε)L↓

]
τε

(2)

where Ts is the true LST. In the Landsat-8 thermal infrared band, K1 = 774.885 W·m−2·sr−1·
µm−1 and K2 = 1321.079K. B(Ts) is the blackbody emissivity; ε is the surface specific
emissivity; τ is the atmospheric transmittance in the thermal infrared band; Lλ is the
image radiometric calibration; L↑ is the atmospheric upward radiometric intensity; L↓ is
the atmospheric downward radiometric intensity; and K1 and K2 are coefficients. On the
NASA website (https://atmcorr.gsfc.nasa.gov, accessed on 28 August 2020), the values of
τ, L↑, and L↓ are 0.61, 3.24, and 4.97, respectively.

Table 1. Data List.

Data Name Data Source Acquisition Time Data Type

Administrative Divisions National Basic Geographic
Database / Vector

Landsat8 image http://www.gscloud.cn/ 28 August 2020 Raster
Points of Interest Gaode Map September 2020 Vector
Land Cover Data FROM-GLC10 2020 Raster

DEM http://www.gscloud.cn/ 2020 Raster
Building Data Gaode Map 2020 Vector

Population data WorldPop 2020 Raster
Road Data OpenStreetMap 2020 Vector

Water System OpenStreetMap 2020 Vector
Green Space OpenStreetMap 2020 Vector

2.3. Assessment of Impact Factors Based on the RF Model
2.3.1. Measurement of Natural Conditions/Socioeconomic Factors

As the most dominant area where human activities alter the land surface, cities have
developed typical urban characteristics with high density, height and intensity, which
have a direct impact on urban climate. In this study, we chose two aspects, natural condi-
tions/socioeconomic, to comprehensively measure urban characteristics. Their detailed
factor descriptions and calculation formulae are shown in Table 2. Additionally, consider-
ing that the results of correlation analysis can show the positive and negative influencing
factors and reveal the scientific accuracy and feasibility of factor selection, this study deter-
mines the directionality and intensity of each influencing factor by calculating the Pearson
correlation between LST and different influencing factors.

Among them, the natural-conditions factor measures the native natural environment
characteristics of the city by calculating the factors of elevation, NDVI, and distance to green
space. Additionally, socioeconomic factors are mainly measured by building, road, and POI
data, which can best represent the development intensity of the city. Specifically, the height
and density of buildings and road density were calculated, and the primary classification of
POI data was standardized based on the urban land classification system and definitions in
the Urban Land Classification and Planning and Construction Land Standard issued by the
Ministry of Housing and Urban—Rural Development of the People’s Republic of China. On
the basis of existing research, they were divided into seven categories—commercial, residen-
tial, industrial, public service, transportation, green space, and science and education—to
measure their density to reflect the socioeconomic development intensity.

https://atmcorr.gsfc.nasa.gov
http://www.gscloud.cn/
http://www.gscloud.cn/
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Table 2. The urban factors metrics considered in this study.

Types Metrics Formula and Description

Natural-condition indicators

DEM /

Slope /

NDVI NDVI = ρNIR−ρMIR
ρNIR+ρMIR

Distance to green space (DGS) Proximity Analysis

Distance to water system (DWS) Proximity Analysis

Socioeconomic indicators

Average building height (BH) BH = ∑n
i=1 Hi

n

Building density (BD) BD = ∑n
i=1(Pi×Hi)

S

Road network density (RD) RD = ∑n
i=1 Roadsi

Area

Population (POP) WorldPop data

Road traffic POI density (RTPD) Zoning Statistics

Public Service POI Density (PSPD) Zoning Statistics

Residential POI Density (RPD) Zoning Statistics

Commercial POI Density (CPD) Zoning Statistics

Greenland Square POI Density (GPD) Zoning Statistics

Science and education POI density (SEPD)

Industrial POI Density (IPD) Zoning Statistics

2.3.2. Factor Assessment Based on the Random Forest Model

In urban studies, the RF algorithm has been validated as a suitable regression analysis
method [38], and is a highly flexible and comprehensive learning algorithm that trains
models by integrating the results of all randomly generated classification and regression
decision trees more accurately than traditional regression methods. In this study, natural
conditions/socioeconomic factors are used as independent variables, and LST is put into the
RF regression model as a dependent variable for the fitting operation, where approximately
two-thirds of the data are used to construct the RF regression model and the remaining third
is used for accuracy validation. Among them, the selection of parameters is determined
by the grid search method, and the range of parameter sets determines the time of grid
search calculation [39]; the larger the range is, the longer the calculation time. The study
determined the screening range of the number of decision trees (0–100) by the dichotomous
method, and the ranges of the maximum number of features and the maximum depth of
the tree were determined with reference to the sample conditions. Finally, a reasonable
and scientific regression fitting model for LST influencing factors is constructed by tenfold
cross-validation.

The modeling programming language of this study is Python version 3.6, and the core
algorithm comes from the open-source machine learning library scikit-learn. The accuracy
validation of the model uses R2 and mean square error (MSE) [40], which is the ratio of
the square root of the sum of the squared deviations of the observed and true values to
the number of observations, to measure the deviation of the observed values from the true
values and reflect the actual situation of the prediction error.

3. Results
3.1. Land Surface Temperature Retrieval and SUHI Area Identification Results

Figure 3 shows the spatial and temporal distribution of LST in Jinan. Spatially, there
is a synergistic phenomenon between the thermal environment and the spatial pattern of
natural conditions/socioeconomics in the study area. Smaller areas of speckled heat island
regions are also presented in addition to the urban center. The high-temperature areas are
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further enhanced, except for some squares, parks, and well-greened neighborhoods. Most
of them develop into high-temperature areas, including a large number of construction
sites, commercial areas, densely populated stations, and industrial enterprise areas as high-
temperature areas. The high-temperature areas cover almost the whole study area, and the
thermal environment is generally poor. From the LST results, the average LST is 28.55 ◦C.
The maximum value of LST is 42.29 ◦C, which is located in the inner city, and the minimum
value is 14.22 ◦C, which is located on the surface of the water body. The high values are
concentrated in the eastern part of the study area, mainly in the built-up areas. The spatial
pattern is mainly driven by the town cohesion axis, showing a “point-line surface” urban
thermal environment. The abnormally high-temperature zones within the city are mainly
concentrated in the urban center, industrial areas with high energy consumption, stations,
and bare land, and the strong heat island zones (most of the Lixia district, the northern part
of the city central district, the eastern part of the Huaiyin district and the southern part of
the Tianqiao district) are connected to the surrounding areas through the main urban roads.
Specifically, the low-temperature area is mainly distributed in the study area of scenic spots,
parks, large lakes, springs, rivers, mountains, and other vegetation and water bodies near
the densely distributed areas of the blocks, such as the Dragon Cave scenic area and the
Golden Valley Landscape Gallery scenic area in the south, the Thousand Buddha Mountain
scenic area, Huashan Lake Park, Jinan Zoo and Baotu in the north. High-temperature areas
are mainly distributed in the rapidly developing and building factory-intensive eastern
industrial areas.Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 16 
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3.2. Results of Natural Condition/Socioeconomic Indicator Measurements

In this study, Pearson correlation analysis was used to verify the relationship between
LST and natural conditions/socioeconomic factors, as shown in Figure 4 Most of the
influencing factors showed significant correlations (two-sided) with LST at the level of
0.001. Among them, the strongest correlation is NDVI (−0.61), and the lowest is SLOPE
(0.12). Specifically, natural factors such as DEM, NDVI, DGS, and DWS all show significant
negative correlations with LST, i.e., the higher the elevation, the lusher the vegetation, etc.,
the lower the LST. This indicates that this influencing factor can significantly mitigate the
urban heat island effect. The meteorological conditions provided by the areas with high
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DEM values and the shadows of the mountains reduce the LST; however, the natural surface
represented by green areas and water bodies can release heat through the evaporation of
water. In addition, the transpiration of vegetation foliage also effectively reduces the LST.
In contrast, the influencing factors represented by buildings (BH, BD), roads (RD), and POI
density have a positive relationship with LST. The higher the buildings and roads are, the
denser the population distribution, and the higher the LST. The impervious surface has a
significant enhancement effect on the LST, which is because various hard pavements are
mainly composed of cement, asphalt, concrete, etc. These materials have a strong ability to
absorb solar radiation, and at the same time, there are many buildings in the urban area,
the air circulation is complicated, and there is more artificial heat release, which makes it
difficult to dissipate heat and the LST is higher.
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The results of natural conditions/socioeconomic factor measurements are shown
in Figure 5. Overall, DEM, SLOPE, and NDVI show almost the same spatial trend and
generally show a distribution pattern of high in the south–low in the north, and their
high- and low-value areas have similarities, with high values mainly concentrated near
mountainous areas with less human activities, such as the southern mountainous areas,
and low-value areas mainly concentrated in some areas with dense buildings. Water bodies
DGS and DWS also show the same spatial consistency, with most of the high-value areas
located in the peripheral boundary areas of the study area and a wide range of low-value
areas within the urban center. The high-value areas are mainly concentrated in urban areas
with high human activities, industrial and mining land, urban road land, etc., and are
concentrated in blocks in the northern area, while they are scattered in other areas. The
spatial patterns of RD and POP are similar, which confirms that the distribution of roads, as
a necessary condition for urban travel, is often related to the distribution of the population.
The spatial distribution of GPD is the most fragmented, and the small regional centers are
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clustered. The most prominent, similar to the distribution of green parks in Jinan, have
the greatest spatial heterogeneity. IPD shows a combined structure of central gathering,
eastern main roads, and station gathering and a spatial trend of expanding radially along
the main roads to the east centered on the earlier developed industries around the central
part of the study area.
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3.3. Assessing the Impact of Indicators on Urban Heat Islands
3.3.1. Grid Search Method for Determining Hyperparameters

The tuning of RF model parameters is crucial to improve the recognition accuracy. To
establish a better RF regression model, this study uses the grid search method to tune the
parameters. The natural condition factor, socioeconomic factor and all factors are input
into the regression model, and the maximum number of features and the maximum depth
of the tree are set to 5 and 4, respectively, considering the sample size and the number of
features. On this basis, the number of decision trees greatly affects the fitting accuracy of the
regression model; therefore, the comparison results of the number of decision trees applying
the grid search method to tune the parameters are shown in Figure 6. To determine the best
recognition accuracy, the number of trees in the RF was set to 1–100 trees. Model accuracy
and MSE results were analyzed for each group of 100 control experiments. The average
accuracy of the natural condition factor regression model reached 0.42, the average MSE
was 0.18, and the highest recognition accuracy reached 0.49 when the number of trees was
47, and the value of MSE was 1.4; the average accuracy of the socioeconomic regression
model reached 0.54, and the highest recognition accuracy reached 0.56 when the number
of trees was 78, and the value of MSE was 1.32; inputting all factors into the regression
model, the average accuracy reached 0.82, and the highest identification accuracy reached
0.86 when the number of trees was 14, which is higher than the fitting accuracy of the
single-aspect factor regression model. Additionally, the value of MSE was only 0.8, which
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is the best model to meet the requirements. The high-intensity effect of natural condition
factors on the urban thermal environment was demonstrated.
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3.3.2. Assessing the Importance of Natural and Socioeconomic Factors

The RF model can quantitatively assess the magnitude of the influence of each influ-
encing factor on the spatial variation in LST in the study area. According to the results of
the contribution of each factor of the RF model (Figure 7), it was found that the importance
of different factors on LST was both synergistic and heterogeneous across models. Overall,
the natural conditions model (Model A) was dominated by BD, the socioeconomic model
(Model B) was dominated by DEM, and the natural conditions/socioeconomic model
(Model C) was dominated by BD. In Model A, the influencing factors on LST are, in de-
scending order, BDI, PD, RD, PSPD, BH, POP, RPD, CPD, SEPD, and GSPD; in Model B, the
influencing factors on LST are, in descending order, DEM, NDVI, SLOPE, DGS, and DWS;
in Model C, the influencing factors on LST are higher for BD, DEM, RTPD, NDVI, IPD,
SLOPE, and BH, and the rest of the factors are to a lesser extent for LST. Based on the results
of the above analysis, urban building land, land use, and vegetation are the dominant
factors leading to the spatial differentiation of LST in the study area. The influence of BD is
greater than 0.3 in both Models A and C, indicating that building is an important factor
leading to the spatial differentiation of LST. The influence of elevation and slope adds up to
more than 0.2 in Model C and even more than 0.45 in Model B, indicating that elevation
and slope are all types of POI densities that play a role in LST to a lesser extent, but the sum
of importance exceeds 0.5 overall, indicating that a single human socioeconomic activity
has a small influence on the spatial variation of LST in the study area but has a greater
global correlation with LST. Therefore, socioeconomic activities are important potential
influences on the urban thermal environment. As a whole, the spatial differentiation of
LST in the main urban area of Jinan is the result of the combined effect of natural condi-
tions and socioeconomics, with DEM and vegetation cover among natural factors having
larger contributions and building sites, roads, and POI among socioeconomics all having
larger contributions.
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4. Discussion
4.1. Implications for Urban Planning to Mitigate the Heat Island Effect

Previous analyses of the causes of urban heat island enhancement have been at-
tributed to industrialization development, population migration and atmospheric ef-
fects [41,42], but little attention has been given to the comprehensive analysis of natural
conditions/socioeconomic factors [43]. The intensity of the heat island effect is the result of
the interaction and mutual coupling of socioeconomic and natural conditions; therefore, in
this study, impact factor analysis is conducted based on big data to measure the natural
conditions and socioeconomic multiple characteristics, which can better reflect the driving
factors of the regional thermal environment. Urbanization has led to the conversion of large
areas of natural surfaces into artificial impervious surfaces [44], urban buildings and urban
water bodies have a direct impact on the urban microclimate, and building materials such
as masonry and concrete have a lower albedo than green spaces, reducing evaporation and
soil moisture [45]; thus, these factors are also important for the thermal environment of
hot cities and need to be explored in future studies. In the study of the factors influencing
urban heat islands, it was found that the central city of Jinan is high in the south and low
in the north, the northern and eastern areas are convenient for infrastructure construction
and industrial and urban land expansion, and land use is easily shifted from vegetation to
industrial land, thus promoting the deterioration of the urban thermal environment [46].
Second, various areas with high POI densities, represented by commercial and industrial
areas, have a certain contribution to urban heat islands. In the north of the study area,
spring lakes and green parks in the south of the Yellow River are widely distributed,
with high soil water content, located in the plains, with higher temperature and higher
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evapotranspiration; in the east of the study area, with convenient transportation, a large
number of population inflows in the central city, rapid industrial development, and high
aerosol emissions, increasing the inverse radiation of the atmosphere, especially in summer,
contribute more to the urban heat island [47]. Compared to the southern part of the study
area, the vegetation cover is higher compared to other areas, and the thermal environment
is in good condition [48].

Combining the abovementioned thermal environments in different regions, the contri-
butions of different influencing factors are analyzed to design effective thermal environment
optimization measures [49]. According to the natural conditions and socioeconomic devel-
opment characteristics of the cities in the study area, it is concluded that controlling the
scale and layout of buildings, controlling the scale of the urban population, increasing the
urban greening rate (especially road greening), and strengthening greening construction
in the heat island center area can effectively mitigate the urban heat island effect, which
can provide a reference for urban planning and construction [50]. (1) A reasonable urban
planning scheme should be established to encourage medium- and high-density land
development at the level of urban construction activities. The construction of urban roads
and some other heat source structures can be reduced to reduce the energy consumed
by public infrastructure after operation [51]; however, the transformation of arable land,
forests and water bodies around the eastern industrial agglomeration into construction
land should be reduced to curb the further deterioration of the heat island in the industrial
area; (2) According to the spatial distribution of LST in Hohhot city, it can be seen that
the areas with obvious urban heat island effects are also the areas where there are flows
of people is densely populated areas, such as the railway station and Quancheng Square.
The corresponding building density is higher in densely populated areas, which consumes
considerable energy and generates considerable artificial heat. Therefore, relevant policies
should be formulated to limit the quantity of the urban population and improve the quality
of the population, and sustainable urban planning should be carried out to control the scale
of the urban population and building density [52]. (3) Urban green space is an important
factor in regulating the urban ecological climate and coordinating climate change. Espe-
cially considering the mutual influence of RD as well as NDVI and other indicators, the
planning and design of urban road traffic systems should fully consider the ventilation of
the city, and green evaporation on both sides of the road can optimize the urban thermal
environment in summer. Smaller strips of green space can also connect multiple scattered
green spaces to form a unified ecological corridor. In practice, the vertical level of road
green space plants should be enriched, and the variety of trees and shrubs should be
increased [53].

4.2. Limitations and Future Avenues

Based on the results of this study, we can plan some urban natural–unnatural factors
within the index guidance to ensure a smaller building area ratio, higher vegetation cov-
erage, lower building density and appropriate point density of POI types with a better
cooling effect on LST. The results of this study help to deepen the understanding of the
relationship between natural urban conditions as well as socioeconomic characteristics
and the urban thermal environment and aim to provide practical suggestions on how to
improve the urban thermal environment through rational planning and management.

This study focuses on the impact of the thermal environment in Jinan city during
the daytime in summer, focusing on the time of maximum heat island intensity, but the
analysis is not comprehensive enough to explore the changes in months and seasons.
Another limitation of this study was that it was limited by the lack of dynamic data, the
application of spatial big data is greater, but the supplement of temporal big data is missing,
and the factor measurement standard needs to be improved. This limitation provides an
idea for future research to accurately examine the effects of time and data sources [54].



Atmosphere 2022, 13, 1942 13 of 15

5. Conclusions

Based on big data, this study analyzes the dominant influencing factors of the urban
thermal environment under the dual perspective of natural conditions/socioeconomic
factors by retrieving the LST of the central city area of Jinan and elucidates the relationship
between the urban thermal environment and natural-unnatural influencing elements.
On this basis, specific measures to mitigate the urban heat island effect are explored in
depth. The analytical ideas and results are transferable and instructive. The study found
the following.

(1) From the whole study area, the urban thermal environment was poor, the urban
high-value LST area was large and agglomerative, the abnormally high-temperature area is
mainly concentrated in the urban center, industrial areas with high energy consumption,
stations, and bare land, and the urban heat island mainly expands outward from the urban
center along the traffic route.

(2) All influencing factors were significantly correlated with LST, among which
the strongest correlation was NDVI (−0.61) and the lowest was SLOPE (0.12). DEM,
NDVI, DGS, and DWS were negatively correlated with LST, while all other factors are
positively correlated.

(3) The fitted R2 of single regression models were all below 0.5, and the fitted R2

reached 0.86 when natural conditions/socioeconomic factors were included in the regres-
sion models. All regression results show significant differences, with BD contributing
the most to the regional thermal environment, followed by DEM, NDVI, RTPD, etc. The
contribution of thermal effects of single POI types is small, but the combined contribution
exceeds 0.5.

(4) Building scale and layout, urban population scale, urban greening rate (especially
road greening), etc., are improvement directions that can effectively mitigate the urban heat
island effect.
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