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Abstract: Air quality issues still affect the quality of life for people in industrialised cities around the
world. The investigations should include the identification of the sources of the pollution and its
distribution in space and time. This work is the first attempt to perform identification of the sources
of pollution in Ust-Kamenogorsk city in Kazakhstan. Analysis of retrospective data (including ten
variables (TSP, SO2, CO, NO2, phenol, HF, HCl, H2SO4, formaldehyde, H2S) from five monitoring
stations for the period 2017–2021) using multivariate statistical methods and hierarchical cluster
analysis has been performed to assess spatiotemporal patterns of air quality of the city. The results
indicate that the contamination patterns can be grouped into two categories: cold and warm seasons.
The study revealed the dangerous concentrations of NO2 and SO2 exceeded the limits by 2–3 and
1.5–2 times, independently of the seasonality. Averaged concentrations of TSP slightly exceeded the
established limits for the most industrialised part of the city. Concentrations of HF and formaldehyde
significantly rose during the cold seasons compared to the warm seasons. Other chemical parameters
significantly depend on the seasonality and locations of the sampling points. The major reason for air
pollution is twofold—the use of a burnt-coal throughout the year for electricity and heat generation
(especially during the cold seasons) and the high density of the heavy metallurgy industry in the city.
The principal component analysis confirms a high loading of industrial sources of air pollution on
both spatial and seasonal dimensions.

Keywords: air pollution; air quality; cluster analysis; industrial emissions; principal component analysis

1. Introduction

In 2022 humanity still faces air pollution issues, while it is much known about efficient
ways to handle them. Statistics revealed the significant pollution in big cities, even in
countries where the possibility for permanent monitoring with the wide web of monitoring
stations has been established [1]. At the same time, the situation can be much worse in de-
veloping countries, especially in industrialised cities, as the cities have not been connected
to the common database and the ability to assess environmental and social consequences
has been hidden. Studies say that despite direct hazards to health and the economy, the
influence and the interests of big manufacturing and energy companies sometimes can
prevail over the mentioned issues and exert pressure on regulatory aspects [2]. These
factors make the air pollution issues still actual around the world. For instance, a study
by Yuan et al. [3] claims that cities with pollution-intensive industries are responsible for
urban air pollution (called “super emitters” as they dominate as large point sources of
pollution [4]). According to another study by Gu et al. [5], the industrial sector has been
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recognised as the largest contributor to air pollution among all sectoral emitters in China.
Industrial activities led to accounting for 36% of the total impact on health, including
premature mortalities, as well as 41% of crop production loss over the whole country. The
authors estimated that the scenario that mainly reduces industrial emissions would provide
the largest air quality benefits among various scenarios. A sound work by Burnett et al.
says that 8.9 million deaths, even as early as in the year 2015, could have been caused
by poor air quality worldwide [6]. An SDG’s Indicator 3.9.1 states that the mortality rate
attributed to household and ambient air pollution should be substantially reduced by 2030
to ensure healthy lives and promote well-being for all.

Kazakhstan is a developing country which sets a collection of the mentioned problems
in the context of air pollution. Obsolete and non-conventional equipment in the main
emitters [7], especially in the metallurgy sector [8], legislative loopholes [9], denying or
slowing implementation of clean technologies [10], and drawbacks in the monitoring
systems [11] have brought Kazakhstan to the list of countries with severe air conditions [12].
While Kazakhstan formally aims to achieve SDGs, including a healthy environment and
good health for all, there is a lot to do, including air quality problems [13].

One of the problematic cities in the country, Ust-Kamenogorsk, is located in a major
mining and smelting area and has been rated among the worst cities regarding the prob-
lems of ecology according to World Bank [14]. Extreme pollution events from accidental
emissions are not rare in the city [15]. Descriptive studies of poor air quality in the city
have said that the city has been rated the most SO2-polluted city in Kazakhstan and among
the five most-polluted NO2 and O3 cities in Kazakhstan from 2011 to 2017 [12]. A study
about the impact of COVID-19 lockdown on air quality in the city has revealed that the
level of CO has decreased by 21–23% with the increase in the TSP level by 13–21%, and
had no significant effect on SO2 and NO2 concentrations in the city [16]. Elevated levels
of trace elements, particularly Ba, Mn, Pb, V, and Zn, in the blood of city residents of
Ust-Kamenogorsk have been found [17], which could indicate a severe impact on the
industrial activities of the city. The known studies are limited by their descriptive origin,
while there is a demand for deep investigations of the relationships between a high level of
air pollution, weak environmental regulation, pyrometallurgical processes and dependence
on coal-burnt energy.

Air quality plans apply the following measures for emission reduction: policy impli-
cations, control for technical feasibility, calculating resulting costs, source apportionment
techniques, and assessment of the impact on the environment and human health. All
these measures are based on the assurance of establishing and monitoring the exceedances
of the air quality standards [18]. Also, a comprehensive emission inventory coupled
with air quality monitoring is the first step to developing an emission control strategy
for selected pollutants [19]. These tools do not work on their own, and pollution treat-
ment programs have to come forefront [20]. Stricter environmental regulation leads to a
reduction in polluting industrial activities on the way to the green economy and using
environmentally-friendly advanced technologies [21]. As a result, embedding advanced
control technologies within sustainable development policy scenarios would result in
significant cost savings [22]. However, it also can lead to the closure of emitters or their
relocation, which negatively impacts economic growth [23].

According to an opinion from [24], preliminary investigations play a core role in
the identification of the sources of pollution to drive “the wheel of progress: Sources⇒
Effects⇒ Regulation⇒ Control”. There are known different ways to investigate potential
sources apportionment: emission inventories [25], inverse modelling [26], artificial neural
networks [27], receptor modelling methods [28], air quality models [25], a combination of
the different approaches and models [29], application of positive matrix factorisation [30],
and even chemical analysis of biomonitoring species [31]. However, all of the listed methods
demand a very detailed dataset with a number of monitored parameters. This limitation is
a serious obstacle in the conditions of many developing countries, including Kazakhstan,
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where the system of permanent monitoring with extended parameters, such as PMs, has
still been established [32].

Under these conditions, one of the efficient ways to investigate sources apportionment
with the following understanding of the needed steps for air quality management can be
multivariate statistical techniques, particularly Principal Component Analysis (PCA) and
Cluster Analysis. In addition, using analysis of scores and loadings in PCA can give a
representation of potential chemical reactions in ambient air [33]. The approach to applying
PCA for the assessment of patterns in air quality has already been applied several times.
For instance, Dominick et al. [34] aimed to investigate possible sources of air pollutants
and spatial patterns in Malaysia using the same techniques as the authors plan to do with
grouping particulate contaminants in principal components. Application of the PCA to
find the correlation between gaseous pollutant concentrations, meteorological factors and
potential sources of pollution has identified the contribution of combustion- and non-
combustion-related emitters in Greece [35] or in India [36]. The tool has been used for the
same purpose also by Azid et al. in the context of the prediction of air pollution [37]. PCA
has supported the assessment and identification of the sources of air pollution in India,
where complex industrial activities exist [38]. Revealing information about the sources and
mechanisms of air pollution in Madrid and visualising their spatial distribution using PCA
and the geostatistical method has been carried out by Núñez-Alonso et al. [39]. Particular
attention has been paid to the investigation of the presence of metals only in particulate
matters coupled with multivariate statistical techniques in an Iranian industrial city [40].
For example, a combination of the analysis of the chemical composition of fine particulate
matters with the focus on metals presence with Absolute Principal Component Analysis
allowed attributing the identified pollutants to their sources in the USA [41].

The aim of this study is to analyse key factors impacting air quality in Ust-Kamenogorsk
using the available dataset for the period 2017–2021 by multivariate statistical techniques
on spatial and temporal scales. This approach enables us to investigate potential sources of
apportionment using the large but limited dataset of the observations in the city for the
first time.

2. Materials and Methods
2.1. Study Area

Ust-Kamenogorsk (or Oskemen) is located in northeastern Kazakhstan in the foothills
of the Altay and at a confluence of the Irtysh and the Ulba rivers. The climate of the
Ust-Kamenogorsk region is temperate continental. The city is divided into two parts by the
Irtysh River. The city is surrounded by Shanovsky and Kalbinsky mountain ranges on the
southeastern site [42].

A number of the largest Kazakhstani metallurgy plants for the production of non-
ferrous metals are located in the city: the metallurgical complex of Kazzinc LLP, the Ulba
metallurgical plant, and the Ust-Kamenogorsk titanium and magnesium plant. Coupled
with the Ust-Kamenogorsk and the Sogrinskaya thermal power plants, the industrial
activities put significant pressure on the air conditions of the city. The locations of the main
industries are presented in Figure 1. The main characteristics of the industries of the city
are presented in Table 1.

The city can be conditionally divided into three zones: two big industrial areas (the
northern and the northeastern industrial zones), and downtown, located on the left bank of
the Irtysh River, with its own thermal power plant. The northern industrial zone includes
the locations of the Ust-Kamenogorsk metallurgical complex of Kazzinc LLP, the Ulba
metallurgical plant, and the Ust-Kamenogorsk thermal power plant. The northeastern
industrial zone includes the Ust-Kamenogorsk titanium-magnesium plant and Sogrinskaya
thermal power station. Accordingly, five monitoring stations (noted as S1–S5 in Figure 1)
are located for sampling and analysis of the air quality:

- Station 1—is located in the northern industrial zone;
- Station 2—is located in the administrative centre of the city;
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- Station 3—is located in the north-western part of the city, adjacent to the northern
industrial zone;

- Station 4—is located in the northeastern industrial zone;
- Station 5—is located downtown.
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Table 1. Characteristics of the industrial enterprises of Ust-Kamenogorsk.

Enterprise Production The Volume of the Production Permitted Emissions, t/y

The Ust-Kamenogorsk
metallurgy complex of
Kazzinc LLP

Lead
Zinc
Copper
Technical sulfuric acid

144 Kt/y
190 Kt/y
70 Kt/y
1000 Kt/y

TSP—129;
NO2—245;
SO2—16,856;
H2SO4—51;
CO—8356;
HF—12;
HCl—57;
H2S—0.5

The Ulba metallurgical plant
Tantalum
Uranus
Beryllium

No open data

TSP—7.4;
NO2—5;
SO2—0.1;
H2SO4—4.4;
CO—0.5;
HF—2.3;
HCl—0.7

The Ust-Kamenogorsk
thermal power plant

Heat energy
Electricity
Burnt coal

859.9 Gcal/h
372.5 MW/y
1.5 Mt/y

TSP—3035;
NO2—4470;
SO2—9277;
CO—185;
HF—0.006;
H2S—0.001
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Table 1. Cont.

Enterprise Production The Volume of the Production Permitted Emissions, t/y

The Ust-Kamenogorsk
titanium and
magnesium plant

Titanium tetrachloride
Sponge titanium
Raw magnesium
Anhydrous carnallite

49 Kt/y
12 Kt/y
13 Kt/y
9.6 Kt/y

TSP—24;
NO2—15;
SO2—30;
H2SO4—0.1;
CO—314;
HF—0.14;
HCl—28

The Sogrinskaya thermal
power plant

Heat energy
Electricity
Burnt coal

168 Gcal/h
75 MW/y
0.35 Mt/y

TSP—454;
NO2—975;
SO2—1974;
CO—8

The left-bank thermal
power plant

Heat energy
Burnt coal

168 Gcal/h
0.083 Mt/y

TSP—693;
NO2—342;
SO2—446;
CO—95

2.2. Multivariate Statistical Techniques

Correlation analysis, principal components analysis (factor analysis), and hierarchical
cluster analysis were applied to identify the multivariate relationships between different
variables and samples in the study area. The dataset was normalised for the elimination of
the effect from differences in units (Equation (1)).

Zij =

(
xij −mi

)
SD

, (1)

where Zij are normalised values from xij, i is the represented variables, j is the sample
number, mi is the mean value, and SD is the standard deviation of the sample.

The relation between each pair of variables was measured by Pearson’s correlation
coefficient to determine the associations among different variables. Correlation coefficients
greater than 0.5 were considered significant. PCA recognises the most significant parame-
ters from a big dataset of inter-correlated parameters and creates independent variables
(Equation (2)).

zij = ai1x1j + ai2x2j + . . . + aimxmj, (2)

where z is the component score, a is the component loading, x is the measured value of a
variable, i is the component number, j is the sample number, and m is the total number of
variables. Factor analysis (FA) is a similar approach to PCA. However, PC is presented as a
linear combination of parameters. FA follows PCA and takes into account unobservable,
hypothetical, latent variables. They are included in the equation with the special residual
term (Equation (3)).

zij = a f 1 f1j + a f 2 f2j + . . . + a f mxmj + e f i, (3)

where z is the measured variable, a is the factor loading, f is the factor score, e is the residual
term according to errors or another source of variation, i is the sample number, and m is the
total number of factors.

Cluster analysis was used to assemble similar groups of the monitoring dates due
to similarities between their variables. Hierarchical agglomerative CA provided Ward’s
linkage distance, reported as Dlink/Dmax, which represents the quotient between the linkage
distances for each case divided by the maximal linkage distance. The produced dendrogram
enables analysing similarities easily. Ward’s linkage and the Euclidean distance as similarity
measurements are commonly used for cluster analysis for the assessment of air quality [43].

All mathematical and statistical computations were performed using Microsoft Office
Excel 2016 and IBM SPSS Statistics 26 software.
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2.3. Data Management and Methodological Framework

The National Hydrometeorological Service of Kazakhstan “Kazhydromet” has pro-
vided a raw dataset for this study. Equipment, lab, staff, and methodology of analysis are
certified and follow national and international standards for QC/QA. The dataset contains
the results of manual measurements of 17 contaminants. Most of these measurements have
been carried out four times per day at five stations (Figure 1). To obtain the most detailed
picture, ten contaminants have been chosen for spatiotemporal and statistical assessment:
total suspended particles (TSP); SO2; CO; NO2; phenol; HF; HCl; H2SO4; formaldehyde;
and H2S for the period 2017–2021. The reason for the selection of these contaminants and
this period is the fullest available dataset, as they have been measured on a regular daily
basis, except for weekends and vacations. It is important to note that TSP is not a commonly
used parameter worldwide, while information about common worldwide contaminants
particulate matter (PM) has not been provided due to its absence. Information about tem-
perature, wind speed, wind direction, and humidity has been obtained from the archive
of the web resource www.rp5.kz (accessed on 15 November 2022) [44] to identify possible
interconnections with meteorological conditions of the region.

The first step of the analysis was to identify potentially similar periods in a matter of
contamination. This step includes hierarchical clustering analysis, which was performed
for each studied year separately with the following evaluation and identification of the
grouped periods. Dates against daily averaged values of contaminants have been used as
parameters for this analysis. The daily averaged values of the contaminants were also used
for the second step: performing descriptive statistical analysis to evaluate air pollution
in general for the selected temporal clusters. The number of daily averaged observations
was 859 and 602 for the cold and warm seasons for all the monitored contaminants. The
spatiotemporal assessment was the third step of this study and included time series and
spatial analysis using geoinformation systems. Monthly averaged values were used to
identify and evaluate trends in air pollution through the studied period, while mean values
for the whole period were used for the spatial assessment. Interpolation using the inverse
distance method was used to describe the distribution of the contamination within the
city [45]. The fourth step of this study was to perform PCA based on the correlation matrix.
The correlation matrix was built using daily averaged values of the studied contaminants
coupled with the meteorological parameters, while the PCA was completed using chemical
parameters only on a daily averaged measurements basis.

3. Results and Discussion
3.1. Hierarchical Clustering Analysis

Clustering analysis has been performed using dates as variables based on parameters
of contamination to identify the similarities within particular periods. The final result
of the analysis can be seen in Figure 2. The results indicate that the studied period can
be grouped into two categories: cold (including months from September to March) and
warm (from April to August) seasons. This can be explained by the fact that contaminants
(except formaldehyde) have shown maximum concentrations during cold seasons with
peaks during the months of December–February (Figure 3). Thus, the following assessment
includes a separate analysis of air pollution patterns in both cold and warm seasons. These
findings in seasonality can also be used in better planning for preparing for avoiding public
health burdens during the seasons of interest [46].

www.rp5.kz
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3.2. Descriptive Statistics

Tables 2 and 3 present the results of measurements of air quality from the monitoring
stations in the city according to the limits established by the Kazakhstani government
and recommended by the WHO. It is clearly seen that heavy industry and coal-burnt
energy cause the permanent exceeding of the permissible daily values along the city during
both cold and warm seasons. The worst situation remains for NO2 and SO2, which are
significantly higher than both limits (by 2–3 times for NO2 and by 1.5–2 times for SO2)
during the whole period of analysis (Figure 3). Averaged concentrations of TSP slightly
exceeded the established limits for Stations 1 and 3 during the cold seasons, with the peak
values during January months in 2017 and 2018 (Figure 3), while during the warm seasons,
they can be characterised as safe. Concentrations of HF and H2S show slight excess over
the recommended concentrations along all stations (except Station 4) during both seasons.
However, the presence of HF dropped below the limit line after January 2020 (Figure 3).
Surprisingly, the averaged and median concentrations of CO have not shown exceeding
values, except several daily exceedings of the parameter were recognised during the cold
seasons. In general, the concentrations of the pollutants show a slightly descending trend
while they still remain much above the permissible level. It can be explained by the report
from the National Statistics Committee, which claims that industrial emissions decreased
from 29 to 27.9 kt/y for SO2 and from 10.8 to 10.4 kt/y for CO for the period between 2017
and 2021 [47].

It is fair to note that the recently updated Kazakhstani limits [48] have not followed
recommendations from international standards [49] and experts [50]. The limits for main
pollutants have not been revised and still are above the recommendations from WHO [51].

The spatial distribution of the contaminants is presented in Figures 4 and 5. Only TSP,
SO2, NO2, HF, and formaldehyde show the most significant patterns in their dispersion
within the city. It is clearly seen that the major emitter of the city is located near Station 1
and represents the northern industrial zone with two huge metallurgy factories and one
thermal power plant. Surprisingly, the safest location in the city regarding concentrations
of the pollutants is near Station 4, despite its close location to the northeastern industrial
zone. The main difference between seasons is the presence of pollution near Station 5, in
the southern direction from the major emitters to the downtown, which is located on the
left-bank part of the city with its own thermal power plant. While concentrations of HF
and formaldehyde look high, comparatively with the centre of the emissions during the
cold seasons, the presence of these contaminants during the warm seasons looks safe and
strives for minimal values within the city (Figure 4d,e and Figure 5d,e). Concentrations of
SO2 and NO2 also do not show significant changes between the two seasons, with their
decrease in the southern direction from Station 1 (Figure 4b,c and Figure 5b,c). The worst
situation in a matter of TSP is in the northwestern part of the city near Stations 1 and 3
(Figures 4a and 5a).
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Table 2. Descriptive statistics of air quality during the cold seasons (in µg m−3).

WHO Limits (Daily
Averaged) [51]

Kazakhstani Limits
(Daily Averaged) [48] Station 1 Station 2 Station 3 Station 4 Station 5

Mean (SD) 217 (183) 94 (92) 218 (182) 68 (66) 81 (78)
TSP - 150 Median 175 75 175 50 50

Range 0–1350 0–550 0–1250 0–425 0–550

SO2 40 50
Mean (SD) 150 (124) 122 (108) 134 (105) 88 (53) 101 (69)

Median 100 84 93 73 79
Range 31–1641 14–1738 31–1318 0–410 0–519

Mean (SD) 1548 (877) 656 (686) 1285 (1025) 195 (371) 376 (483)
CO 4000 3000 Median 1500 500 1000 0 250

Range 0–6250 0–3750 0–5750 0–2250 0–3500

NO2 25 40
Mean (SD) 96 (54) 77 (48) 86 (50) 61 (37) 69 (45)

Median 85 68 75 53 58
Range 0–380 5–315 0–362 5–323 0–365

Phenol - 3
Mean (SD) 2.4 (1.8) 1.8 (1.6) 2.1 (1.7) 1.2 (1.4) 1.9 (1.7)

Phenol - 3 Median 2.0 1.5 1.8 0.8 1.5
Range 0–12.8 0–11.0 0–20.5 0–20.5 0–16.0

HF - 5
Mean (SD) 6.6 (3.5) 5.6 (3.4) 5.8 (3.4) 4.6 (3.0) 5.9 (3.8)

Median 6.3 5.0 5.3 4.0 5.3
Range 0–25 0–25 0–25 0–18 0–29

Mean (SD) 49.2 (28.5) 37.1 (28.5) 45.5 (27.5) 35.2 (28.6) 34.9 (29)
HCl - 100 Median 50.0 30.0 47.5 30.0 30.0

Range 0–175.0 0–142.5 0–152.5 0–142.5 0–145

H2SO4 - 100
Mean (SD) 23.2 (25.4) 12.5 (15.4) 20.6 (22.1) 7.6 (10.0) 10.2 (12.7)

Median 15.0 7.5 15.0 5.0 7.5
Range 0–280.0 0–157.5 0–220.0 0–165.0 0–172.5

Mean (SD) 2.6 (2.0) 2.2 (1.8) 2.5 (2.2) 1.3 (1.6) 2.1 (1.9)
Formaldehyde - 10 Median 2.5 1.5 2.5 1.3 2.0

Range 0–11.8 0–10.0 0–15.0 0–10.0 0–11.8

H2S - 0.8
Mean (SD) 2.0 (1.8) 1.8 (2.1) 1.4 (1.1) 0.6 (0.7) 1.0 (1.0)

Median 1.5 1.3 1.0 0.5 1.0
Range 0–18.3 0–23.0 0–11.8 0–5.0 0–11.8

Table 3. Descriptive statistics of air quality during the warm seasons (µg m−3).

WHO Limits (Daily
Averaged) [51]

Kazakhstani Limits
(Daily Averaged) [48] Station 1 Station 2 Station 3 Station 4 Station 5

Mean (SD) 118 (81) 41 (42) 117 (80) 33 (41) 47 (45)
TSP - 150 Median 100 25 100 25 25

Range 0–500 0–375 0–475 0–375 0–300

SO2 40 50
Mean (SD) 135 (98) 102 (63) 116 (68) 77 (30) 85 (36)

Median 98 81 90 71 75
Range 45–1100 13–490 43–468 13–256 0–353

Mean (SD) 886 (607) 149 (234) 571 (517) 19 (107) 133 (219)
CO 4000 3000 Median 750 0 500 0 0

Range 0–5000 0–1750 0–2750 0–1250 0–1250

NO2 25 40
Mean (SD) 78 (46) 62 (38) 74 (43) 48 (29) 58 (35)

Median 70 54 68 45 53
Range 0–308 0–212 0–233 0–218 0–263

Mean (SD) 2.2 (1.6) 1.8 (1.6) 2.0 (1.5) 1.2 (1.1) 2.0 (1.7)
Phenol - 3 Median 2.0 1.5 1.8 0.8 1.8

Range 0–16.5 0–18.0 0–17.0 0–5.5 0–14.8

HF - 5
Mean (SD) 6.2 (3.6) 4.9 (3.1) 5.3 (3.1) 4.5 (3.0) 5.5 (3.3)

Median 6.0 4.3 5.0 3.5 4.9
Range 0–20.0 0–16.3 0–16.5 0–15.5 0–16.3

HCl - 100
Mean (SD) 51 (34) 39 (32) 48 (32) 42 (39) 39 (34)

HCl - 100 Median 48 33 45 30 30
Range 0–167 0–175 0–148 0–173 0–145

H2SO4 - 100
Mean (SD) 14.6 (15.7) 7.5 (6.4) 12.1 (9.6) 4.4 (4.4) 6.9 (5.0)

Median 12.5 7.5000 10.0 2.5 5.0
Range 0–222.5 0–52.5 0–102.5 0–30.0 0–33.0

Mean (SD) 6.8 (5.0) 5.9 (4.7) 5.9 (4.3) 4.5 (3.4) 5.3 (3.6)
Formaldehyde - 10 Median 5.9 4.8 5.0 3.8 4.5

Range 0–33.5 0–35.8 0–32.3 0–21.8 0–28.0

H2S - 0.8
Mean (SD) 1.5 (0.9) 1.3 (0.8) 1.2 (0.9) 0.6 (0.6) 0.9 (0.8)

Median 1.5 1.0 1.0 0.5 0.8
Range 0–5.5 0–4.3 0–4.8 0–3.5 0–3.8
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3.3. Principal Component Analysis

The correlation matrix was employed for each monitoring station for all 859 and
602 measurements (for cold and warm seasons, respectively) for determining relationships:
in particular, pairs between contaminants and meteorological parameters. Figure 6 shows
the averaged values for correlation coefficients among the monitoring stations. The analysis
has not identified any correlation between the chemical and meteorological (including wind
direction, wind speed, relative humidity, and temperature) parameters. Tables 4 and 5,
representing the principal components (PCs), have been developed for contaminants
measurements only to identify groups of the contaminants, which can be combined by their
common origin or specific properties of their spatiotemporal distribution (Table 6). Bold
values in Tables 4 and 5 denote high loadings of the contaminants to the calculated PCs.
The eigenvalues of the identified PCs are all greater than 1.0, and according to the Kaiser
criterion, these PCs have to be chosen [52]. The results did not show significant differences
between the stations in general, which may indicate a relatively equal distribution of
pollution within the city. Particular differences are described in the subsections for each PC
below. It is important to note here that the correlation during the cold seasons is stronger
than during the warm seasons (Figure 6). Two PCs have been identified for the cold season
analysis for the monitoring Stations 1 and 2, while three PCs have been identified for other
monitoring stations. Therefore, included parameters in PCs 1 and 2 for Stations 3–5 are
almost the same as the parameters included in PC1 for Stations 1–2. PCA, for the warm
season, has identified three PCs for Stations 2–5 and four PCs for Station 1.
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Table 4. Principal Component Analysis for the cold seasons.

Station 1 Station 2 Station 3 Station 4 Station 5
PC1 PC2 PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

TSP 0.803 0.093 0.859 −0.121 0.829 0.228 0.079 0.773 0.218 −0.047 0.669 0.509 0.109
SO2 0.841 −0.054 0.835 −0.018 0.745 0.395 0.007 0.747 0.363 0.150 0.603 0.476 0.350
CO 0.633 −0.023 0.796 −0.267 0.800 0.237 0.065 0.718 0.068 0.015 0.681 0.387 −0.001
NO2 0.748 0.198 0.772 0.197 0.580 0.485 −0.216 0.523 0.260 0.465 0.406 0.315 0.573
Phenol 0.530 0.035 0.452 −0.036 0.146 0.686 0.197 0.212 0.590 −0.234 0.066 0.748 −0.133
HF 0.560 0.443 0.545 0.340 0.232 0.776 −0.078 0.304 0.671 0.172 0.107 0.763 0.159
HCl 0.248 −0.758 0.225 −0.650 0.361 −0.155 0.684 0.493 −0.584 −0.138 0.693 −0.317 −0.125
H2SO4 0.835 −0.060 0.809 −0.046 0.804 0.197 −0.045 0.695 0.348 0.009 0.467 0.580 0.180
Formaldehyde 0.101 0.558 0.092 0.747 0.175 −0.199 −0.788 −0.011 −0.050 0.893 −0.095 −0.086 0.880
H2S 0.739 −0.220 0.806 −0.100 0.706 −0.018 0.109 0.708 −0.102 0.059 0.702 0.164 0.090
Eigenvalue 4.223 1.185 4.541 1.222 3.599 1.675 1.205 3.309 1.526 1.146 2.656 2.346 1.336
% of variance 42.231 11.847 45.409 12.223 35.986 16.751 12.049 33.089 15.264 11.457 26.559 23.465 13.363
Cumulative % 42.231 54.078 45.409 57.632 35.986 52.738 64.787 33.089 48.352 59.809 26.559 50.024 63.387

Table 5. Principal Component Analysis for the warm seasons.

Station 1 Station 2 Station 3 Station 4 Station 5
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

TSP 0.087 0.321 0.665 −0.130 0.210 0.026 0.664 0.119 −0.107 0.838 0.150 0.427 0.548 0.209 0.200 0.684
SO2 0.711 0.278 −0.044 −0.008 0.679 0.303 0.127 0.502 0.569 0.230 0.717 0.336 0.006 0.685 0.399 0.124
CO −0.113 0.023 0.804 0.143 −0.195 0.032 0.725 −0.519 0.339 0.521 0.185 −0.014 0.393 −0.066 −0.206 0.776
NO2 0.187 0.751 0.303 0.094 0.727 −0.335 0.107 −0.276 0.744 0.158 0.679 −0.200 0.063 0.699 −0.280 0.059
Phenol 0.179 −0.073 0.097 0.865 −0.044 0.413 −0.045 0.359 −0.001 −0.158 0.318 0.299 −0.666 0.005 0.376 −0.165
HF −0.179 0.773 0.155 −0.166 0.474 −0.637 0.057 −0.522 0.588 −0.114 0.521 −0.538 0.193 0.436 −0.618 0.007
HCl 0.645 −0.484 0.054 0.054 0.099 0.757 0.220 0.691 −0.087 0.273 −0.045 0.806 0.121 0.038 0.779 0.134
H2SO4 0.458 −0.031 0.421 −0.497 0.261 0.050 0.626 0.112 0.206 0.693 0.411 0.154 0.399 0.450 0.095 0.476
Formaldehyde 0.485 0.612 −0.088 0.002 0.825 −0.035 0.067 0.197 0.820 0.008 0.787 0.076 0.120 0.797 0.098 0.081
H2S 0.763 0.005 0.012 0.111 0.425 0.516 0.111 0.734 0.078 0.190 0.152 0.704 −0.063 0.228 0.684 0.119
Eigenvalue 2.069 1.958 1.404 1.085 2.238 1.626 1.457 2.078 2.078 1.680 2.218 1.888 1.132 2.087 1.936 1.382
% of variance 20.693 19.578 14.037 10.850 22.377 16.260 14.567 20.779 20.778 16.797 22.177 18.880 11.325 20.872 19.360 13.817
Cumulative % 20.693 40.271 54.308 65.158 22.377 38.637 53.205 20.779 41.557 58.354 22.177 41.056 52.381 20.872 40.232 54.049
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Table 6. Grouped PCs for cold and warm seasons.

Cold Season Warm Season

Group 1 Group 2 Group 1 Group 2

TSP HCl SO2 TSP
SO2 Formaldehyde NO2 CO
CO Formaldehyde Phenol
NO2 HCl H2SO4
Phenol H2S
HF HF
H2SO4
H2S

3.3.1. PC1

PC1 of the cold season is characterised by high positive weight values for TSP, SO2,
CO, and H2S for every monitoring station. NO2, phenol, HF, and H2SO4 may also be
conditionally added to the list, as they have been formulated as PC 1 for Stations 1, 2, 3,
and 4 and have been included in PC2 for Station 5. Altogether, the PC1 for Stations 1–2 and
PC1 + PC2 for Stations 3–5 explain 47.7% of the total variance on average. As Figure 6
indicates, there is a strong positive correlation between TSP, SO2, CO, and H2S. NO2 and
H2SO4 also show a significant correlation with the listed contaminants. These ions are
the major contributors to the total suspended particles. Additionally, these ions correlate
with each other. It can be concluded that these contaminants have a shared source of their
origin. The results of the appearance of TSP and CO in one group with SO2 and NO2 for
the cold seasons and theirs separating for the warm seasons can be well explained by the
fact that SO2 and NO2 are emitted mainly from combustion processes, while the sources for
TSP are far more (for example, wind-driven and traffic-related re-suspension and biogenic
sources) [53]. In addition, the metallurgy sector, which prevails in Ust-Kamenogorsk
among emitters, can be characterised as the major source of SO2 [54] and TSP (on behalf of
PM2.5) [55]. It is well known that the exposure of TSP-sulphur-derived contaminants in the
air is believed to be representative of emissions from the combustion of fossil fuels, which
increases the risk for bronchitis and some other respiratory disorders [56]. In addition, it is
worth mentioning that nitrogen dioxide has been listed as an emerging pollutant causing
morbidity and mortality [57].

PC1 of the warm season seems more uncertain, as there are no contaminants repeated
in each of the monitoring stations. SO2 (in four of five monitoring stations) and NO2
and formaldehyde (in three of five) have been identified in PC1 as the most common
contaminants. The contaminants SO2, NO2, and formaldehyde have been the same for
the monitoring Stations 2, 4, and 5. This combination of the stations and the identified
contaminants can be explained by the proximity of the monitoring stations to heat supply
sources and highways [58] and the respective photochemical reactions in the atmosphere
nearby [59]. In addition, the contaminants HCl and H2S have been identified as key
contaminants in PC1 for Stations 1 and 3, which can be explained by emissions from the
largest thermal power plant. A study [60] says that H2S is formed by the combustion of
coal with high content of sulphur, which is an exact characteristic of Kazakhstani coal.
The loading of HCl within this PC can be explained by the emissions from Kazzinc LLP
according to the technological scheme of the enterprise.

3.3.2. PC2

PC2 in warm seasons compensates for the above-mentioned contaminants in the
stations which previously have not been listed as belonging to PC1. For example, for
Stations 2, 4, and 5, the list of contaminants includes HCl and H2S. As mentioned above,
the source of HCl emissions can be the metallurgy industry, which uses acid for production
purposes. H2S can be emitted due to coal combustion. Station 2 is located in the central
part of the city at a considerable distance from industrial facilities. However, sources of
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emissions located at a reasonable elevation can disperse HCl and H2S to the centre of the
city. For Stations 4 and 5, the presence of the parameters in this PC can be explained by
the proximity of the northeastern industrial zone and the Sogrinskaya and the left-bank
thermal power plants.

For Stations 1 and 3, the list of contaminants has been fulfilled by SO2, NO2, and
formaldehyde. The northern industrial zone is a dominant emitter for Station 3, which
can easily explain the presence of SO2 and NO2 in this PC. HF has been identified as the
key contaminant for this PC in four of five monitoring stations. Figures 4 and 5 show that
HF is mainly concentrated in the area of the northern industrial zone and then is evenly
distributed throughout the city during both the cold and warm seasons. The thermal power
plants do not monitor the concentrations of HF in their emissions, while there are a number
of research [61,62] and official reports [63,64] showing the coal-fired stations as the largest
anthropogenic sources of HF. The situation for formaldehyde looks the same as for HF.
No enterprises monitor this chemical, while the direction of spatial distribution shows a
similar direction.

3.3.3. PC3

PC3, for the warm season, has grouped TPS and CO, which indicates their shared
source of origin, even though there is no household heating during the comfortable weather
conditions and emissions from the central heating are expected to be minimal. Moreover,
it is expected that nature might neglect the effect of air pollution by these contaminants,
which seems to be a reason for such difference in the rate of these contaminants in the cold
(the most impactful contaminants) and warm (the least impactful contaminants) seasons.
In addition, phenol (in Stations 1 and 4) and H2SO4 (in Stations 2 and 3) have been revealed
as belonging to this PC. Sulphuric acid is actively used in metallurgy, and this parameter
shows the shared source in this PC with TPS and CO. The appearance of phenol in this
PC requires additional studies, as its spread is unusual for metallurgy. This PC can be
explained by a geographical location, as it focuses on the air conditions in the central part
of the city. While emissions can be dispersed from the northern industrial zone according
to Figures 4 and 5, the presence of phenol can be explained by intensive traffic [65].

Table 6 summarises a conditional grouping of identified PCs, results of the spatiotem-
poral assessment, hierarchical clustering analysis, and respective chemicals. Group 1 for
the cold seasons can be explained by the intensive use of the fossil fuel fired by all users:
power plants, industry, and households coupled with meteorological conditions (based on
Figure 6). This mix ensures a variety of pollutants are released into the atmosphere by the
burning of different types of fuel. The same group for the warm seasons indicates and high-
lights the problem of coal consumption, mainly by industrial enterprises, which is indicated
by the uniform seasonal distribution of NO2 and SO2 [4]. Group 2 for the cold seasons can
be explained by specific industrial processes and the release of the associated contaminants
into the atmosphere. Group 2 for the warm seasons could indicate a contribution of traffic
to air pollution. While local authorities have attempted to explain air quality issues by a
high density of motor transport, the results of this study confirm outcomes of previous
research on heavy air pollution in the city caused by non-transport-related sources [66]:
that this factor has a low significance comparatively with the impact of industrial activities,
especially burnt-coal based.

4. Conclusions

Ust-Kamenogorsk is one of the most important industrial centres of Kazakhstan, where
non-ferrous metals are produced and exported abroad for the largest world companies.
The active consumption of coal and raw material orientation of the industrial enterprises
makes Ust-Kamenogorsk one of the most polluted industrial cities in the world. This study,
for the first time, aimed to analyse spatiotemporal patterns of air pollution in the city and to
identify potential sources of apportionment using multivariate statistical techniques. The
results show that the combination of large enterprises and coal-fired thermal power plants
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severely affects air quality in Ust-Kamenogorsk. The average concentrations of SO2 and
NO2 for the entire study period exceeded the standards of WHO and Kazakhstan within
the whole city all year round. The major emitters are located in the northern industrial
zone with two huge metallurgy factories and one thermal power plant. The Principal
Component Analysis revealed that emissions of TSP, SO2, CO, H2S, NO2, HF, and H2SO4
with high likelihood are of industrial origin, which is significantly aggravated during the
cold seasons. While official reports show a decrease in industrial emissions, air quality has
not been improved even during the warm seasons when households stop heating with the
expected elimination of air pollution.

The results of this study can be valuable for decision-makers in developing and
applying respective strategies and actions for a decrease in air pollution and elimination of
the social and environmental effects. The main limitation of the research is the difficulty
in determining the ratio of the contributions of the major emitters to the high level of
air pollution. Future research will focus on a detailed investigation of the composition
of unstudied contaminants (particularly, particulate matters) in both ambient air and the
zones of industrial enterprises. This research should be combined with the modelling of
source profiles or fingerprints.

The air quality issues in Ust-Kamenogorsk most probably have been caused by a
combination of the factors: weak environmental regulation and control, the influence of
large companies on the legislative process through large professional associations, and
an outdated and energy-intensive industry. The authors hope that the outcomes of this
and other studies would be a sufficient research basis for authorities to develop the right
strategy for air management in the region.
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