Variations of Secondary PM2.5 in an Urban Area over Central China during 2015–2020 of Air Pollutant Mitigation
Abstract
:1. Introduction
2. Data and Methods
2.1. Environmental and Meteorological Data
2.2. Methods
2.3. Development of Method
2.4. STAEA Method Evaluation
3. Results and Discussion
3.1. Variations of Air Pollutants and PM2.5 Pollution
3.2. Long-Term Variations of SPM in Air Quality Levels
3.3. Seasonal Variations of SPM and PPM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Wang, G. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Guo, S. Insight into characteristics and sources of PM2.5 in the Beijing–Tianjin–Hebei region, China. Natl. Sci. Rev. 2015, 2, 257–258. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Jacob, D.J. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y. Influence of fine particulate matter on atmospheric visibility. Chin. Sci. Bull. 2013, 58, 1165–1170. [Google Scholar] [CrossRef]
- Kerminen, V.M.; Hillamo, R. Ion balances of size-resolved tropospheric aerosol samples: Implications for the acidity and atmospheric processing of aerosols. Atmos. Environ. 2001, 35, 5255–5265. [Google Scholar] [CrossRef]
- Yao, X.; Fang, M. The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmos. Environ. 2003, 37, 743–751. [Google Scholar] [CrossRef]
- Zhang, Q.; Geng, G. Impact of clean air action on PM2.5 pollution in China. Sci. China Earth Sci. 2019, 62, 1845–1846. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, J. Estimation of PM2.5-associated disease burden in China in 2020 and 2030 using population and air quality scenarios: A modelling study. Lancet Planet. Health 2019, 3, 71–80. [Google Scholar] [CrossRef]
- Zhang, H.; Li, N. Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach. Atmos. Chem. Phys. 2022, 22, 5495–5514. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, J. Long-term variations of major atmospheric compositions observed at the background stations in three key areas of China. Adv. Clim. Chang. Res. 2020, 11, 370–380. [Google Scholar] [CrossRef]
- Molina, L.T. Introductory lecture: Air quality in megacities. Faraday Discuss. 2021, 226, 9–52. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, T. Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over Central China. Sci. Total Environ. 2022, 808, 151951. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, T. Importance of meteorology in air pollution events during the city lockdown for COVID-19 in Hubei Province, Central China. Sci. Total Environ. 2021, 754, 142227. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, R. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, L.; Zheng, L. Characterization and Source Analysis of Water-soluble Ions in Atmospheric Particles in Jinzhong, China. Aerosol Air Qual. Res. 2019, 19, 2394–2409. [Google Scholar] [CrossRef]
- Gao, J.; Wang, K. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2018, 233, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xiao, Z. Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2019, 658, 280–293. [Google Scholar] [CrossRef]
- Wang, H.; Tian, M. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China. Atmos. Chem. Phys. 2018, 18, 865–881. [Google Scholar] [CrossRef]
- Huang, F.; Zhou, J. Chemical characteristics and source apportionment of PM2.5 in Wuhan, China. J. Atmos. Chem. 2019, 76, 245–262. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, Z. Analysis of PM2.5 Oxidative Potential during a Period of Heavy Pollution in Winter, Wuhan. Environ. Sci. Technol. 2020, 43, 171–176. (In Chinese) [Google Scholar] [CrossRef]
- Dai, Q.; Bi, X. Chemical nature of PM2.5 and PM10 in Xi’an, China: Insights into primary emissions and secondary particle formation. Environ. Pollut. 2018, 240, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, T. Investigating the impacts of coal-fired power plants on ambient PM2.5 by a combination of a chemical transport model and receptor model. Sci. Total Environ. 2020, 727, 138407. [Google Scholar] [CrossRef]
- Štefánik, D.; Matejovičová, J. Comparison of two methods of calculating NO2 and PM10 transboundary pollution by CMAQ chemical transport model and the assessment of the non-linearity effect. Atmos. Pollut. Res. 2020, 11, 12–23. [Google Scholar] [CrossRef]
- Chang, S.; Lee, C. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmos. Environ. 2007, 41, 4002–4017. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, T. Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Shi, G. Contribution of Secondary Particles to Wintertime PM2.5 During 2015–2018 in a Major Urban Area of the Sichuan Basin, Southwest China. Earth Space Sci. 2020, 7, e2020EA001194. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, T. Seasonal changes in the recent decline of combined high PM2.5 and O3 pollution and associated chemical and meteorological drivers in the Beijing–Tianjin–Hebei region, China. Sci. Total Environ. 2022, 838, 156312. [Google Scholar] [CrossRef]
- Gu, J.; Chen, Z. Characterization of Atmospheric Fine Particles and Secondary Aerosol Estimated under the Different Photochemical Activities in Summertime Tianjin, China. Int. J. Environ. Res. Public Health 2022, 19, 7956. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shuo, W. Investigating the Relationship between Air Pollutants and Meteorological Parameters Using Satellite Data over Bangladesh. Remote Sens. 2022, 14, 2757. [Google Scholar] [CrossRef]
- Na, K.; Sawant, A.A. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos. Environ. 2004, 38, 1345–1355. [Google Scholar] [CrossRef]
- Castro, L.M.; Pio, C.A. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Yin, C.; Wang, T. Assessment of direct radiative forcing due to secondary organic aerosol over China with a regional climate model. Tellus B Chem. Phys. Meteorol. 2015, 67, 24634. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Gui, K. Effects of Different Aerosols on the Air Pollution and Their Relationship With Meteorological Parameters in North China Plain. Front. Environ. Sci. 2022, 10, 814736. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Z. Classification of Urban Pollution Levels Based on Clustering and Spatial Statistics. Atmosphere 2022, 13, 494. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- An, Z.; Huang, R. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef]
Periods | Sources | PM2.5 | SIA | SOA | SPM | SPM/PM2.5 | Errors |
---|---|---|---|---|---|---|---|
14–24 January 2018 | Chen et al. [23] | 146.9 | 72.1 | 13.4 | 85.5 | 58.2% | 6.19% |
STAEA | 117.0 | — | — | 72.3 | 61.8% | ||
March 2017–February 2018 | Huang et al. [21] | 52.5 | 28.8 | 3.0 | 31.8 | 60.6% | 4.46% |
STAEA | 52.4 | — | — | 33.2 | 63.3% | ||
23 January–22 February 2019 | Zheng et al. [22] | 72.9 | 51.7 | 10.1 | 61.8 | 84.7% | 16.53% |
STAEA | 73.1 | — | — | 51.7 | 70.7% |
Air Quality Levels | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|
Clean air quality | 240 | 274 | 286 | 309 | 320 | 340 |
Light pollution | 76 | 63 | 57 | 37 | 33 | 23 |
Moderate pollution | 31 | 22 | 13 | 10 | 8 | 3 |
Heavy pollution | 17 | 7 | 9 | 4 | 3 | 0 |
Spring | Summer | Autumn | Winter | Total | |
---|---|---|---|---|---|
Light pollution | 57 | 2 | 54 | 176 | 289 |
Moderate pollution | 8 | 0 | 5 | 74 | 87 |
Heavy pollution | 3 | 0 | 2 | 35 | 40 |
Total | 68 | 2 | 61 | 285 | 416 |
Clean Air Quality | Light Pollution | Moderate Pollution | Heavy Pollution | |
---|---|---|---|---|
PPM | −1.02 | −2.14 | −1.40 | −4.94 |
SPM | −1.04 | 1.95 | 3.11 | −2.71 |
DF | −0.02 | 4.09 | 4.51 | 2.23 |
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
PPM | −2.25 | −0.47 | −0.23 | −5.07 |
SPM | −4.03 | −2.30 | −4.14 | −4.99 |
DF | −1.78 | −1.83 | −3.91 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Zhao, T.; Zhu, Y.; Bai, Y.; Fu, W.; Zhang, Y.; Liu, Z.; Wang, Y. Variations of Secondary PM2.5 in an Urban Area over Central China during 2015–2020 of Air Pollutant Mitigation. Atmosphere 2022, 13, 1962. https://doi.org/10.3390/atmos13121962
Liang D, Zhao T, Zhu Y, Bai Y, Fu W, Zhang Y, Liu Z, Wang Y. Variations of Secondary PM2.5 in an Urban Area over Central China during 2015–2020 of Air Pollutant Mitigation. Atmosphere. 2022; 13(12):1962. https://doi.org/10.3390/atmos13121962
Chicago/Turabian StyleLiang, Dingyuan, Tianliang Zhao, Yan Zhu, Yongqing Bai, Weikang Fu, Yuqing Zhang, Zijun Liu, and Yafei Wang. 2022. "Variations of Secondary PM2.5 in an Urban Area over Central China during 2015–2020 of Air Pollutant Mitigation" Atmosphere 13, no. 12: 1962. https://doi.org/10.3390/atmos13121962
APA StyleLiang, D., Zhao, T., Zhu, Y., Bai, Y., Fu, W., Zhang, Y., Liu, Z., & Wang, Y. (2022). Variations of Secondary PM2.5 in an Urban Area over Central China during 2015–2020 of Air Pollutant Mitigation. Atmosphere, 13(12), 1962. https://doi.org/10.3390/atmos13121962