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Abstract: In this study, four drought monitoring indices were selected to simulate drought monitoring
in the study area and a correlation analysis was conducted using the self-calibrated Palmer Drought
Index (sc-PDSI) to screen for the most suitable drought monitoring index for the study area. Then, the
spatio-temporal variation characteristics of drought in the study area were discussed and analyzed.
The results showed that the Crop Water Stress Index (CWSI) was most suitable for drought monitoring
in the Sichuan Province. CWSI had the best monitoring in grasslands (r = 0.48), the worst monitoring
in woodlands (r = 0.43) and the highest fitting degree of overall correlation (r = 0.47). The variation of
drought time in the Sichuan Province showed an overall trend of wetting and the drought situation
was greatly alleviated. In the past 20 years, the dry years in the Sichuan Province were from 2001 to
2007, in which the driest years were 2006 and 2007; 2012–2013 was the transition interval between
drought and wet; any year from 2013 to 2020 was a wet year, showing a transition trend of “drought
first and then wet”. The spatial distribution of drought was greater in the south than in the north
and greater in the west than in the east. Panzhihua City and the southern part of the Liangshan
Prefecture were the most arid areas, while the non-arid areas were the border zone between the
western Sichuan Plateau and the Sichuan Basin. Looking at the spatial distribution of drought,
“mild drought” accounted for the largest percentage of the total area (60%), mainly concentrated
in the western Sichuan plateau. The second largest was “drought free” (33%), mostly concentrated
in the transition area between the western Sichuan Plateau and the Sichuan Basin (western Aba
Prefecture, Ya’an City, Leshan City and northern Liangshan Prefecture). The area of “moderate
drought” accounted for a relatively small proportion (6%), mainly concentrated in Panzhihua City,
the surrounding areas of Chengdu City and the southern area of the Liangshan Prefecture. The area
of severe drought accounted for the least (1%), mostly distributed in Panzhihua City and a small
part in the southern Liangshan Prefecture. The drought center ranged from 101.8◦ E to 103.6◦ E and
28.8◦ N to 29.8◦ N, with the movement trend of the drought center moving from the northeast to the
southwest to the northeast.

Keywords: Sichuan Province; drought index; MODIS data; drought monitoring

1. Introduction

The Sichuan Province lies in the transition zone between the Qinghai–Tibet Plateau
and the middle and lower reaches of the Yangtze River, with the characteristics of being
high in the west and low in the east. The western part of Sichuan Province is characterized
by a fragile plateau climate and ecological environment and the vertical zonal difference
is great, while the eastern part is characterized by an abundant monsoon climate and
precipitation. The climate and lower pad surface properties of the study areas are very
different, which is of great reference value for research. In recent years, frequent droughts
occurred in the Yangtze River Basin (especially in Sichuan and Chongqing in 2006), which
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posed a serious threat to agricultural and forestry production in this region. In order to
better cope with and study the impact of drought on the study area, it is necessary to adopt
effective monitoring methods to accurately analyze the drought situation in the study area.

The application of remote-sensing technology in drought monitoring has become
mainstream [1]. Remote-sensing technology can make up for the shortage of meteorological
station data and obtain meteorological data over a long time and a wide range [2]. At
present, the meteorological drought index is based on the data of meteorological stations at
different time scales. It uses mathematical and physical methods to calculate the drought
index, so as to monitor the drought caused by climate anomalies in specific regions and
specific periods [3]. The earliest drought indices used to characterize drought conditions
were the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI)
developed by Kogan [4,5]. Based on the Normalized Difference Vegetation Index (NDVI)
and Land Surface Temperature (LST) changes in different time series. The Palmer Drought
Severity Index (PDSI) developed by meteorologists Wayne Palmer et al. [6] put forward a
drought index based on water supply and demand. The PDSI is widely used in drought
assessment because it considers the temperature factor, can effectively reflect the impact of
climate change on droughts and, at the same time, can consider the water supply and their
relationship for regional drought assessment. However, there are differences in drought
analysis in different spaces, so it is not always suitable to assess drought in different
regions [7]. Compared with PDSI, the self-calibrating Palmer Drought Severity Index (sc-
PDSI) is a great improvement and the calculation of evapotranspiration using the FAOPM
formula has higher accuracy [7]. At the same time, sc-PDSI uses the meteorological data of
the respective stations for the calculations, giving fewer regional constraints and high spatial
comparability [8]. The application of sc-PDSI in regional drought analysis is relatively
mature [9,10]. The Standard Precipitation Evapotranspiration Index (SPEI) is the degree of
deviation between precipitation and evapotranspiration by Vicente Serrano et al. [11] to
characterize the drought of a given area. In recent years, the application of SPEI to analyze
regional drought has been increasing [12]. The Drought Severity Index (DSI) was proposed
by Mu et al. [13]. Further, Jakson et al. [14] proposed considering energy and water exchange
between the vegetation, soil and atmosphere and the related Crop Water Stress Index
(CWSI). This is a standardized index according to the variation of the degree of water deficit
in different time series compared with the standard state. Considering the comprehensive
impact of NDVI and LST on drought, Sand Holt et al. [15] proposed the Temperature
Vegetation Dryness Index (TVDI), Carlson et al. [16] proposed the Vegetation Supply Water
Index (VSWI), Wang et al. [17] proposed the Vegetation Temperature Condition Index
(VTCI). Thereafter, the development of a drought index combined with remote sensing
technology involved various meteorological and hydrological elements such as soil water
content, elevation, LST and NDVI. Liu et al. [18] used BP neural network to propose
Integrated Agricultural Drought Index (IDI).

VCI and TCI are easy to calculate and mature in application but data from long time
series are easily affected by non-drought stress factors [19]. DSI has unique advantages
for global drought monitoring but there are great differences in its regional application.
Although it is simple to calculate, it is still affected by non-drought stress factors based on
historical data [20]. Therefore, the above three indices do not have universality in drought
monitoring in agriculture and forestry. IDI has significant advantages for regional drought
simulation but cannot be widely used due to the complexity of its calculation. Most of
the previous studies considered the applicability of the index but not under the influence
of different lower pad surfaces. Therefore, the Sichuan Province, where the lower pad
surface is relatively complex, is selected as the study area. In order to better simulate
drought in the study area, CWSI, VSWI, VTCI and TVDI are selected as the fitting models
for the study area by comprehensively considering multiple drought stress factors. (The
above indices have been widely used due to their simple calculation, easy access to data,
and not being easily affected by non-drought stress factors [21,22]). The correlational
analysis is conducted using the self-calibrated Palmer Drought Severity Index (sc-PDSI) to
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comprehensively select an appropriate drought index for the study area; this will provide a
scientific basis for drought monitoring and management in the study area.

2. Data and Methods
2.1. Overview of the Study Area

The Sichuan Province is selected as the study area in this paper. The Sichuan Province
is located in southwest China and consists of two major areas: the Sichuan Basin and the
Western Sichuan Plateau. The terrain of the Sichuan Province is in the transition zone of
the first and second steps in China and the lower pad surface has various properties. It
is a key development province in southwest China and an economic and cultural center
in the region. It is also an important grain-producing area, meaning Sichuan’s ecological
environment is vulnerable to the impact of human activities. In the past 20 years, the
frequent droughts in the Sichuan Province (represented by high temperatures and drought
in 2001, 2006 and 2022) have caused great losses to agricultural production and people’s
lives in the Sichuan Province.The geographical location of Sichuan Province is shown in
Figure 1.
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Figure 1. Study area land type zoning and selection sample points.

2.2. Data Sources and Research Methods

Using MODIS data and sc-PDSI, the drought model was constructed after preprocess-
ing the data and its accuracy was verified to select a model with good fitting to analyze the
spatial and temporal pattern of drought in the study area. The framework of the study was
divided into three main parts: data preprocessing, model construction and applicability
evaluation, and drought pattern analysis, as shown in Figure 2.
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Figure 2. Flowchart of drought estimation based on MODIS remote sensing data.

2.2.1. Data Sources

ET, PET, NDVI, and LST data from 2001 to 2020 were obtained from MODIS image
data obtained from the National Aeronautics and Space Administration (NASA) (https:
//ladsweb.modaps.eosdis.nasa.gov/, accessed on 15 April to 20 May 2022). Among them,
the MOD11C3 product contains the synthesized LST data on a monthly basis, with a
resolution of 0.05◦ × 0.05◦. MOD13A3 had monthly synthesized NDVI with a resolution of
1 km. MOD16A2 synthesized Evapotranspiration (ET) and Potential Evapotranspiration
(PET) in 8 days with a resolution of 0.5 km. Google Earth Engine (GEE) was used for data
preprocessing and clipping to output Geo-Tiff format with a resolution of 0.5 km. From 2001
to 2020 the sc-PDSI data are from the Climatic Research Unite (https://crudata.uea.ac.uk/,
accessed on 1 May 2022) with a spatial resolution of 0.5◦ × 0.5◦. The average calculated
from 2001 to 2020 is the average PDSI and sampling to 2 km. The annual mean sc-PDSI
from 2001 to 2020 was calculated and the tool “Create fishing nets” in ArcGIS10.8 was used
to create 0.5 km×0.5 km fishing nets and their annotation points in the study area. The
annotated points were used to obtain the attributes of the source data at each annotated
point through the ‘value extraction to point’ tool, and the fishing nets were resampled to
0.5 km by attributing the attributes. The Land cover types data (with a resolution of 1 km)
for the Sichuan Province were obtained from the Resource and Environmental Science
and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on
13 May 2022.). The range of forest, grassland, cultivated land and other land types could be
obtained by reclassification.

2.2.2. Research Methods

Four remote sensing-based indices, i.e., the CWSI, VSWI, TVDI, and VTCI, were
selected to detect the drought in the study area. According to the principle of water balance,
CWSI determines the drought degree of the region according to the soil evapotranspiration
deficit. It also involves a variety of agronomic and meteorological factors with clear physical
meaning and high reliability. CWSI is defined as:

CWSI = 1 − ET/PET (1)

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://crudata.uea.ac.uk/
http://www.resdc.cn
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where ET is the actual evapotranspiration and PET is the potential evapotranspiration.
CWSI returns a value between 0 and 1, the larger the value is, the more arid and water
scarce the region is, and vice versa.

The physical meaning of VSWI is that vegetation index and canopy temperature
remain within a certain range when plants’ water supply is normal, while an insufficient
water supply affects plant growth. In order to reduce water loss, foliar stomata will partially
close, resulting in a canopy temperature rise.

VSWI is defined as:
VSWI = NDVI/Tc (2)

where, NDVI is the normalized vegetation index, and Tc is the canopy temperature of
vegetation. Since it is difficult to obtain the canopy temperature, LST is used to replace it.
VSWI values are between 0 and 1; the smaller the value is, the more arid and water-scarce
the area is, and vice versa.

TVDI (Sandholt et al. [15]) is used in the study of soil moisture. It was found that there
were many contour lines in the feature space of TS-NDVI, based upon which the concept
of TVDI was proposed. Later, Carlson [16] found that when the vegetation coverage of
the study area is large, the scatter plot is obtained by using the LST and NDVI, obtained
from remote-sensing data, as the horizontal and vertical coordinates are triangular. The
value of TVDI was calculated from the vegetation index and the land surface temperature.
Meanwhile, Wang et al. [17] proposed VTCI based on NDVI and LST feature space. The
two are defined as:

VTCI = (LSTNDVI,max − LST)/(LSTNDVI,max − LSTNDVI,min) (3)

VTCI = (LST − LSTNDVI,min)/(LSTNDVI,max − LSTNDVI,min) (4)

LSTNDVI,max = a1 + b1×NDVI (5)

LSTNDVI,min = a2 + b2 × NDVI (6)

where, LST is the surface temperature, and LSTNDVI,min and LSTNDVI,max represent the
corresponding minimum and maximum. They correspond to “dry edge” and “wet edge”
and a1, a2 and b1, b2, are the fitting coefficients of dry and wet edges, respectively. TVDI
and VTCI are both between 0 and 1. The smaller the VTCI value is, the more arid and water
scarce the region is, and vice versa. The smaller the TVDI value, the wetter the region is,
and vice versa.

The Theil-sen Median method, also known as Sen slope estimation, is a robust non-
parametric statistical trend calculation method. This method has high computational
efficiency and is insensitive to measurement errors and outliers so it is often used in trend
analysis of long-time series data [23]. The Mann–Kendall (MK) test is a non-parametric
trend test method for time series, proposed by Mann in 1945 and further improved by
Kendall and Sneyers. It does not require the measurement values to follow a normal
distribution and is not affected by missing values and outliers so it is suitable for trend
significance tests for long time series data. The Sen slope estimation is used to calculate the
trend value, which is usually used in combination with the MK nonparametric test; that is,
the Sen trend value is calculated first and then the trend significance is determined using
the MK method.

According to the center of gravity transfer theory. the geographical center of gravity
can reflect the spatial and temporal distribution characteristics of an element. The relative
transfer distance and direction to its center of gravity can reflect the variation amplitude
and spatial difference of the geographical element in this period. It is often used to reflect
the transformation of the economy and population [22]. The application of this technique
in drought monitoring can effectively describe the spatial location of the center of gravity
shift in arid areas and provide a basis for monitoring research in arid areas.
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3. Suitability Assessment and Drought Classification
3.1. Correlation between Remote-Sensing Drought Index and Sc-PDSI

In order to verify the accuracy of spatial and temporal monitoring of the four remote-
sensing drought indices, a Pearson coefficient correlation analysis was performed between
the four indices and sc-PDSI data (Figure 3). According to the statistical analysis, the
correlation coefficients of CWSI, VSWI, TVDI and VTCI are −0.44, 0.32, −0.28 and 0.28,
respectively. On the whole, CWSI and TVDI are negatively correlated with sc-PDSI while
the other indices are positively correlated with sc-PDSI.
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Among them, only the correlation between CWSI and sc-PDSI passes the significance
test (p < 0.05) in most regions, which indicates that CWSI has a better fit to the inter-annual
variation in soil drought in the study area.

For the correlation coefficients of different land types (Figure 4), it can be seen that
CWSI has a higher fitting degree in the steppe. The mean of the correlation coefficient
of the steppe is 0.48, which passes the significance test (p < 0.05). Although the mean of
woodland is 0.43, it is still much higher than the other three indices. The comprehensive
analysis shows that CWSI has great advantages in drought monitoring and simulation in
the Sichuan Province.

3.2. Drought Classification

The above correlational analysis shows that the CWSI index has better applicability
than other indices in the study area; the CWSI was selected to analyze the spatial and
temporal characteristics of drought in the study area. First of all, the drought grade criteria
should be divided. In this study, sc-PDSI data were used to classify drought grades (Table 1).
Most sc-PDSI data from 2001 to 2020 are between −3 and 2. There are values −3 to −4
in sc-PDSI data of some years, but they are few and they do not exist after the 20-year
mean treatment. Therefore, according to the sc-PDSI criteria for drought classification, the
drought grade is divided into four classes. In addition, 120 sample points are selected
according to the area proportion of different land types in Sichuan Province (Figure 1b).
The specific number of sample points is 48 (45.56%) forestland, 20 (13.85%) arable land,
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38 (25.12%) grassland, 4 (3.23%) building land and 10 (7.86%) other land. Considering the
existence of unsuitable land types such as water area and traffic land and the highest fitting
degree of grassland, the number of selected grassland sites is increased and the above
120 sample sites are obtained through data screening of alternative sample sites. We then
perform a unary linear regression (Figure 5) to obtain the partition thresholds of CWSI
corresponding to different grades (Table 1).
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Table 1. Drought categories.

Drought Rating sc-PDSI CWSI

No drought >0 0~0.59
Mild drought −1~0 0.59~0.72

Moderate drought −2~−1 0.72~0.85
Severe drought −2~−3 0.85~0.92
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4. Spatial-Temporal Pattern Analysis of Drought in the Sichuan Province
4.1. Variation Characteristics of Drought Time

According to the statistics of CWSI and sc-PDSI index data from each year, Figure 6
shows that the fluctuation range of CWSI is between 0.53 and 0.62 and the fluctuation
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range of sc-PDSI is between −1.48 and 1.21. CWSI shows an obvious downward trend
(p < 0.05), while sc-PDSI shows an obvious upward trend (p < 0.05), indicating that CWSI
is consistent with sc-PDSI in terms of the time development trend of drought; that is, the
trend of drought in the study area slow down. Based on previous studies, the cumulative
anomaly value is determined to be stable; that is, the changing trend does not pass the
significance test p < 0.05, which is regarded as the turning interval. According to Figure 6,
the drought trend of CWSI and sc-PDSI tend to be consistent, with CWSI on the whole in
a downward trend and sc-PDSI in an upward trend (the smaller the CWSI value is, the
wetter it is, while the larger sc-PDSI value is, the wetter it is), so the drought situation has
been greatly improved. At the same time, the drought and wetness transition intervals of
the two indices are both in 2012–2013 and there are significant abrupt changes in 2006 and
2007 (drought caused by high temperatures in the study area in 2006 and 2007). Therefore,
the reliability of CWSI for drought monitoring and simulation in the study area is strong.
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4.2. Spatial Variation Characteristics of Drought

Figure 7 shows the spatial distribution of the multi-annual mean of CWSI and the
spatial distribution of the drought grade from 2001 to 2020. The available CWSI values
ranged from 0.06 to 0.91. Most of the low values of CWSI are concentrated in the central belt
of Sichuan Province; namely, the junction of the plateau and basin. The high-value areas
are concentrated in Panzhihua, Xichang, Chengdu and other cities and their surrounding
areas, as well as the hinterland of the western Sichuan Plateau. The spatial pattern of high
values in the plateau basin junction zone, low values in the two sides of the plateau basin,
and low values in the southern Sichuan plateau is generally formed. In terms of the spatial
distribution of drought classes, Panzhihua City and the Liangshan Prefecture are the most
severe drought areas in the study area, followed by Chengdu City and its surrounding
areas and the central region of the Garze Prefecture. The border areas of the plateau basin
and Luzhou, Yibin, Dazhou, Bazhong, Guang’an and part of the western Garze Prefecture
were drought-free areas. From Figure 7, it can be found that the proportion of mild drought
in the total area of the CWSI drought spatial distribution is the largest (60%), which is
mainly concentrated in the western Sichuan plateau, followed by the central area of the
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Sichuan Basin. Secondly, the percentage that is drought-free of the total area is relatively
large (33%), and mostly concentrated in the border zone between the western Sichuan
Plateau and the Sichuan Basin (western Aba Prefecture, Ya’an, Leshan City, and northern
Liangshan Prefecture). The area of moderate drought is relatively small (6%), mainly
concentrated in Panzhihua City, the surrounding areas of Chengdu City and the southern
areas of the Liangshan Prefecture. The area of severe drought is the smallest (1%) and is
mostly distributed in Panzhihua City and a small part of the southern Liangshan Prefecture.
Based on the above analysis, the percentages of drought grades in the study area are, in
descending order, mild drought > no drought > moderate drought > severe drought.
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4.3. Spatial-Temporal Evolution of Drought in the Sichuan Province

The Sen trend and Mann–Kendall method is used to obtain the variation trend of
CWSI and the spatial distribution of its significance Figure 8a,b). According to Table 2, the
spatial distribution of the trend and significance of CWSI are superimposed and analyzed
to obtain the spatial distribution of the detailed changes of drought (Figure 8).

Table 2. Category of significant variation of drought trend.

CWSI Slope Z Trend Type Trend Features

Slope > 0
2.58 < |Z| 3 Significantly dried

1.96 < |Z| 2.58 or less 2 Dry
1.65 < |Z| 1.96 or less 1 Slightly dried

Slope = 0 Z 0 Stable and unchanged

Slope < 0
1.65 < |Z| 1.96 or less −1 Slightly wet
1.96 < |Z| 2.58 or less −2 Wet

2.58 < |Z| −3 Significantly wet

According to Figure 8, it can be seen that the change rate of CWSI from 2001 to 2020
ranged from −0.0366 to 0.0208 and the overall spatial distribution show that the drought
mitigation degree in the western region was greater than in the eastern region (Figure 8a).
The areas with significant drought changes in the last 20 years are the eastern part of
the Sichuan Basin and the northern region of the Garze Prefecture and Aba Prefecture
(Figure 8b). Most of the areas with significant changes are “significantly wetter” and the
proportion of the area is the largest (46.5%) compared with other areas, followed by “stable
and unchanged” (25%), and “wet”, “slightly wet”, “slightly dried”, “dry” and “significantly
dried”. Among them, the wetting trend accounts for 79.5% of the total area while the drying
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trend accounts for only 1.5%. The comprehensive analysis shows that the trend of drought
change in the study area is overall wetting, indicating that the drought situation in the
study area is getting better overall from 2001 to 2020, and the drought level is easing in
most areas (Figure 8c).
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4.4. Analysis of the Change of the Drought Center of Gravity in the Sichuan Province

The larger the CWSI value, the greater the degree of drought in the region, so this
paper selects the CWSI of drought-prone areas (CWSI > 0.72) as the weight and calculates
the distribution of the center of gravity of drought-prone areas every 4 years.

The Gration trajectory of the center of gravity in the drought-prone areas is shown
in Figure 9. From the figure, it can be seen that the center of gravity in the drought-prone
region of CWSI is concentrated between 101.8◦ E to 103.6◦ E and 28.8◦ N to 29.8◦ N. On
the whole, the center of gravity shifts southward in latitude and westward in longitude.
In terms of spatial distribution, the center of gravity shifts from the area around Chengdu
in 2001 to Leshan in 2020. Although the drought-prone areas are not distributed in the
driest regions, the trajectory of their center of gravity shift can reveal the pattern of drought
migration. The overall migration trend of drought-prone areas is from the northeast to the
southwest, and then to the northeast.
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5. Discussion

The correlation analysis between the four indices and sc-PDSI showed that CWSI
is more suitable for drought monitoring in the study area, followed by VSWI. However,
since the VSWI index is concentrated in the range 0~0.2, they lack discriminative power
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for drought class classification, and therefore, cannot meet the adaptation requirements
of the study area. CWSI has a greater advantage in regional drought monitoring because
ET/PET reflects the energy and water exchange between vegetation, soil, and atmosphere
and can better describe soil moisture information [24,25]. NDVI/LST reflects the stress
effect of drought on vegetation and can better reflect the effect of soil water deficit on
vegetation growth [26,27]. However, it has also been suggested that the dry and wet side
fitting equations of LST-NDVI and VTCI of LST and NDVI in TVDI are more influenced by
regional differences and vegetation types, and the dry and wet side fitting is not good [28].
Therefore, the drought monitoring of TVDI and VTCI in the study area is not effective and
widely affected by regional differences.

The lowest values of CWSI are concentrated in the northwestern part of Sichuan. This
is mainly due to the low local temperature, sufficient precipitation, abundant groundwater
sources, and a high proportion of irrigated farmland [8]. Similarly, in other areas of the
study area with irrigated farmland networks, there are lower values of CWSI. The high
values of CWSI are concentrated in Panzhihua city because the subtropical climate of
Panzhihua city is controlled by subtropical high pressure, so the climate is dry and rainy,
with high variability in the subsurface layer and increased evapotranspiration, resulting in
high values of regional CWSI. Since CWSI is based on the vegetation evapotranspiration
theory, the external water supply can increase the actual evapotranspiration when the
actual evapotranspiration does not reach PET; this may lead to lower CWSI values. CWSI
is calculated based on canopy temperature. Canopy temperature is inversely proportional
to leaf stomatal closure and evapotranspiration. Stomatal closure is a result of crop water
stress, which in turn reduces the transpiration rate of the plant. A low transpiration
rate reduces plant cooling; therefore, an increase in canopy temperature is seen as an
indicator of water stress. If a meteorological drought occurs due to insufficient precipitation,
climate change-induced temperature increases will exacerbate the drought by increasing
evapotranspiration. The areas with significant changes in drought trends in Sichuan
Province (the eastern part of Sichuan Province, i.e., the Sichuan Basin area) are mostly
monsoonal in climate, and their high precipitation and evapotranspiration are highly
adaptable to CWSI, forming the advantage of CWSI in drought monitoring simulations in
Sichuan Province.

The drought in the study area is mainly concentrated in the southern part of Panzhihua
city and its surrounding areas. As a traditional industrial city, the mining of mineral
resources in the Panzhihua area has to some extent destroyed the nature of the substratum
and weakened the soil water exchange between ET/PET, thus exacerbating the drought in
the area. As a result, the drought in the region has been aggravated by human actions. It
is closely followed by the central areas of Chengdu and Garze. The drought in Chengdu
and its surrounding areas is caused by the change in the nature of the substratum due to
the combined effects of urban expansion and the urban heat island effect. However, the
drought in Garze is caused by natural factors such as climate and topography; the sparse
precipitation and long sunshine hours in the plateau region result in reduced soil moisture.
Therefore, the drought monitoring of CWSI shows the drought status. The drought-free
areas in the study area are mainly concentrated at the junction of the western Sichuan
plateau and the Sichuan basin (western Aba, Ya’an, Leshan, and northern Liangshan). The
area is dominated by forest cover with high vegetation coverage and significant elevation
differences; high precipitation results in good soil moisture retention. In general, the
CWSI results of drought monitoring in Sichuan Province show a good trend, thanks to the
emphasis on environmental protection in recent years; for example, the implementation of
the policy of “returning farmland to forest and grass” and “Sichuan Ecological Protection
Red Line”. As a result, the ecological environment in Sichuan province has been improving
and the drought has been alleviated. The center of gravity of drought areas shifted from
northeast to southwest to northeast. The specific shift is divided into two phases, 2001–2009
and 2010–2020, reflecting the trend of the center of gravity shifting from the area around
Chengdu to southwest Sichuan and then back to Chengdu. This effect is mainly due to
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the over-exploitation of mineral resources and environmental changes caused by human
activities in Panzhihua City before 2009, which formed the drought center and easily shifted
to the southwest. From 2010 to 2020, the South Asian high-pressure and subtropical high-
pressure systems were active, resulting in high temperatures in the interior. In addition,
the eastern plain of Sichuan Province is densely populated, with over-exploited resources
and a lack of water conservation projects. Due to natural and man-made causes, drought
has shifted eastward.

Different drought monitoring indices have different adaptation statuses in different
study areas. In this paper, four drought monitoring indices are constructed, their correlation
with sc-PDSI is verified, and the more appropriate CWSI index is selected as the drought
monitoring index for the study area. Although index screening is conducted based on the
lower pad surface of the study area, it is limited to four factors, ET, PET, NDVI and LST,
to analyze the degree of drought. The effects of other factors such as precipitation [29],
extreme hazards [30] and topography [31] on drought conditions are not considered.

6. Conclusions

In most areas of the Sichuan Province, woodlands and grasslands are more sensitive
to water exchange between vegetation, soil and atmosphere, which means that ET and PET
can better reflect the physical processes and thus CWSI has a greater advantage for drought
monitoring simulations. Although VSWI has a high correlation in correlation analysis,
it is difficult to classify drought classes due to its over-concentration (mostly between 0
and 0.2). The fitted equations of dry and wet edges of TVDI and VTCI are influenced by
regional differences and vegetation types, and the dry and wet edges are not well fitted on
a large scale. Therefore, CWSI is selected as the best-fitting drought monitoring index in
the study area.

The drought monitoring results show that the drought conditions in the study area
are gradually improving. From 2001 to 2011 it was relatively dry, with the most severe
years ranging from 2006 to 2007 (influenced by the high-temperature drought in Sichuan
in 2006); 2012 to 2013 was the transitional interval between dry and wet in the study area.
From 2014 to 2020, the study area showed a stable wet trend, especially in the eastern part
of the basin. This is mainly due to the improving environmental and drought conditions
in Sichuan Province as a result of China’s ecological protection policies. In the eastern
plateau, drought occurs only in the central part of the Garze Prefecture, and the drought-
intensive areas of the Sichuan Basin are concentrated in Chengdu City and its surrounding
areas. In general, Panzhihua City and the southern part of Liangshan Prefecture are the
most severely drought-stricken areas. The ratio of drought-rated areas is as follows: mild
drought > no drought > moderate drought > severe drought.

The overall drought trend in the study area is improving and the drought mitigation
trend is effective, especially in the Sichuan basin. Drought-prone areas are concentrated
in the range of 101.8◦ E–103.6◦ E and 28.8◦ N–29.8◦ N. The center of gravity of drought in
drought-prone areas tends to move to the southwest, showing a shift from northeast to
southwest to northeast.
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