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Abstract: Extreme climate events have a significant impact both on the ecological environment
and human society, and it is crucial to analyze the spatial–temporal evolutionary trends of extreme
climate. Based on the RClimDex model, this study used trend analysis, probability density function,
and wavelet coherence analysis to analyze the spatiotemporal variation characteristics of extreme
climate indices and their response mechanisms to teleconnection patterns. The results of the study
show that: (1) All the extreme precipitation indices, except max 1-day precipitation amount, max
5-day precipitation amount, and extremely wet days increased, with no significant abrupt changes.
The extreme warm indices increased and extreme cold indices decreased. The years with abrupt
changes were mainly distributed between 1988 and 1997. (2) Spatially, the extreme precipitation
indices of most meteorological stations decreased, except for the simple daily intensity index and
the number of very heavy precipitation days. The extreme warm indices of most meteorological
stations increased, and the extreme cold indices decreased. (3) Except for consecutive dry days,
the frequency of extreme precipitation indices increased significantly, the severity and frequency
of high-temperature events increased, while the frequency of low-temperature events increased,
but the severity decreased. The results of rescaled range (R/S) analysis indicated that the climate
in the Beijing–Tianjin–Hebei region will further tend to be warm and humid in the future. (4) The
Polar/Eurasia Pattern, the East Atlantic Pattern, the Arctic Oscillation, and the East Atlantic/West
Russian Pattern were most closely associated with extreme climate events in the Beijing–Tianjin–Hebei
region. The multi-factor combination greatly enhanced the explanatory power of the teleconnection
pattern for extreme climates.

Keywords: extreme climates; teleconnection patterns; spatio–temporal variation; correlation analysis;
Beijing–Tianjin–Hebei

1. Introduction

Global climate change is one of the biggest and most complex challenges of our
times [1–3]. Global warming has increased the frequency and intensity of extreme climate
events since the 20th century, which has had a serious impact on the ecological environment,
the economy, and society [4–8]. The Intergovernmental Panel on Climate Change (IPCC)
Sixth Assessment Report [9] has also pointed out the evidence of observed changes in
extreme events such as heavy rainfall, heat waves, and high temperatures. The likelihood
of these events has increased over the last 50 years due to global warming; therefore,
assessing the change in extreme climate events has become one of the widely discussed
issues globally.

A number of scholars have analyzed extreme climate events on both local and global
scales. Alexander et al. [10], Diffenbaugh et al. [11], and Yuan et al. [12] have analyzed
the changes on a global scale and pointed out that extreme climate events have changed
significantly with an increasing warming and wetting trend. On a regional scale, the
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studies [13,14] have found an increase in wet days and a decrease in dry days in West
Africa, which has led to an increase in overall humidity levels in the atmosphere. In
Indonesia, the extreme temperature indices showed an increasing trend, while the change
in extreme precipitation indices did not vary significantly and the climate tended to be
warm and humid [15]. Australia’s extreme temperature events have increased significantly
in the 21st century, but the change in extreme precipitation events was observed to be
insignificant, and the climate tends to be warm and dry [16].

The study of extreme climate events in China has increased recently. Han et al. showed
that extreme precipitation events have followed an increasing trend throughout mainland
China, and the increase is much more pronounced in arid areas [17]. According to Guo
et al. [18], extreme warm indices in northeast China have increased, while extreme cold
indices and extreme precipitation indices have decreased, excluding consecutive dry days
(CDD). Based on the regional model (RegCM4), Wu et al. simulated extreme climate
changes in ten river basins in China under the global warming scenario of 1.5–4 ◦C and the
results projected an increase in warm and wetness indices [7].

Changes in extreme climate are constrained by many factors [19–21]. Atmospheric
circulation factors, mainly through the form of teleconnection, are the main constraints of
extreme climate change [22,23]. Many scholars have explored the response relationship
between extreme climate events and teleconnection patterns, thus providing a more com-
prehensive understanding of extreme climate events [23–32]. However, it should be noted
that the changes in extreme climate events are very complex; their occurrence patterns and
influencing mechanisms are not yet completely clear [33].

The “Plan of Beijing-Tianjin-Hebei Collaborative Development” clearly pointed out
that the ecological environment is the foundation of the integrated coordinated develop-
ment of Beijing–Tianjin–Hebei, and it was suggested to build the ecological system of the
Beijing–Tianjin–Hebei city cluster. The Beijing–Tianjin–Hebei cluster, the capital circle of
China, has experienced an increase in the frequency of extreme climate events since 1980s,
with high temperatures and drought disasters affecting the crop phenological seasons and
ecological environment of the region [34]. Some studies have analyzed extreme climate
events in this region. Zhao et al. [35], and Wang et al. [36] pointed out that extreme heat
events increased in the Beijing–Tianjin–Hebei region during 1961–2018, and that the size
and location of a city determined its contribution to extreme heat. Tong et al. [37] analyzed
the climate extremes in the Beijing–Tianjin–Hebei region from 1959 to 2018 and found that
the climate tends to be warm and dry, while the East Asian summer monsoon and rapid
urbanization may be the main influencing factors. Song et al. [38] showed that precipitation
extremes oscillated significantly in the Beijing–Tianjin–Hebei region during 1958–2017, and
were strongly correlated with ENSO, IOD, and NAO. Overall, the previous studies either
selected a single extreme climate index or a limited number of influencing factors, and the
research on the response relationship between extreme climate and teleconnection patterns
is also limited.

In this paper, we calculated the extreme climate indices (nine extreme temperature
indices and nine extreme precipitation indices) of the Beijing–Tianjin–Hebei region based
on the RClimDex model, comprehensively analyzed the spatio–temporal variation charac-
teristics and their response mechanisms to nine teleconnection patterns at locations such
as middle and high latitudes in the northern hemisphere using trend analysis, the Pettitt
mutation test, the probability density function, rescaled range analysis (R/S), correlation
analysis, and wavelet coherence analysis to provide a theoretical basis for local disaster
reduction and prevention work.

2. Data and Methods
2.1. Study Area

The Beijing–Tianjin–Hebei region is located to the north of the North China Plain
(NCP), between 113◦27′ E–119◦50′ E, 36◦03′ N–42◦40′ N. In addition, the region is located
west of the Bohai Sea, east of the Taihang Mountains, and south of the Yan Mountains,
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including Beijing, Tianjin, and Hebei Province, with a total area of about 2.18 × 105 km2

(Figure 1). The climate of the region falls within the temperate semi-humid and semi-
arid continental climates, characterized by dry windy springs, hot wet summers, and
cold dry winters [35,39]. The average annual temperature of this region is 10–11 ◦C,
while the variation in annual precipitation ranges between 400 and 800 mm, with four
distinct seasons. During recent decades, particularly in the years experiencing significantly
increased temperatures, extreme weather and climate events (e.g., extreme precipitation,
frozen rain, and droughts) have also become frequent in this region.

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 25 
 

 

2. Data and Methods 

2.1. Study Area 

The Beijing–Tianjin–Hebei region is located to the north of the North China Plain 

(NCP), between 113°27′ E–119°50′ E, 36°03′ N–42°40′ N. In addition, the region is located 

west of the Bohai Sea, east of the Taihang Mountains, and south of the Yan Mountains, 

including Beijing, Tianjin, and Hebei Province, with a total area of about 2.18 × 105 km2 

(Figure 1). The climate of the region falls within the temperate semi-humid and semi-arid 

continental climates, characterized by dry windy springs, hot wet summers, and cold dry 

winters [35,39]. The average annual temperature of this region is 10–11 °C, while the var-

iation in annual precipitation ranges between 400 and 800 mm, with four distinct seasons. 

During recent decades, particularly in the years experiencing significantly increased tem-

peratures, extreme weather and climate events (e.g., extreme precipitation, frozen rain, 

and droughts) have also become frequent in this region. 

 

Figure 1. The location of the Beijing–Tianjin–Hebei region of China. 

2.2. Data Source and Processing 

Meteorological data were obtained from the China Meteorological Data Network 

(http://data.cma.cn/, accessed on 21 February 2022), including daily maximum tempera-

ture, daily minimum temperature, and daily precipitation data from 39 meteorological 

stations (25 in the Beijing–Tianjin–Hebei region, and 14 in surrounding areas) from 1980 

to 2019. The meteorological data have a total of 1608 data missing. Studies have shown 

that the linear interpolation method can effectively estimate meteorological data [40,41]. 

Therefore, the linear interpolation method was used to interpolate missing data to ensure 

the continuity and integrity of the meteorological data. The data of monthly teleconnec-

tion indices for the period 1980-2019 were obtained from the Climate Prediction Center 

(https://www.cpc.ncep.noaa.gov/, accessed on 12 February 2022), including the East At-

lantic Pattern (EA), the East Atlantic/West Russian Pattern (EAWR), the North Atlantic 

Oscillation (NAO), the Pacific North American Pattern (PNA), the Polar/Eurasia Pattern 

(PolarEA), the Scandinavian Pattern (SCAND), the Western Pacific Pattern (WP), the El 

Nino–Southern Oscillation (ENSO 3.4), and the Arctic Oscillation (AO), which affect 

global and regional climate [42]. Land cover data for the Beijing–Tianjin–Hebei region in 

Figure 1. The location of the Beijing–Tianjin–Hebei region of China.

2.2. Data Source and Processing

Meteorological data were obtained from the China Meteorological Data Network (http:
//data.cma.cn/, accessed on 21 February 2022), including daily maximum temperature,
daily minimum temperature, and daily precipitation data from 39 meteorological stations
(25 in the Beijing–Tianjin–Hebei region, and 14 in surrounding areas) from 1980 to 2019. The
meteorological data have a total of 1608 data missing. Studies have shown that the linear
interpolation method can effectively estimate meteorological data [40,41]. Therefore, the
linear interpolation method was used to interpolate missing data to ensure the continuity
and integrity of the meteorological data. The data of monthly teleconnection indices for the
period 1980-2019 were obtained from the Climate Prediction Center (https://www.cpc.ncep.
noaa.gov/, accessed on 12 February 2022), including the East Atlantic Pattern (EA), the East
Atlantic/West Russian Pattern (EAWR), the North Atlantic Oscillation (NAO), the Pacific
North American Pattern (PNA), the Polar/Eurasia Pattern (PolarEA), the Scandinavian
Pattern (SCAND), the Western Pacific Pattern (WP), the El Nino–Southern Oscillation
(ENSO 3.4), and the Arctic Oscillation (AO), which affect global and regional climate [42].
Land cover data for the Beijing–Tianjin–Hebei region in 2020 were sourced from the Global
Land Cover Data Product Service website of the National Basic Geographic Information
Center (DOI: 10.11769, accessed on 28 May 2022), with a spatial resolution of 30 m.

2.3. Methods
2.3.1. Selection of Extreme Climate Indices

The RClimDex model is an R-based editor developed by the Canadian Research Centre
that uses daily maximum temperature, daily minimum temperature, and daily precipitation
data to compute the 27 core indices of extreme climate (16 extreme temperature indices and

http://data.cma.cn/
http://data.cma.cn/
https://www.cpc.ncep.noaa.gov/
https://www.cpc.ncep.noaa.gov/
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11 extreme precipitation indices) [43]. This paper used the RClimDex model to check and
control the data quality of the selected meteorological stations, including whether the daily
precipitation was greater than 0, whether the daily minimum temperature was greater than
the daily maximum temperature, and outlier testing, etc. Due to the excessive number of
indices and the close relationship between each other, 18 representative indices (9 extreme
temperature indices and 9 extreme precipitation indices) were selected using the Principal
Component Analysis Method (PCA) for subsequent research (Table 1).

Table 1. Selection of extreme climate indices in this study.

Type ID Indicator Name Definition Unit

Ex
tr

em
e

Pr
ec

ip
it

at
io

n
In

di
ce

s Intensity indices

RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm

RX5day Max 5-day precipitation amount Monthly maximum consecutive
5-day precipitation mm

SDII Simple daily intensity index
Annual total precipitation divided by
the number of wet days (defined as
PRCP >= 1.0 mm) in the year

mm/d

Relative indices
R95P Very wet days Annual total PRCP when RR >

95th percentile mm

R99P Extremely wet days Annual total PRCP when RR >
99th percentile mm

Absolute indices
R20mm Number of very heavy

precipitation days
Annual count of days when PRCP >=
20 mm d

R25mm Number of extreme
precipitation days Number of days with PRCP >= 25 mm d

Duration indices
PRCPTOT Annual total

wet-day precipitation
Annual total PRCP in wet days (RR >=
1 mm) mm

CDD Consecutive dry days Maximum number of consecutive days
with RR < 1 mm d

Ex
tr

em
e

Te
m

pe
ra

tu
re

In
di

ce
s

Absolute indices FD0 Frost days Annual count when TN(daily
minimum) < 0 ◦C d

Extreme-value
indices

TXn Min Tmax Monthly minimum value of daily
maximum temp

◦C

TNn Min Tmin Monthly minimum value of daily
minimum temp

◦C

Relative indices

TX10P Cool days Percentage of days when TX <
10th percentile d

TN10P Cool nights Percentage of days when TN <
10th percentile d

TX90P Warm days Percentage of days when TX >
90th percentile d

TN90P Warm nights Percentage of days when TN >
90th percentile d

Other indices

DTR Diurnal temperature range Monthly mean difference between TX
and TN

◦C

GSL Growing season length

Annual (1st Jan to 31st Dec in NH, 1st
July to 30th June in SH) count between
first span of at least 6 days with TG >
5 ◦C and first span after July 1 (January
1 in SH) of 6 days with TG < 5 ◦C

d

PRCP is an abbreviation of precipitation; RR is an abbreviation of daily precipitation.

2.3.2. Principal Component Analysis Method (PCA)

The principal component analysis method is a multivariate statistical analysis method
that transforms multiple original variables into a few unrelated important variables through
linear transformation [44]. It can reduce and simplify the original data on the premise of
retaining the important information of variables [44–46]. The main principles are:

Assume that the original variable is x1, x2, . . . , xj, and the new variable obtained after
PCA is z1, z2, . . . , zm, (m < j). First, standardize the original data, obtaining the standardized
matrix X:

yij =
(
xij −

_
xj
)
/Sj, (i = 1, 2, · · · I; j = 1, 2, · · · J) (1)
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where
_
xj and Sj are the sample mean and sample standard deviation of the n-th index,

respectively.
Calculate the correlation matrix R, and then calculate J eigenvalues λJ (λ1 ≥ λ2 ≥···≥ λJ),

and eigenvector a1, a2, ···, aJ of R.
Calculate contribution rate (eJ) and cumulative contribution rate (Ek):

eJ = λJ/
m

∑
k=1

λk (2)

Ek =
m

∑
k=1

λk/
J

∑
j=1

λj (3)

Calculate the principal component:

zk =
J

∑
j=1

ajxj, (j = 1, 2, · · · J; k = 1, 2, · · · J) (4)

Generally, we select the first m(m < j) principal components corresponding to the
eigenvalues whose cumulative contribution rate is greater than 80%.

2.3.3. Trend Analysis

Sen’s slope estimator is a robust nonparametric statistical method. When compared
with the linear trend of least square fitting, Sen’s slope estimator, which is often used in
trend analysis of long time series data, can avoid data loss in time series and eliminate the
effect of outliers [18,47] (Equation (5)).

Sen = Median
( xj − xi

j− i

)
(5)

where Sen is the trend of extreme climate indices; i and j are time series, respectively; xi
and xj represent the value of extreme climate index at the time i and j. When Sen > 0, the
extreme climate index shows an increasing trend and vice versa.

The Mann–Kendall (M-K) test was used to test the significance of increasing or de-
creasing trends of extreme climate indices [48]. When the test statistic (MMK) was greater
than 1.96 in absolute value, it was considered significant based on the 95% significance
level test.

2.3.4. Pettitt Mutation Test

The Pettitt mutation test method, a non-parametric test method, is widely used in time
series mutation point testing [49]. For climate series x with a sample size of n, a statistical
test was constructed (Equation (6)).

Sk = 2
k

∑
i=1

ri − k(n + 1), k = 1, . . . , n (6)

where ri is the rank at time i, and k is the length of the time series. If significant mutations
occur in year t, then:

St = max
1≤t≤n

|Sk|, |St| ≥ Sα (7)

where Sα is the critical Pettitt test value of the corresponding sample number.

2.3.5. Rescaled Range (R/S) Analysis

In this study, rescaled range (R/S) analysis was used to continuously predict the
change in trend of extreme climate indices in Beijing–Tianjin–Hebei. Rescaled range
analysis is a non-parametric statistical method proposed by British scientist Hurst, which
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uses the Hurst index to quantitatively describe the continuity of time series [50]. The main
principles are:

For a time series x1, x2, . . . , xn (n is the length of the time series), for any positive
integer f ≥ 1, the mean sequence is:

_
x f =

1
f

n

∑
i=1

xi, ( f = 1, 2, · · · , n) (8)

Cumulative deviation:

X(t, f ) =
t

∑
u=1

(
xµ −

_
x f

)
, (1 ≤ t ≤ f ) (9)

Range:
R( f ) = max

1≤t≤ f
X(t, f )− min

1≤t≤ f
X(t, f ) (10)

Standard deviation:

S( f ) =

[
1
f

f

∑
µ=1

(
xµ −

_
x f

)2
] 1

2

(11)

Then, the following relationship was defined in Equation (12):

R( f )
S( f )

= (c f )H (12)

where c is a constant and H is the Hurst index of the time series, taking values in the range
(0, 1). When H = 0.5, the time series is completely independent and the future changes
are random; when 0 < H < 0.5, the time series shows anti-continuity, the overall trend of
future changes is opposite to that of the past, and the closer H is to 0, the stronger the
anti-continuity is; when 0.5 < H < 1, the time series has continuity, the trend of future
changes is consistent with the past, and the closer H is to 1, the stronger the continuity is.

2.3.6. Correlation Analysis

The Pearson correlation coefficient method was used to analyze the correlation be-
tween extreme climate events and teleconnection patterns and t-test was used to calculate
the significance of the correlation coefficient.

In addition, the correlation between extreme climate events and teleconnection pat-
terns in time and frequency space was further analyzed using wavelet transform coherence
(WTC) and multiple wavelet coherence (MWC). The significance level of the correlation
was determined by Monte Carlo methods [51,52]. Given time series X and Y, the WTC
(Equation (13)) was defined by Torrence and Webster [53], and Grinsted et al. [51] as follows:

R2
n(S) =

∣∣S(s−1WXY
n (s)

)∣∣2
|S(s−1|WX

n (s)|)|2 − |S(s−1|WY
n (s)|)|

2 (13)

where S is a smoothing operator defined as:

WXY
i (s) = WX

i (s) ·WY
i ∗ (s) (14)

where s is the wavelet scale; * denotes the complex conjugate. Wavelet transform coherence
takes values in the range [0, 1], with 0 indicating that the two series are uncorrelated and 1
indicating that they are fully correlated.
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Multiple wavelet coherence can extend wavelet coherence from two variables to
multiple variables. Given a predictor variable set X (X = {X1, X2, . . . , Xq}) and a response
variable Y, the MWC (Equation (15)) was defined as follows [51,53,54]:

ρ2
m(s, τ) =

↔
w

Y,X
(s, τ)

↔
w

X,X
(s, τ)−1↔w

Y,X
(s, τ)∗

↔
w

Y,Y
(s, τ)

(15)

where
↔
w

Y,X
(s, τ) is the smoothed cross-wavelet power spectra between Y and X;

↔
w

X,X
(s, τ)

is the smoothed auto- and cross-wavelet power spectra among X;
↔
w

Y,Y
(s, τ) is the smoothed

wavelet power spectrum of Y; and
↔
w

Y,X
(s, τ)∗ is the complex conjugate of

↔
w

Y,X
(s, τ).

The 95% significance level of the WTC and MWC were calculated using Monte Carlo
method [51,54].

3. Results
3.1. Spatial–Temporal Variation Characteristics of Extreme Climates
3.1.1. Spatial–Temporal Variation of Extreme Precipitation Indices

The variation trend of the extreme precipitation indices in Beijing–Tianjin–Hebei for
the period 1980-2019 is shown in Figure 2. There was an increasing trend observed in
PRCPTOT (0.83 mm·a−1), R95P (0.27 mm·a−1), CDD (0.26 d·a−1), R20mm (0.02 d·a−1),
R25mm (0.02 d·a−1), and SDII (0.02 mm/d·a), but their effect was non-significant at a 95%
confidence level (Figure 2a). Only three variables, R99P, RX1day, and RX5day, showed a
decreasing trend at a rate of−0.26 mm·a−1,−0.07 mm·a−1, and−0.03 mm·a−1, respectively,
which were also non-significant. There were also no significant abrupt changes in the
extreme precipitation indices in the Beijing–Tianjin–Hebei region (Figure 2b) for the period
1980 to 2019.
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Figure 2. Trends (a) and abrupt years (b) of extreme precipitation indices in the Beijing–Tianjin–Hebei
region from 1980 to 2019 (confidence level 95%).

The spatial pattern of extreme precipitation indices across Beijing–Tianjin–Hebei for
the period 1980–2019 is shown in Figure 3. All of the extreme precipitation indices, except
CDD, showed an increasing trend from northwest to southeast. The detailed information
of the extreme precipitation index at each station is shown in Table 2.
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(c) RX5day; (d) PRCPTOT; (e) CDD; (f) R95P; (g) R99P; (h) R20mm; (i) R25mm.

For the intensity indices (Figure 3a–c), the SDII of 60% (15/25) of the meteorological
stations showed an increasing trend, among which the stations passing the 95% significance
test were mainly concentrated in the northwest Hauts Plateau and the central region.
RX1day, and RX5day decreased in most regions, accounting for 76% (19/25) and 60%
(15/25) of Beijing–Tianjin–Hebei stations, respectively. Only one station in the central
region had a downward trend of RX1day, and its effect was found to be significant at a 95%
significance test.
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Table 2. Extreme precipitation indices at 25 meteorological stations in the Beijing–Tianjin–Hebei
region from 1980 to 2019.

Stations RX1day
(mm)

RX5day
(mm)

SDII
(mm/d)

R95P
(mm)

R99P
(mm)

R20mm
(d)

R25mm
(d)

PRCPTOT
(mm)

CDD
(d)

Zhangbei 37.82 60.00 7.20 84.41 26.67 3.28 1.80 373.66 79.30
Weixian 38.67 58.42 7.56 88.93 24.51 4.45 2.73 393.74 68.60
Xingtai 79.61 125.82 11.29 145.27 50.80 6.55 4.80 492.88 71.33
Fengning 47.57 74.84 8.67 105.41 30.52 5.18 3.40 440.55 91.95
Weichang 46.31 74.74 8.09 107.70 32.76 5.00 3.48 431.36 76.85
Zhangjiakou 39.01 60.42 7.71 88.21 24.32 4.33 2.63 386.26 75.25
Huailai 41.48 59.89 8.04 83.84 26.05 4.18 2.38 373.53 85.35
Yanqing 48.16 74.06 8.99 102.15 30.91 5.48 3.50 432.47 82.78
Miyun 87.09 129.44 12.52 179.39 56.78 8.98 6.78 617.43 83.00
Chengde 54.45 88.26 9.91 122.28 35.81 6.93 4.80 493.29 75.75
Zunhua 85.31 127.75 12.91 182.76 54.69 9.75 7.13 653.39 73.68
Qinglong 90.31 140.78 12.68 196.70 67.75 9.00 6.93 651.96 77.63
Qinhuangdao 98.70 138.81 13.33 183.61 61.79 8.90 6.83 604.53 72.78
Beijing 73.19 114.26 11.83 145.78 48.42 8.00 5.80 525.94 81.85
Bazhou 72.96 107.32 11.50 135.11 39.41 6.60 5.00 468.86 84.68
Baodi 81.17 121.56 12.53 153.47 51.52 8.33 6.40 553.77 78.93
Tianjin 85.68 114.24 11.99 153.04 50.40 7.35 5.43 510.46 74.05
Tangshan 75.77 111.18 12.78 156.37 47.78 8.60 6.80 572.61 71.20
Laoting 88.22 128.91 12.86 173.63 54.93 8.40 6.53 573.96 63.53
Baoding 68.87 101.46 11.40 131.95 42.81 7.23 5.38 485.88 79.38
Raoyang 84.65 117.46 11.80 147.42 56.61 7.05 5.08 484.75 79.23
Botou 90.05 126.11 12.56 162.10 56.70 7.55 5.65 520.00 75.75
Tanggu 88.76 122.90 12.47 165.39 56.62 7.55 5.78 537.75 68.30
Huanghua 85.22 119.91 12.35 158.92 52.45 7.85 5.98 541.53 68.40
Nangong 70.23 104.14 10.77 128.03 44.43 6.48 4.78 450.78 73.35

For the duration indices (Figure 3d,e), 60% (15/25) and 52% (13/25) of the stations
showed a downward trend for PRCPTOT and CDD, respectively, and the effect of this
trend was found to be non-significant.

For the relative indices (Figure 3f,g), R95P showed a downward trend at 52% (13/25)
of the meteorological stations. The stations with the significant downward trend were
mainly concentrated in the northwest Hauts Plat and the central region. R99P also showed
a downward trend at 76% (19/25) of the meteorological stations, and the trend was found
to be non-significant at all stations.

For the absolute indices (Figure 3h,i), 56% (14/25) of the meteorological stations
showed an increasing trend for R20mm, while 60% (15/25) showed a decreasing trend for
R25mm. The stations with a significant increasing trend were mainly concentrated on the
northwest Hauts Plateau, and those with a significant decreasing trend were distributed in
the eastern coastal area.

3.1.2. Spatial–Temporal Variation of Extreme Temperature Indices

The variation trend of the extreme temperature indices in Beijing–Tianjin–Hebei for
the period 1980–2019 is shown in Figure 4. The extreme temperature indices (GSL, TXn,
TNn, TN90P, and TX90P) representing the occurrence of warm events showed an increasing
trend, with GSL, TN90P, and TX90P increasing significantly at a rate of 0.32 d·a−1, 0.3 d·a−1,
and 0.24 d·a−1, respectively. The temperature indices (FD0, TN10P, TX10P, and DTR),
representing the occurrence of cold events, showed a decreasing trend, with FD0, TN10P,
and TX10P decreasing significantly at the rate of−0.35 d·a−1,−0.25 d·a−1, and−0.17 d·a−1,
respectively. In addition, the growth rates of TN90P and TX90P were greater than TN10P
and TX10P, respectively, indicating that the climate tended to be warm across the Beijing–
Tianjin–Hebei region. The years with abrupt changes in extreme temperature indices were
mainly distributed in the period 1988–1997, and the abrupt changes in TXn, TNn, DTR, and
TX10P were not significant (Figure 4b).
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Figure 4. Trends (a) and abrupt years (b) of extreme temperature indices in the Beijing–Tianjin–Hebei
region from 1980 to 2019 (confidence level 95%).

Figure 5 shows the spatial pattern of extreme temperature indices across Beijing–
Tianjin–Hebei during 1980–2019. The detailed information of the extreme temperature
index at each station is shown in Table 3.

Table 3. Extreme temperature indices at 25 meteorological stations in the Beijing–Tianjin–Hebei
region from 1980 to 2019.

Stations FD0
(d)

TXn
(◦C)

TNn
(◦C)

TX10P
(d)

TN10P
(d)

TX90P
(d)

TN90P
(d)

DTR
(◦C)

GSL
(d)

Zhangbei 189.53 −18.80 −29.78 13.92 13.63 13.68 13.66 12.34 188.43
Weixian 161.23 −12.01 −25.13 13.74 13.93 13.60 13.77 13.55 219.70
Xingtai 86.73 −3.21 −10.62 13.90 13.70 13.80 13.75 9.86 275.18
Fengning 171.95 −12.59 −23.61 13.67 13.65 13.89 13.55 13.88 214.85
Weichang 180.10 −15.58 −24.93 13.81 13.74 13.77 13.67 13.01 202.88
Zhangjiakou 143.38 −11.64 −20.27 13.88 13.77 13.74 13.64 11.59 227.70
Huailai 139.90 −9.96 −18.51 13.74 13.76 13.63 13.69 11.84 233.70
Yanqing 147.63 −9.03 −20.68 13.85 13.76 13.88 13.67 12.38 229.90
Miyun 135.30 −5.91 -18.18 13.78 13.68 13.70 13.61 12.32 241.75
Chengde 151.90 −9.79 −21.10 13.82 13.76 13.70 13.75 13.16 227.00
Zunhua 128.50 −5.96 −17.30 13.87 13.88 13.83 13.63 11.55 244.60
Qinglong 146.03 −7.99 −20.72 13.80 13.68 13.83 13.70 12.61 231.63
Qinhuangdao 122.98 −6.72 −16.21 13.68 13.73 13.81 13.63 9.16 240.15
Beijing 112.25 −4.97 −13.26 13.84 13.65 13.68 13.68 10.28 254.95
Bazhou 117.03 −4.69 −15.53 13.71 13.82 13.73 13.67 11.18 252.70
Baodi 126.78 −5.68 −16.16 13.94 13.67 13.72 13.64 11.50 244.60
Tianjin 107.50 −5.02 −13.61 13.92 13.56 13.64 13.71 9.93 255.35
Tangshan 123.58 −6.22 −17.16 13.89 13.66 13.67 13.62 11.02 245.25
Laoting 121.63 −6.49 −16.05 13.96 13.85 13.84 13.75 10.02 244.65
Baoding 106.55 −4.28 −13.56 13.78 13.73 13.83 13.75 10.54 259.83
Raoyang 113.58 −4.39 −15.31 13.75 13.63 13.78 13.70 11.37 258.33
Botou 107.40 −4.41 −14.58 13.76 13.68 13.75 13.80 10.77 260.50
Tanggu 97.48 −5.55 −12.48 13.80 13.72 13.76 13.58 7.76 254.63
Huanghua 108.08 −5.00 −13.95 13.73 13.77 13.67 13.68 10.20 255.95
Nangong 107.03 −3.73 −14.24 13.78 13.62 13.80 13.67 11.34 263.48
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For the absolute indices (Figure 5a), the regional average of FD0 decreased from
northwest to southeast, and 88% (22/25) of the meteorological stations showed a downward
trend, of which 64% (16/25) showed a significant downward trend; the stations that did
not pass the 95% significance test were mainly concentrated in the central area of Beijing–
Tianjin–Hebei.

For the extreme value indices (Figure 5b,c), the regional averages of TXn and TNn
both increased from northwest to southeast. The TXn of 56% (14/25) of the meteorological
stations showed an increasing trend, with no station passing the 95% significance test. A
total of 68% (17/25) of stations showed an increasing trend of TNn, of which 20% (5/25)
showed a significant increase, mainly in the northern and central parts of Beijing–ng–
Tianjin–Hebei.
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For the relative indices (Figure 5d–g), the highest regional values of TX10P and TN10P
were mainly distributed in the western, southern, and eastern coastal areas of Beijing–
Tianjin–Hebei. The TX10P of all the meteorological stations and the TN10P of 88% (22/25)
showed a downward trend, among which 76% (19/25) showed a significant downward
trend, concentrated in the north and southeast of Beijing–Tianjin–Hebei. The highest
values of TX90P and TN90P were mainly distributed in the central–southern and northern
regions of Beijing–Tianjin–Hebei. The TX90P of all the meteorological stations and the
TN90P of 88% (22/25) showed an increasing trend, among which 64% (16/25) and 76%
(19/25) showed a significant increasing trend, respectively, concentrated in the northern
and southeastern regions of Beijing–Tianjin–Hebei.

For other indices (Figure 5h,i), the regional average GSL increased from northwest
to southeast; 88% (22/25) of the meteorological stations showed an increasing trend, of
which 32% (8/25) passed the 95% significance test, mainly concentrated in the northwest
plateau and eastern coastal areas. The regional average of DTR decreased from northwest
to southeast. A total of 64% (16/25) of the stations showed a downward trend, of which
52% (13/25) showed a significant downward trend, mainly concentrated in the northwest
plateau and southeast coastal areas.

3.2. Analysis of Future Trends
3.2.1. Probability Density Function of Extreme Climate Indices

Changes in the frequency and intensity of extreme climate are also important indicators
reflecting trends of extreme climate change [21]. Since RX1day was the latest to have a
sudden change in 1999, all indices were divided into two time periods: 1980–1999, and
2000–2019, to further analyze the trends of the temporal variation of the extreme climate
indices. The probability of the occurrence of indices based on the probability density
function was analyzed for these specified time periods.

The probability density function of the extreme precipitation indices in the Beijing–
Tianjin–Hebei region for the period 1980–2019 is shown in Figure 6. The results showed
that the frequency of all the indices except CDD increased significantly, in which RX1day,
RX5day, R95P, and R99P moved to the left from the first (1980–1999) to the second (2000–2019)
period, indicating a decrease in the severity but an increase in the frequency of extreme
precipitation events. Consecutive dry days moved to the left from the first (1980–1999)
to the second (2000–2019) period, but its frequency decreased, indicating a decrease in
the severity and frequency of drying events in the Beijing–Tianjin–Hebei region. The
Kolmogorov–Smirnov (K-S) test results showed that all indexes had significant differences
in pdf distribution between the two periods, except RX1day and RX5day. The increase in
the probability of extreme rainfall events in Beijing–Tianjin–Hebei in the future may lead to
an increase in floods.

The probability density function of the extreme temperature indices in Beijing–Tianjin–
Hebei for the period 1980 to 2019 is shown in Figure 7. For absolute indices, FD0 moved to
the left from the first (1980–1999) to the second (2000–2019) period; its severity decreased
and frequency increased. For the extreme value indices, the positions of the TXn and TNn
curves in both the time periods roughly coincided, but the frequency of the moderate
extreme temperature events increased. For the relative indices, both TX10P and TN10P
moved to the left from the first (1980–1999) to the second (2000–2019) period, with a
significant decrease in severity and an increase in the frequency of occurrence. TX90P and
TN90P moved to the right from the first (1980–1999) to the second (2000–2019) period, with
an increase in severity and a decrease in the frequency of occurrence. For other indices,
GSL moved to the right from the first (1980–1999) to the second (2000–2019) period, with
an increase in both severity and frequency, while DTR moved to the left from the first
(1980–1999) to the second (2000–2019) period, with a decrease in severity and a significant
increase in frequency. The Kolmogorov–Smirnov test (K-S) results showed that the pdf
distribution of TNn, TX10P, TN10P, and DTR differed significantly in the two periods.
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3.2.2. Continuous Prediction of Extreme Climate Indices

Further in this study, a continuous prediction of extreme climate indices for the
period 1980 to 2019 (Table 4) was generated by R/S analysis to further understand the
development trend of extreme climate events in the Beijing–Tianjin–Hebei region. In terms
of extreme precipitation indices, the results showed a weak continuity in the trends of
RX5day, R20mm, R25mm, SDII, and PRCPTOT, among which R20mm (0.6258) exhibited the
strongest continuity, indicating that the past trend of these indices will be continued in the
future. All the other indices showed anti-continuity, among which CDD (0.1496) showed
the highest intensity of anti-continuity, indicating that RX1Day and R99P will increase in
the future, while R95P and CDD will decline. As for the extreme temperature indices, all
trends showed continuity, among which TN10P was the strongest and TXn the weakest,
indicating that the pattern of extreme temperature indices in the Beijing–Tianjin–Hebei
region will maintain the past 40 year trend in the future.

Table 4. Hurst index of Beijing–Tianjin–Hebei extreme climate indices.

Precipitation Indices RX1day RX5day R95P R99P R20mm R25mm CDD SDII PRCPTOT

Hurst 0.4356 0.5312 0.4511 0.4302 0.6258 0.5512 0.1496 0.5543 0.5485

Temperature indices FD0 GSL TXn TNn TN10P TN90P TX10P TX90P DTR

Hurst 0.8298 0.7133 0.5738 0.7149 0.9573 0.9305 0.6601 0.8092 0.8127

3.3. Correlation Analysis between Extreme Climate Indices and Teleconnection Patterns
3.3.1. Simple Correlation Analysis

There was a close relationship observed between extreme climate indices and telecon-
nection patterns in the Beijing–Tianjin–Hebei region (Figure 8). The results showed that
PolarEA was significantly correlated with most indices such as RX1day, RX5day, R99P, and
SDII in extreme precipitation indices and TNn, TXn, and TN90P in extreme temperature
indices. The EA was significantly correlated with all extreme temperature indices, except
DTR, TNn, and TXn. The AO had a significant correlation with extreme temperature
indices, except DTR, TX90P, and TN90P. Both the EA and AO were significantly positively
correlated with warm events, significantly negatively correlated with cold events, and
had no significant correlation with the extreme precipitation indices. The EAWR had a
significant correlation with extreme precipitation indices such as RX1day, RX5day, R99P,
and SDII, but a weak correlation with extreme temperature indices. In addition, NAO
was significantly correlated with CDD and TX10P, SCAND and WP were significantly
correlated with CDD, while PNA and ENSO were not significantly correlated with the
extreme climate index.

3.3.2. Wavelet Transform Coherence (WTC)

In terms of time and frequency space, four indices, CDD and R99p in the extreme
precipitation indices, and FD0 and TXn in the extreme temperature indices, were selected
as the dominant analysis indices. The effects of teleconnection patterns on extreme climate
were further analyzed based on high Pearson coefficients.

The average wavelet coherence (AWC) and the percentage of the numbers of power
(PNPS) that were significant at the 95% significance level for the WTC between extreme
climate indices and teleconnection patterns in the Beijing–Tianjin–Hebei region are shown
in Table 5. For the AWC of WTC, PNA and NAO were the dominant influencers of CDD;
WP, EAWR, and PolarEA were the dominant influencers of R99p; PolarEA and PNA
were the dominant influencers of TXn; and SCAND, WP, and EAWR were the dominant
influencers of FD0. For the PASC of WTC, NAO and SCAND were the dominant constraints
of CDD; WP, EAWR, and PolarEA were the dominant constraints of R99p; PNA and NAO
were the dominant constraints of TXn; and SCAND and WP were the dominant constraints
of FD0.
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Table 5. The average wavelet coherence (AWC) and the numbers of power (PNPS) of the wavelet
transform coherence (WTC) between extreme climate indices and teleconnection patterns in the
Beijing–Tianjin–Hebei region.

CDD R99p TXn FD0

AWC PASC(%) AWC PASC(%) AWC PASC(%) AWC PASC(%)

EA 0.3380 1.10 0.3544 4.49 0.3234 0.51 0.4042 10.59
EAWR 0.3911 3.46 0.5493 24.41 0.3312 7.21 0.4431 6.91
NAO 0.4217 15.37 0.3486 6.62 0.3975 15.29 0.3714 7.35
PNA 0.4248 7.28 0.3417 10.96 0.4124 5.96 0.3641 11.32

PolarEA 0.3859 7.28 0.4711 23.97 0.4977 20.96 0.3529 4.19
SCAND 0.4851 12.43 0.4572 16.69 0.2998 1.32 0.5813 33.31

WP 0.3971 7.50 0.5595 34.56 0.3578 3.53 0.4820 14.49

The WTC shown in Figure 9 reveals the oscillatory relationship between the above-
mentioned extreme climate indices and teleconnection patterns for the period 1980 to
2019. The thick black solid line inside Figure 9 indicates that the region passed the 95%
significance test; the yellower the color of the wavelet coherence spectrum, the stronger the
coherence between them. The arrows indicate the phase relationship, with a positive phase
relationship to the right and a negative phase relationship to the left, and the upward arrow
indicates that the teleconnection pattern was 1/4 period ahead of the extreme climate,
while the opposite was 1/4 period behind. The phase relationship between the extreme
climate indices and teleconnection patterns was consistent with the simple correlation
results. The oscillation periods between these extreme climate indices and teleconnection
patterns were mainly distributed around 4 years and 8 years, with both WP and EAWR
leading R99P by 1/4 period in this time–frequency region. Most of the coherences showed
continuous annual periodicity, with discontinuities only between CDD and NAO, SCAND,
and between R99p and PolarEA.
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3.3.3. Multiple Wavelet Coherence (MWC)

The explanatory effects of two-factor and three-factor combinations of teleconnection
patterns on extreme climate using the MWC method are shown in Table 6. The explanatory
power for climate extremes improves with the increase in the number of factors in the
combinations. Among the combinations, the PolarEA–PNA and the addition of NAO con-
tributed the least to explain TXn, with only a 0.66 increase in PASC. The factor combination
of WP–EAWR–PolarEA best explained the P99p (AWC = 0.9311, PASC = 58.68%).

Table 6. The AWC and PASC of the multiple wavelet coherence (MWC) between extreme climate
indices and teleconnection patterns in the Beijing–Tianjin–Hebei region.

AWC PASC(%) AWC PASC(%)

CDD–PNA–NAO 0.6993 16.32 TXn-PolarEA-PNA 0.7770 35.00
CDD–PNA–NAO–SCAND 0.8851 34.71 TXn-PolarEA-PNA-NAO 0.8966 35.66

R99P–WP–EAWR 0.7850 43.90 FD0-SCAND-WP 0.7527 17.94
R99P–WP–EAWR–PolarEA 0.9311 58.68 FD0-SCAND-WP-EAWR 0.8705 23.38

4. Discussion
4.1. Spatio–Temporal Variations in Extreme Climates

The Beijing–Tianjin–Hebei region has experienced frequent extreme climate events
since the 1980s, with high-temperature weather, intensified persistent drought disasters,
and a change in phenological seasons. These changes have affected the ecological environ-
ment of the region and gained the significant attention of the government and the scientific
community [34]. Based on nine extreme precipitation indices and nine extreme temperature
indices, we analyzed the spatiotemporal trends of extreme climate events in the Beijing–
Tianjin–Hebei region for the period 1980 to 2019. Among all the extreme precipitation
indices, only three (RX1day, RX5day, and R99p) showed a decreasing trend. The continuous
dry days (CDD) showed an increasing trend. Among all the extreme temperature indices,
high-temperature events such as GSL, TXn, TNn, TN90P, and TX90P showed an increasing
trend, while low-temperature events such as FD0, TN90P, TX90P, and DTR showed a
decreasing trend. All of these results indicate that the climate in the Beijing–Tianjin–Hebei
region has tended to be warm and dry in recent decades, which is basically consistent
with previous studies [7,35–38,55]. In addition, we found significant abrupt changes in
extreme temperature events during 1988–1997, which were similar to the results of Zhang
et al. [56] The reason for the slight differences may be that Zhang et al. [56] conducted their
statistics based on meteorological stations. The climate in the Beijing–Tianjin–Hebei region
is severely affected by global warming, and the gradual increase in temperature has led to
an increase in the occurrence and frequency of extreme high-temperature events [34]. The
results of the Hurst indices also show that in Beijing–Tianjin–Hebei, RX1day and R99P will
exhibit an increase in the future, but R95P and CDD will decrease. Based on the findings, it
can be suggested that high-temperature events will increase and low-temperature events
will decrease. This indicates that the climate in the Beijing–Tianjin–Hebei region will further
tend to be warm and humid in the future and the possibility of drought will decrease.

4.2. Influencing Factors of Extreme Climates

The change of extreme climate is restricted by many factors, among which the tele-
connection patterns play the most important role [33]. Previous studies have shown
that EA [57,58], EAWR [59,60], PolarEA [57,61,62], AO [63–65], NAO [38], ENSO 3.4 [38],
SCAND [62,66,67], and PNA [68] influence the climate of the Beijing–Tianjin–Hebei region.
In addition, there are also studies pointing out the influence of PNA [69], WP [69,70],
and EAWR [70] on the atmosphere of Beijing–Tianjin–Hebei, which indirectly explains
the influence of PNA, WP, and EAWR on the climate of Beijing–Tianjin–Hebei [9,71]. The
results of this study show that extreme climate change in the Beijing–Tianjin–Hebei re-
gion is closely related to Northern Hemisphere teleconnection patterns. The PolarEA was
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mainly negatively correlated with extreme precipitation events, negatively correlated with
warm events, and positively correlated with cold events. The EA and AO were positively
correlated with extreme warm events, while EAWR was negatively correlated with extreme
precipitation events.

The PolarEA influenced the extreme climate changes in Eurasia by controlling the
blocking high in the Ural Mountains and high-frequency transient waves. It had significant
variation characteristics at different time scales and different seasons, and a great impact
on blocking high and high-frequency transient waves, which have a significant impact
on the extreme climate events in the Beijing–Tianjin–Hebei region [57,61]. Specifically, a
negative POL pattern enhances water vapor transport to Beijing–Tianjin–Hebei, leading
to increased precipitation in the region. Conversely, a positive POL pattern significantly
reduces precipitation in Beijing–Tianjin–Hebei [62]. In addition, POL is conducive to
the invasion of polar cold air mass into North China, leading to an increase in extreme
cold events [72]. The EA influences the extreme climate of Beijing–Tianjin–Hebei through
the combined effect of anticyclonic circulation anomalies located in Siberia and the Ural
Mountains, with the circulation structure promoting the increase in temperature during
positive anomalies and the opposite during negative anomalies [57,58]. The AO affects
temperature changes in eastern China mainly by influencing the Siberian high, which
is one of the most important circulation systems affecting China’s climate, and usually
weakens when AO strengthens [63–65]. In recent years, the rise of AO has weakened
Siberian high pressure, leading to a decrease in the frequency of cold waves in the middle
and high latitudes of China, which can be attributed to the high temperature and drought
in the Beijing–Tianjin–Hebei region. The EAWR is closely related to the westerly belt over
Eurasia. The westerly circulation is responsible for transporting water to the semi-arid
regions of Central Asia, thus influencing the changes in extreme precipitation events in
the Beijing–Tianjin–Hebei region [59]. When EAWR is enhanced, the westerly circulation
weakens and extreme precipitation events in Beijing–Tianjin–Hebei decrease [73].

Teleconnection patterns do not work in isolation; their complex interactions also affect
extreme climatic changes [13,26]. Through WCT and MWC analysis, this study found that
with each additional factor combined, the AWC and PASC of wavelet coherence would
increase. This indicates the explanatory power of teleconnection patterns for extreme
climates, which is predicted to increase with the number of combined factors, consistent
with previous research findings, such as Song et al. [38], Hu et al. [54], and Zhao et al. [74].
Different from Song et al. [38], the addition of teleconnection patterns in this study can
significantly increase the PNSC value of MWC, which may be related to the difference in
the selection of variables, indicating the complexity of the response mechanism of extreme
climate to teleconnection patterns. Our results also show that the addition of NAO did not
enhance explaining the change in TXn. This could be due to the great overlap in the region
of significant influence between NAO and PolarEA–PNA in explaining the change in TXn.

4.3. Limitations and Uncertainties

In this study, only four typical extreme climate indices and the combinations of two to
three factors were selected for coherence analysis. Since more factor combinations were
not explored in depth, it is intended to further investigate influence patterns in follow-up
work. In addition to teleconnection patterns, human activities such as urbanization are
also an important cause of extreme climate changes [35,75]. Many studies have shown
that human activities have aggravated the frequency and severity of extreme climate
events [9,76–79]. Therefore, to predict the characteristics of extreme climate events in
the Beijing–Tianjin–Hebei region more accurately, further in-depth and comprehensive
analyses should be conducted on the combined effects of multiple teleconnections and the
impacts of non-climatic factors such as human activities on extreme climate events.
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5. Conclusions

The study used the daily temperature and precipitation data of the Beijing–Tianjin–
Hebei meteorological stations for the period 1980 to 2019. The RClimDex model, trend
analysis, probability density function, and wavelet coherence analysis were used to analyze
the spatiotemporal variation characteristics of extreme climate events and their response
mechanisms to teleconnection types in the Beijing–Tianjin–Hebei region. The conclusions
were as follows:

(1) All the extreme precipitation indices, except RX1day, RX5day, and R99P showed an
increasing trend. Among the extreme temperature indices, warm and cold events
showed an increasing and decreasing trend, respectively. In terms of spatial patterns,
except for SDII and R20mm, most of the stations showed a decreasing trend for
extreme precipitation indices. Most of the stations showed an increasing trend in
warm events, while a decreasing trend in cold events. Overall, the climate in the
Beijing–Tianjin–Hebei region has tended to be warm and dry in recent decades.

(2) During 1980–2019, extreme rainfall events occurred more frequently, high-temperature
events both increased in severity and frequency, and low-temperature events increased
in frequency but decreased in severity. In the future, the trends of CDD in extreme
precipitation indices will show strong discontinuities, and the extreme temperature
indices will continue to follow the past 40 year trend.

(3) Correlation analysis showed that the teleconnection pattern was the main factor
influencing extreme climate change. In addition, the analysis of WTC and MWC
showed that the multi-factor combination greatly enhanced the explanatory power of
the teleconnection pattern for extreme climate. It was observed that the explanatory
power for extreme climate increased with the increase in the combination factors.
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