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Abstract: The Standardized Precipitation Index SPI-3, associated with three months of rainfall
accumulation, is a drought index for detecting immediate drought impacts. The two-parameter
gamma distribution, recommended by the World Meteorological Organization as the underlying
distribution for estimating SPI, has shown limits in semi-arid and arid conditions with respect to
the normality test for the resulting SPI series. Our purpose was to evaluate its relevance for the
Medjerda River Basin (Tunisia), a transboundary basin where the climate classes are temperate, dry,
and hot summer, as well as arid hot desert and arid hot steppe. When analyzing the time series
of 144 stations from 1950 to 2018, we found that the normality Shapiro–Wilk test was rejected in
17% of the cases, which agreed with the literature review results. The transition season (August,
September, and October) had the highest rejection percentage. Three factors were identified to explain
the deviation from normality. We first identified the rate of occurrence of completely dry (zero rain)
three-month periods. The higher the rate of occurrence was, the higher that the probability was of its
rejecting the normality test. High sample skewness was the second influencing factor. Finally, a series
where the Grubbs’ test of identifying outliers was rejected was more likely to show the SPI-3 series
deviating from normality.

Keywords: monthly rainfall; drought; SPI-3; Shapiro–Wilk test; south Mediterranean region; gamma
distribution

1. Introduction

Rainfall observations are the basis for many scientific studies in various areas, such
as climatology, hydrology, geography, and ecology. Rainfall is also a driver for economy
in relation to rainfed crops, especially cereals. The investigation of drought occurrence is
based on drought indices computed using a monthly rainfall series as well as an evapotran-
spiration series ([1–3]). A drought warning is crucial for cereal crops and food security [4].
The Standardized Precipitation Index (SPI) [5] was recommended by the World Meteoro-
logical Organization (WMO), among other indices [6]. Another source of data to elaborate
drought indices is potential evapotranspiration, giving rise to the Standardized Precipita-
tion Evapotranspiration Index (SPEI) [7]. High correlations were found between SPI and
SPEI in temperate and continental regions of Iran [2], while low correlations were found
in arid climate regions. Considering this question, we focused on SPI with a three-month
accumulation for quantifying the immediate drought impacts such as agricultural and
soil moisture drought. In Tunisia, cereals are mostly rainfed, and the country has a high
deficit in cereal trade balance. Thus, agricultural drought is of prime interest in the study
region. Recently, a national insurance fund was implemented in 2019 to help farmers facing
drought impacts on cereal crops, using SPI information as support for its decisions. The
Standardized Precipitation Index SPI-3 represents the number of standard deviations by
which the normalized, cumulative precipitation deviates from the climatological median
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for a three-month accumulation period [5]. In the parametric framework, SPI is obtained
by first adopting an underlying parametric distribution to fit rainfall totals and then by
transforming the estimated non-exceeding probability to make them normally distributed.
Such a normalization is important for achieving spatial intercomparisons as well as for
interpreting the drought index [1] in terms of drought severity. Several two-parameter and
three-parameter candidate distributions were evaluated to assess whether they correctly
represented the skewed rainfall totals. After considering various candidate distributions
and ranking them based on several durations of accumulation periods (using 0.5◦ × 0.5◦

gridded historical data based on ERA-40 reanalysis), researchers found it more accurate
to use a simple distribution to estimate SPI series in order to avoid overfitting and inter-
pretability issues [1]. The two-parameter gamma distribution was identified as the most
likely to give acceptable results across all accumulation periods and regions of Europe [1].
Its success was explained by the flexibility of its shape parameter. A three-month res-
olution [8] found that, for global land grid points, two-parameter gamma distribution
performed at a level of 94% accuracy in the category “best performance”.

An issue pointed out by [1] was the method adopted for testing the adequacy of the
candidate distribution. They argued that the lack of rejection of the Kolmogorov–Smirnov
test does not ensure the normality of the transformed rainfall. They recommended testing
SPI normality using the Shapiro–Wilk test [9]. Since normality is a necessary condition
for interpretating SPI in terms of drought categories, as adopted by the WMO’s SPI user
guide [6], a default in normality will result in over- or underestimating drought severity,
especially in the lower tail of the distribution. Another recommendation was to implement
a limitation to interpret SPI estimates to intervals (−3, +3) since the likelihood of exceeding
these limits is very low, especially considering that the commonly available lengths of
samples are not very high [1].

Based on a comparison with crop yields, [10] found that SPI was overestimated for
stations with a low rainfall average. Such an overestimation in the left tail of the rainfall
distribution resulted in underestimating drought severity. They mentioned the failure in
fulfilling the normality assumption as a reason for this overestimation. The Shapiro–Wilk
rejection was 3–13% in the case of the gridded, historical ERA-40 reanalysis data over
Europe [1]. In addition, the normality test of SPI derived from the gamma model failed
for approximately 10% of 264 studied series in Brazil [11]. Studying rainfall data from
the United States, Ref. [12] suggested that the normality test results were linked to local
climate conditions and that rejection was more likely for stations characterized by a high
probability of no-rain cases.

According to [1,12], one challenge in selecting a candidate distribution is to ensure that
it captures the likelihood of zero precipitation. Thus, our aim was to assess the relevance
of computing the Standardized Precipitation Index SPI-3 using a two-parameter gamma
distribution in the case of the Medjerda River Basin that, according to Koppen’s climate
classification [13], fits into the following climates: Csa (temperate, dry, and hot summer),
Bwh (arid hot desert), and Bsh (arid hot steppe). The Medjerda River Basin is the most
important perennial surface water provider in Tunisia. It flows to the South Mediterranean
in Kallat Landlous, with a basin area of nearly 23,000 km2. It is a transboundary river with
its source in Algeria. In addition, it is one of the most important transboundary rivers in
North Africa, feeding the West Mediterranean. To date, there has not been a study with SPI-
3 estimation using the potential rainfall network that is displayed in Tunisia. Conversely,
the performance of the Standardized Precipitation Index using gamma distribution has
not been estimated so far for this basin. The most recent research for the North Africa
region used gamma distributions to estimate SPI time series in 16 stations of the Wadi
Mina basin (4900 km2) in northern Algeria [14], without elaborating on the conclusions
about normality assumption. Additionally, Ref. [15] studied 194 rainfall series, including
the entire domain of northern Algeria using a copula approach for estimating the SPI-3
drought’s severity, duration, extension area, and return levels (1970–2006). The advantage of
the copula approach is to avoid estimating the univariate probability distribution functions
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(pdfs). However, they did not mention any test for normality assumption. In [16], the
authors studied the period 1960–2010 using 65 rainfall stations in the Cheliff-Zahrez basin
(56,227 km2) of northern Algeria with semi-arid to arid climate conditions. They adopted
a non-parametric SPI estimation without mentioning the performance with respect to
the normality of resulting SPIs. Thus, our study was based on a higher rainfall network
density and covered the three types of climates of Tunisia in order to draw conclusions
about the effectiveness of the normality test for SPI when using the gamma distribution as
the underlying statistical model.

2. Materials and Methods

The data are from rainfall yearbooks published by the Tunisian National Hydrological
Service, which is part of the Ministry of Agriculture, Hydraulics, and Fish Resources. There,
one can find information about the size and composition of the rainfall network during a
given hydrological year, which is assumed to extend from 1 September of one year through
31 August of the next year. The station names and identifiers are provided, as well as
the elevation above sea level and the geographical localization for every station. Tunisia
is subdivided into 7 main watersheds, with the Medjerda River Basin assigned to the
fifth. In rainfall and hydrometric reports, the Medjerda River Basin is known as Basin 5
(BV5). Consequently, the stations of the Medjerda River Basin have identifiers beginning
with ‘5 . . . ’. It is worth noting that the labelling of the station names may present some
small changes from one yearbook to another, due to different methods of translating the
name from Arabic to French. This is why the most important reference for any station is
its identifier.

The yearbooks report daily rainfall measurements and monthly and annual rainfall
totals. They indicate daily and monthly missing data (gaps) using the symbol ‘-’. Gaps
may be due to a temporary lack of observation, deterioration of the equipment, or loss of
register. It may happen that a station is abandoned, mostly due to the lack of an observer
(from death, a change of residence, or other personal reasons) or due to a decrease in
database budgets, resulting in reduction of the network size. A closure is officially reported
in a specific (not public) database containing the station’s name, location, and elevation
above sea level. When this is not reported, one cannot be certain of a station’s closure.
In the Medjerda River Basin, the first station was implemented in 1888. In this study, we
focused on the analysis of the recent period 1950–2018 when the network was comprised
of 144 stations. One single station (code number 53766) out of 144 had no metadata. The
spatial locations of the remaining 143 stations are shown in Figure 1. Two stations are
located out of the basin, showing that their coordinates are erroneous in the yearbook
(Figure 1). However, this did not affect our results. The stations are represented within their
climate classification, using Koppen’s climate classification system (Figure 1). A total of 49%
are Csa (temperate, dry, and hot summer), while 31% belong to Bwh (arid hot desert) and
20% to Bsh (arid hot steppe). In the Medjerda River Basin, the driest month is July, while
the rainy season is from November to January. The transition season is August through
October, and spring expends from March to May.

We first evaluated the network’s spatiotemporal extension every month. The gaps
in the monthly rainfall data were not reconstructed. Thus, the number of stations with
complete monthly data changes from year to year. However, it cannot exceed 144, which
is the size of the studied network. We then identified the 3-month total for every station.
Any 3-month period containing a missing month (a gap) was assumed missing and was
removed from the time series used to fit the underlying statistical distribution, since the gap
meant that the resulting SPI-3 predictions were missing in those cases. We further selected
those stations with sample sizes of 3-month totals greater than 30. We then evaluated
the frequency f 0 of occurrence of no rain during every 3-month period. The frequency
f 0 was estimated as the ratio of the number of zeros in the series by the series size, as
recommended in [6]. Additionally, data control was performed for the 3-month total using
outlier detection. To do so, we used Grubbs’ test [17] to assess whether the maximum was
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an outlier. We use a two-sided test and the critical value Gmax of the t-distribution at a
significant level of 5% to evaluate the test statistic G.
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The parametric estimation of SPI-3 required fitting a statistical distribution to the
3-month totals. As stated before, we adopted two-parameter gamma distribution, with a α
scale and λ-shaped parameters [18,19]. The method of maximum likelihood, which uses the
logarithmic transformation of data and is known to be more efficient, was not appropriate
because of the existence of zeros in the data. The method of moments was used to estimate
the model’s parameters. Furthermore, based on α and λ estimators, the standardized
gamma variable Ky associated with any observed 3-month total y was appraised using the
following equation:

Ky = (y − (λ/α))/(λγ/α2) (1)

Additionally, the Wilson–Hilferty transformation (see [18], Eq. 4.27, p. 33) was adopted
to normalize quantiles. The standardized gamma quantile was related to the qth quantile
of the standard normal distribution Φq by Equation (2), which states that:

Ky ≈ (2/Cs) ((Cs/6 ∗ (Φq − (Cs/6)) + 1)3 − 1) for Cs > 0 (2)

where
Cs was the population asymmetry coefficient.

Cs = 2(λ)−0.5 (3)
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Estimating α and λ and inverting (2) helped to calculate SPI-3, taking into account the
presence of zeros in the data and the fact that the gamma was not defined for y = 0 in [20].

SPI-3(y) = Φq for y 6= 0
SPI-3(y) = Φ−1 (f0) for y = 0

(4)

where y represents the 3-month rainfall total; Φ−1() is the inverse of the standard normal
cumulative distribution function (Φq = Φ−1 (q)) [21].

Furthermore, the adequacy of the adjusted pdf model was tested using a Kolmogorov–
Smirnov test at the 5% significance level. In addition, for those models that were not
rejected for adequacy, a Shapiro–Wilk test [9] was implemented to check whether the SPI-3
estimates were normally distributed. According to [22], the Shapiro–Wilk test achieves the
best performance when compared with other normality tests.

Finally, the normality results were examined in the light of the following factors: the
sample size, station location, Grubbs’ test results, frequency f 0 of the occurrence of no rain,
and population asymmetry coefficient Cs. Figure 2 shows the inputs of the study (monthly
rainfall series of 144 stations), its outputs (SPI-3 series and the percentage of the series with
an accepted normality test), and the steps to bridging them.
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3. Results
3.1. Network Time Evolution, Percent of Gaps, and Frequency of Occurrence of No-Rain Periods

Figure 3 shows the spatial distribution of the rainfall network for the hydrological
year 1950–1951, which was the starting year of our study period. It is comprised of
74 stations. An augmentation of the network size was observed between 1970 and 1990, with
respectively 90 and 101 stations in operation during the hydrological years 1969–1970 and
1990–1991. However, the number of stations was again reduced to 74 in the hydrological
year 2018–2019, which was the most recent year considered in this study (Figure 3). A
study of network optimization was achieved in 2007 by the National Hydrological Service
that resulted in an important network size decrease. The stations’ locations are shown with
respect to their elevations above sea level in Figures 1 and 3. Both reflect the acceptable
representativity of the orography by the rainfall network.
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Figure 3. Rainfall stations’ spatial cover in 1950–1951 and 2018–2019 and the stations’ elevations
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Figure 4 shows the box plots of the monthly trimmed mean, considering the threshold
of 3%. The seasonal variability is highlighted, with July as the driest month and January
as the wettest month. In total, for the period of 1950–2018, 98 stations totaled more than
30 years of observations for every calendar month, representing 59,032 station-months at
monthly level. The maximum monthly sample size was 69 years corresponding to a single
station (51,672) without gaps. In contrast, 45 stations out of 144 had fewer than 31 years of
observations per month during the period 1950–2018. Nineteen of them are stations that
opened before 1931. For stations with more than 30 years of observations for every month,
the ratio of the number of gaps to the number of station-months was 14%. At station scale,
the median rate of gaps was 9%. Per month, the mean rate of gaps was 14–15%, except for
July and August, where it was higher (17–18%).

The percentage of zero rain (f 0) during 3-month periods varies, as shown in Figure 5
as a box plot representation. A singular value exceeding 0.35 was found for one single
station from July through September. For a few stations, f 0 exceeded 0.25 for June–August,
which corresponded to the summer season. The lowest f 0 frequencies displaying the
lowest variability corresponded to the 3-month period of February–April (Figure 5), which
encompasses the rainy season.
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3.2. Fitted Gamma Distributions

The fitting of the two-parameter gamma distribution for every 3-month period and
the use of the Kolmogorov–Smirnov test at a 5% confidence level resulted in its acceptation
for 1205 station-months. For 206 out of 1205 3-month periods (17%), the normality of SPI-3
was rejected using the Shapiro–Wilk test. Figure 6 shows the sample sizes for series not
rejected by the Shapiro–Wilk test. Figure 6 shows that the number of samples having more
than 50 years of observations for 3-month periods was not trivial and was favorable for
inferring a statistical analysis.
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Figure 6. Sample sizes for 3-month totals for stations with an accepted Shapiro–Wilk test.

Figure 7a,b shows the temporal variability of the gamma distribution parameters
for those cases where the normality of SPI-3 was not rejected. There is a clear seasonal
effect in both parameters. Figure 7a,b shows that the seasonal curve was more accentuated
for the shape parameter than for the scale parameter. One single station (code number
51688) seemed singular for the scale parameter (0.14) corresponding to a 3-month period
(May–July). This station had a sample size of 31 years with f 0 = 0. Its skewness coefficient
was not very high (Cs = 0.74), but its Grubbs’ test was rejected, which might explain
this singularity.
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3.3. Identification of Factors Responsible for Decrease in Fitting Performance

A total of 84 stations have at least one 3-month period with rejected normality. Their
geographical locations are shown in Figure 8. The 84 stations are equally distributed over
the study area, suggesting no link to their location conditions.
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Table 1 shows the number of station-months with an accepted Shapiro–Wilk test for
every 3-month period. The corresponding quantity of data (48,835) was computed to be
the sum of all sample sizes. Considering Grubbs’ test results, the decision of rejection
was 59.9% of the station-months with an accepted Shapiro–Wilk test for SPI-3 (Table 1).
Nevertheless, we did not censor the data since a lot of other tests exist for detecting outliers.
In addition, outlier presence may be due to heavy-tailed distribution of the 3-month totals.
Thus, more research is needed in this area.

Table 1. Characteristics of accepted periods with respect to the SPI-3’s Shapiro–Wilk test.

3-Month Period

Number of
Station-Months
with Accepted
Shapiro–Wilk Test

Percent of the Total
Number of Data with
Accepted
Shapiro–Wilk Test

Number of
Station-Months with
Accepted
Shapiro–Wilk Test
and Rejected Grubbs’
Test (G > Gmax)

September-October-
November 80 8.0 3782 54

October-November-
December 76 7.6 3618 52

November-December-
January 88 8.8 4362 49

December-January-February 90 9.0 4473 51

January-February-March 89 8.9 4429 60

February-March-April 87 8.7 4295 50

March-April-May 83 8.3 4065 56

April-May-June 85 8.5 4243 37

May-June-July 88 8.8 4325 32

June-July-August 86 8.6 4172 47

July-August-September 90 9.0 4338 70

August-September-October 57 5.7 2733 40

Total 999 100 48,835 598

% 59.9

After distinguishing between accepted (A) and rejected (R) 3-month periods, we
built the box plots on the stations’ elevations in both cases (not shown). No difference
was found, suggesting that station elevation was not a factor in explaining normality
rejection. In addition, we computed (Table 2) the respective number of station-months
(N), contribution to the annual total r (%), mean f 0, mean sample size, and mean sample
asymmetry coefficient (Cs).

Table 2 shows that the mean sample size was not sensitive. On the contrary, the
series where a Shapiro–Wilk test was rejected are associated with a larger percentage of
Grubbs’ test rejection (64.1% vs. 59.9%). Additionally, their mean asymmetry coefficients
were higher (1.41) in comparison with those corresponding to series with an accepted
Shapiro–Wilk test (0.92). The rejected periods had generally a higher f 0, with a mean of
0.041, compared with that of accepted periods, with a mean f 0 = 0.011.

Most of the 999 station-months with an accepted Shapiro–Wilk test (Table 1) displayed
a frequency of zero rainfall during 3-month periods f 0 = zero (761), representing nearly
76%. The corresponding rate was smaller in the case of station-months with a rejected
Shapiro–Wilk test. A total of 138 out of 206 displayed f 0 = zero, representing nearly 67%.
Thus, f 0 appeared to be the most sensitive factor, followed by Cs, and then by the existence
of a maximum detected outlier.
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Table 2. Characteristics of accepted (A) and rejected (R) 3-month periods; N number of station-months;
contribution to the annual total. (%).

3-Month
Period

N
(A) r% (A) Mean f 0

(A)
Mean N

(A)
Mean Cs

(A)
N

(R) r Mean f 0
(R)

Mean
N(R)

Mean Cs
(R)

September-
October-

November
80 8.0 0.027 47 1.18 16 7.8 0.054 42 1.56

October-
November-
December

76 7.6 0.005 48 1.06 20 9.7 0.000 42 2.56

November-
December-

January
88 8.8 0.005 50 0.88 14 6.8 0.000 46 1.95

December-
January-
February

90 9.0 0.004 50 0.86 12 5.8 0.000 46 0.77

January-
February-

March
89 8.9 0.002 50 0.93 12 5.8 0.015 48 1.13

February-
March-April 87 8.7 0.004 49 0.82 15 7.3 0.002 49 1.05

March-April-
May 83 8.3 0.003 49 0.85 18 8.7 0.005 52 1.18

April-May-
June 85 8.5 0.004 50 0.66 16 7.8 0.007 46 1.08

May-June-July 88 8.8 0.006 49 0.60 13 6.3 0.004 49 0.70

June-July-
August 86 8.6 0.008 49 0.83 15 7.3 0.002 49 1.08

July-August-
September 90 9.0 0.019 48 1.24 11 5.3 0.042 48 2.09

August-
September-

October
57 5.7 0.054 48 1.33 44 21.4 0.150 48 1.39

Total 999 100 206 100

The period August-September-October has the highest rate of rejection (21.4%) of
SPI-3 normality, representing 2.5 to 4 times the rejection rates of the other periods (Table 2).
It is associated with the highest average f 0 (0.15). Figure 9 shows for the case of accepted
series, and for every 3-month period of the year, the contribution to the annual total of
station-months with accepted Shapiro-Wilk test (r%) versus the corresponding mean value
of f 0 (as seen from Table 2). Expected acceptation rate is (1/12 = 8.3%). From Figure 9,
the period August-September-October (r = 0.05%; f 0 = 5.7) is singular. It has much lower
acceptation rates than expected.

The analysis of the percentage of rejection with respect to the climate category was
undertaken. The network composition was 49%, 20%, and 31% of stations categorized
as Csa, Bsh, and Bwh, respectively. In comparison, 56%, 24%, and 20% of the 84 rejected
stations were in categories Csa, Bsh, and Bwh, respectively. Thus, the category Csa was over-
represented in the sample of rejected cases, while Bwh was under-represented. Figure 10
compares the histograms when considering the entire network versus the histograms when
considering stations with rejections.
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Figure 9. Contribution to the annual total r (%) of an accepted normality test for every 3-month
period versus the corresponding mean value of f 0.
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Figure 10. Percentage of stations for every climate category, considering either the entire network (all
stations) or only the stations with a normality rejection.

Figure 11 shows the estimated SPI-3 time series (all stations). As seen in Figure 10, the
period of 1950–2018 experienced several droughts, with SPI-3 less than −2 at station level,
highlighting the fact that this region faced extreme agricultural drought periods.
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4. Discussion

When considering the non-sensitivity of normality results compared with an increase
in the sample size, our results are in conformity with the literature [8]. The rejection of an
SPI-3 normality test was at a rate of 17%, while 3–13% were mentioned in [1], compared
with 10% in [11]. One may argue that the gridded data used in [1] contained fewer zeros
than that of historical data and that the geographical area studied in [1] included fewer
stations under arid and semi-arid conditions. In fact, 0.01 mm was assumed to be the
threshold for zero and had few cells with zero accumulation of precipitation in [1]. In
addition, [1] fitted daily distributions and computed SPIs averaging on a monthly basis for
their use of gridded data. When normalizing zero in the SPI, the Weibull plotting position
is often used for estimating f 0. The Weibull plotting position estimations were averaged
using the alternative form f 0 = (m + 1)/(2N + 1), where m was the number of zeros and N
was the sample size in [1]. In this method, a depletion operated in the high values of f0. In
our case, such a transformation would effectively be in favor of decreasing the number of
cases of rejecting normality.

The percentage of SPI-3 being less than −3 was 0.12% (63 out of 48,835). The total
percentage of values out of the interval (−3, +3) was 0.14%, which is very low in accordance
with literature recommendations [1]. The minimum estimated SPI-3 was −3.803 for station
50535, corresponding to December–February 1982. A study of drought occurrence in the
Mediterranean region using SPI-12, SPEI-12, and two other indicators showed that 1982
achieved the most severe drought in the North Africa region [23]. Conversely, only eight
(8) SPI-3 estimates were greater than +3, and the maximum was 3.181, which corresponded
to period 3 (September–November) of 1969 at station 58272. The autumn of 1969 is well-
known for its dramatic floods in Tunisia. Thus, our results are accurate in regards to SPI-3
interpretation when considering the fact that we did not remove outliers.

5. Conclusions

The study of the rainfall network pattern and its time evolution in northern Tunisia
within the case of the Medjerda River Basin resulted in retaining 98 out of 144 stations,
totaling more than 30 years of observations for every 3-month duration during the period of
1950–2018. This represents a high spatial density of 0.4 station/100 km2. Based on a massive
amount of data (48,835 samples of three-months of rainfall accumulation with sample sizes
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greater than 30, covering an area of 23,000 km2), our study confirmed the potential of the
two-parameter gamma distribution for estimating SPI-3 in North Africa, as well as its
drawbacks. We found that the category Csa was over-represented in the sample of rejected
cases. The most important conclusions are that the presence of outliers as well as the
grade of asymmetry coefficient Cs and the importance of f 0 are all responsible for the poor
performance of gamma distribution with respect to the normality test of SPI-3. In fact, f 0 is
the most sensitive factor, followed by Cs, and then by the presence of the maximum detected
outlier. Thus, high f 0 and high skewness coefficients are more often attached to a rejection
of a Shapiro–Wilk test for SPI-3 under the gamma distribution hypothesis. Therefore, our
results confirm the importance of rainfall intermittency in explaining the gamma model’s
deficiency in representing SPI-3 in dry climate conditions. The size of the rainfall time series
and the variability of climate conditions in the study region were large enough to extend
these conclusions to other sites with similar climate conditions. We therefore propose the
adoption of the exponentiated Weibull distribution as an alternative [8] to the gamma in
order to estimate SPI. Prospecting heavy-tailed distributions may be another issue.
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