Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging
Abstract
:1. Introduction
2. VMC and UVI Data Sets
3. Results
3.1. Variations of the Mean Wind Speed in the Southern Equatorial Latitudes
3.2. Long-Term Variations of the Mean Speed
4. Discussion
4.1. Anti-Correlation of the Cloud Top Wind Field and UV Albedo
4.2. Cloud Top Winds and SO2 Abundance
4.3. Cloud Top Winds Periodicity and the Solar Cycle
4.4. On the Influence of Surface Topography
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Lavega, A.; Lebonnois, S.; Imamura, T.; Read, P.; Luz, D. The Atmospheric Dynamics of Venus. Space Sci. Rev. 2017, 212, 1541–1616. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Rossow, W.B. Planetary scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 1990, 47, 293–318. [Google Scholar] [CrossRef]
- Titov, D.V.; Svedhem, H.; Koschny, D.; Hoofs, R.; Barabash, S.; Bertaux, J.-L.; Drossart, P.; Formisano, V.; Häusler, B.; Korablev, O.; et al. Venus Express science planning. Planet. Space Sci. 2006, 54, 1279–1297. [Google Scholar] [CrossRef]
- Svedhem, H.; Titov, D.V.; Taylor, F.W.; Witasse, O. The Venus Express mission. J. Geophys. Res. 2009, 114, E00B33. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Imamura, T.; Ishii, N.; Abe, T.; Kawakatsu, Y.; Hirose, C.; Satoh, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; et al. AKATSUKI returns to Venus. Earth Planets Space 2016, 68, 75. [Google Scholar] [CrossRef] [Green Version]
- Khatuntsev, I.V.; Patsaeva, M.V.; Titov, D.V.; Ignatiev, N.I.; Turin, A.V.; Limaye, S.S.; Markiewicz, W.J.; Almeida, M.; Roatsch, T.; Moissl, R. Cloud level winds from the Venus Express Monitoring Camera imaging. Icarus 2013, 226, 140–158. [Google Scholar] [CrossRef]
- Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y. Long-term variation in the cloud-tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. J. Geophys. Res. Planets 2013, 118, 37–46. [Google Scholar] [CrossRef]
- Markiewicz, W.J.; Titov, D.V.; Ignatiev, N.; Keller, H.U.; Crisp, D.; Limaye, S.S.; Jaumann, R.; Moissl, R.; Thomas, N.; Esposito, L.; et al. Venus Monitoring Camera for Venus Express. Planet. Space Sci. 2007, 55, 1701–1711. [Google Scholar] [CrossRef]
- Titov, D.V.; Markiewicz, W.J.; Ignatiev, N.I.; Song, L.; Limaye, S.S.; Sanchez-Lavega, A.; Hesemann, J.; Almeida, M.; Roatsch, T.; Matz, K.D.; et al. Morphology of the cloud tops as observed by the Venus Express Monitoring Camera. Icarus 2012, 217, 682–701. [Google Scholar] [CrossRef]
- Bertaux, J.-L.; Khatuntsev, I.V.; Hauchecorne, A.; Markiewicz, W.J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves. J. Geophys. Res. Planets 2016, 121, 1087–1101. [Google Scholar] [CrossRef]
- Horinouchi, T.; Kouyama, T.; Lee, Y.J.; Murakami, S.; Ogohara, K.; Takagi, M.; Imamura, T.; Nakajima, K.; Peralta, J.; Yamazaki, A.; et al. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth Planets Space 2018, 70, 10. [Google Scholar] [CrossRef]
- McGouldrick, K.; Tsang, C.C.C. Discovery of a 150 day period in the Venus condensational clouds. Icarus 2017, 286, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Jessup, K.-L.; Perez-Hoyos, S.; Titov, D.V.; Lebonnois, S.; Peralta, J.; Horinouchi, T.; Imamura, T.; Limaye, S.; Marcq, E.; et al. Long-term Variations of Venus’s 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astron. J. 2019, 158, 126. [Google Scholar] [CrossRef]
- Shalygina, O.S.; Shalygin, E.V.; Ignatiev, N.I.; Petrova, E.V. Comment on “Long-term Variations of Venus’s 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble SpaceTelescope” by Lee et al. (2019, AJ, 158, 126). Res. Notes Am. Astron. Soc. 2019, 3, 168. [Google Scholar] [CrossRef]
- Marcq, E.; Mills, F.P.; Parkinson, C.P.; Vandaele, A.C. Composition and Chemistry of the Neutral Atmosphere of Venus. Space Sci. Rev 2018, 214, 10. [Google Scholar] [CrossRef] [Green Version]
- Peralta, J.; Muto, K.; Hueso, R.; Horinouchi, T.; Sánchez-Lavega, A.; Murakami, S.Y.; Luz, D. Nightside Winds at the Lower Clouds of Venus with Akatsuki/IR2: Longitudinal, Local Time, and Decadal Variations from Comparison with Previous Measurements. Astrophys. J. Suppl. Ser. 2018, 239, 29. [Google Scholar] [CrossRef] [Green Version]
- Patsaeva, M.V.; Khatuntsev, I.V.; Patsaev, D.V.; Titov, D.V.; Ignatiev, N.I.; Markiewicz, W.J.; Rodin, A.V. The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express. Planet. Space Sci. 2015, 113, 100–108. [Google Scholar] [CrossRef]
- Patsaeva, M.V.; Khatuntsev, I.V.; Zasova, L.V.; Hauchecorne, A.; Titov, D.V.; Bertaux, J.-L. Solar Related Variations of the Cloud Top Circulation Above Aphrodite Terra From VMC/Venus Express Wind Fields. J. Geophys. Res. Planets 2019, 124, 1864–1879. [Google Scholar] [CrossRef]
- Yamazaki, A.; Yamada, M.; Lee, Y.J.; Watanabe, S.; Horinouchi, T.; Murakami, S.; Kouyama, T.; Ogohara, K.; Imamura, T.; Sato, T.M.; et al. Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth Planets Space 2018, 70, 23. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S.; Yamada, M.; Yamazaki, A.; McGouldrick, K.; Yamamoto, Y.; Hashimoto, G.L. Venus Climate Orbiter Akatsuki UVI Calibrated Data v1.0, VCO-V-UVI-3-CDR-V1.0. NASA Planet. Data Syst. 2017. [Google Scholar] [CrossRef]
- Murakami, S.; Ogohara, K.; Takagi, M.; Kashimura, H.; Yamada, M.; Kouyama, T.; Horinouchi, T.; Imamura, T. Venus Climate Orbiter Akatsuki UVI Longitude-Latitude Map Data v1.0. JAXA Data Arch. Transm. Syst. 2018. [Google Scholar] [CrossRef]
- Khatuntsev, I.V.; Patsaeva, M.V.; Titov, D.V.; Ignatiev, N.I.; Turin, A.V.; Fedorova, A.A.; Markiewicz, W.J. Winds in the middle cloud deck from the near-IR imaging by the Venus Monitoring Camera onboard Venus Express. J. Geophys. Res. Planets 2017, 122, 2312–2327. [Google Scholar] [CrossRef]
- Khatuntsev, I.V.; Patsaeva, M.V.; Zasova, L.V.; Titov, D.V.; Ignatiev, N.I.; Gorinov, D.A.; Turin, A.V. Winds From the Visible (513 nm) Images Obtained by the Venus Monitoring Camera Onboard Venus Express. J. Geophys. Res. Planets 2022, 127, e2021JE007032. [Google Scholar] [CrossRef]
- Minnaert, M. The reciprocity principle in lunar photometry. Astrophys. J. 1941, 93, 403–410. [Google Scholar] [CrossRef]
- Limaye, S.S.; Suomi, V. A normalized view of Venus. J. Atmos. Sci. 1977, 34, 205–215. [Google Scholar] [CrossRef]
- Limaye, S.S. Morphology and movements of polarization features on Venus as seen from the Pioneer Orbiter Cloud Photopolarimeter data. Icarus 1984, 57, 362–385. [Google Scholar] [CrossRef]
- Berrevoets, C.; DeClerq, B.; George, T.; Makolkin, D.; Maxson, P.; Pilz, B.; Presnyakov, P.; Roel, E.; Weiller, S. RegiStax: Alignment, stacking and processing of images. Astrophys. Source Code Libr. 2012. 2012ascl.soft06001B. [Google Scholar]
- Lim, A.; Jaenisch, H.; Handley, J.; Filipovic, M.; White, G.; Hons, A.; Berrevoets, C.; Deragopian, G.; Payne, J.; Schneider, M.; et al. Image resolution and performance analysis of webcams for ground-based astronomy. In Proceedings of the SPIE—The International Society for Optical Engineering, Glasgow, UK, 21–25 June 2004. [Google Scholar] [CrossRef]
- Hueso, R.; Peralta, J.; Garate-Lopez, I.; Bandos, T.V.; Sánchez-Lavega, A. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planet. Space Sci. 2015, 113–114, 78–99. [Google Scholar] [CrossRef]
- Lafler, J.; Kinman, T.D. An RR Lyrae Star Survey with Ihe Lick 20-INCH Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer. Astrophys. J. Suppl. 1965, 11, 216. [Google Scholar] [CrossRef]
- Limaye, S.S.; Suomi, V.E. Cloud motions on Venus: Global structure and organization. J. Atmos. Sci. 1981, 38, 1220–1235. [Google Scholar] [CrossRef]
- Limaye, S.S. Venus atmospheric circulation: Known and unknown. J. Geophys. Res. 2007, 112, E04S09. [Google Scholar] [CrossRef] [Green Version]
- Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, J.B.; Rages, K.; Morrison, D.; Klaasen, K.P.; Pilcher, C.B. Images from Galileo of the Venus cloud deck. Science 1991, 253, 1531–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limaye, S.S.; Grassi, D.; Mahieux, A.; Migliorini, A.; Tellmann, S.; Titov, D. Venus atmospheric thermal structure and radiative balance. Space Sci. Rev. 2018, 214, 102. [Google Scholar] [CrossRef] [Green Version]
- Titov, D.V.; Ignatiev, N.I.; McGouldrick, K.; Wilquet, V.; Wilson, C.F. Clouds and Hazes of Venus. Space Sci. Rev. 2018, 214, 126. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D.; Ingersoll, A.P.; Hildebrand, C.E.; Preston, R.A. VEGA balloon meteorological measurements. Adv. Space Res. 1990, 10, 109–124. [Google Scholar] [CrossRef]
- Gorinov, D.A.; Zasova, L.V.; Khatuntsev, I.V.; Patsaeva, M.V.; Turin, A.V. Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 μm Images. Atmosphere 2021, 12, 186. [Google Scholar] [CrossRef]
- Encrenaz, T.; Greathouse, T.K.; Marcq, E.; Sagawa, H.; Widemann, T.; Bezard, B.; Fouchet, T.; Lefèvre, F.; Lebonnois, S.; Atreya, S.K.; et al. HDO and SO2 thermal mapping on Venus. V. Evidence for a long-term anti-correlation. Astron. Astrophys. 2020, 639, A69. [Google Scholar] [CrossRef]
- Woods, T.N.; Harder, J.W.; Kopp, G.; Snow, M. Solar-Cycle Variability Results from the Solar Radiation and Climate Experiment (SORCE) Mission. Sol. Phys. 2022, 297, 43. [Google Scholar] [CrossRef]
- Kane, S.R.; Arney, G.; Crisp, D.; Domagal-Goldman, S.; Glaze, L.S.; Goldblatt, C.; Grinspoon, D.; Head, J.W.; Lenardic, A.; Unterborn, C.; et al. Venus as a laboratory for exoplanetary science. J. Geopys. Res. Planets 2019, 124, 2015–2028. [Google Scholar] [CrossRef]
- Khatuntsev, I.; Patsaeva, M. Twelve years cycle in the Venusian cloud top winds derived from VMC/Venus Express and UVI/Akatsuki imaging. Mendeley Data 2022, V1. Available online: https://data.mendeley.com/datasets/nfwrrzwr5x/1 (accessed on 28 November 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatuntsev, I.V.; Patsaeva, M.V.; Titov, D.V.; Zasova, L.V.; Ignatiev, N.I.; Gorinov, D.A. Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging. Atmosphere 2022, 13, 2023. https://doi.org/10.3390/atmos13122023
Khatuntsev IV, Patsaeva MV, Titov DV, Zasova LV, Ignatiev NI, Gorinov DA. Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging. Atmosphere. 2022; 13(12):2023. https://doi.org/10.3390/atmos13122023
Chicago/Turabian StyleKhatuntsev, Igor V., Marina V. Patsaeva, Dmitrij V. Titov, Ludmila V. Zasova, Nikolay I. Ignatiev, and Dmitry A. Gorinov. 2022. "Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging" Atmosphere 13, no. 12: 2023. https://doi.org/10.3390/atmos13122023
APA StyleKhatuntsev, I. V., Patsaeva, M. V., Titov, D. V., Zasova, L. V., Ignatiev, N. I., & Gorinov, D. A. (2022). Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging. Atmosphere, 13(12), 2023. https://doi.org/10.3390/atmos13122023