Statistical Study of Equatorial Ionospheric Anomaly after Midnight Based on FY-3(D) Ionospheric Photometer
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, D.N. A theoretical study of the ionospheric F region equatorial anomaly-I. Theory. Planet. Space Sci. 1973, 21, 409–419. [Google Scholar] [CrossRef]
- Duncan, R.A. The Equatorial F-region of the Ionosphere. J. Atmos. Sol. Terr. Phys. 1960, 18, 89–100. [Google Scholar] [CrossRef]
- Rishbeth, H. Polarization Fields Produced by Winds in the Equatorial F Region. Planet. Space Sci. 1971, 19, 357–369. [Google Scholar] [CrossRef]
- Martyn, D.F. Atmospheric Tides in the Ionosphere—I. Solar Tides in the F2 Region. Proc. R. Soc. Lond. Ser. A 1947, 189, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Croom, S.; Robbins, A.; Thoma, J.O. Two Anomalies in the Behavior of the F2 Layer of the Ionosphere. Nature 1959, 184, 2003–2004. [Google Scholar] [CrossRef]
- Meier, R.R. Ultraviolet Spectroscopy and Remote Sensing of the Upper Atmosphere. Space Sci. Rev. 1991, 58, 1–185. [Google Scholar] [CrossRef]
- Kamalabadi, F.; Karl, W.C.; Semeter, J.L.; Cotton, D.M.; Cook, T.A.; Chakrabarti, S. A Statistical Framework for Space-Based EUV Ionospheric Tomography. Radio Sci. 1999, 34, 437–447. [Google Scholar] [CrossRef]
- Dymond, K.F.; Thonnard, S.E.; McCoy, R.P.; Thomas, R.J. An Optical Remote Sensing Technique for Determining Nighttime F Region Electron Density. Radio Sci. 1997, 32, 1985–1996. [Google Scholar] [CrossRef]
- Kil, H.; DeMajistre, R.; Paxton, L.J. F-Region Plasma Distribution Seen from TIMED/GUVI and Its Relation to the Equatorial Spread F Activity: F-Region Plasma Density from TIMED/GUVI. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Paxton, L.J.; Christensen, A.B.; Humm, D.C.; Ogorzalek, B.S.; Pardoe, C.T.; Morrison, D.; Weiss, M.B.; Crain, W.; Lew, P.H.; Mabry, D.J.; et al. Global Ultraviolet Imager (GUVI): Measuring Composition and Energy Inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Mission. In Proceedings of the Proceedings Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, Denver, CO, USA, 20 October 1999; p. 265. [Google Scholar]
- Christensen, A.B. Initial Observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED Satellite Mission. J. Geophys. Res. 2003, 108, 1451. [Google Scholar] [CrossRef]
- Rajesh, P.K.; Liu, J.Y.; Hsu, M.L.; Lin, C.H.; Oyama, K.I.; Paxton, L.J. Ionospheric Electron Content and NmF2 from Nighttime OI 135.6 Nm Intensity: IEC and NMF2 USING OI 135.6 NM INTENSITY. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Jiang, F.; Mao, T.; Zhang, X.; Wang, Y.-G.; Hu, X.; Wang, D.; Jia, N.; Wang, T.; Sun, Y.; Fu, L.-P. Observation of Thermosphere and Ionosphere Using the Ionosphere PhotoMeter (IPM) on the Chinese Meteorological Satellite FY-3D. Adv. Space Res. 2020, 66, 2151–2167. [Google Scholar] [CrossRef]
- Meier, R.R.; Picone, J.M.; Drob, D.; Bishop, J.; Emmert, J.T.; Lean, J.L.; Stephan, A.W.; Strickland, D.J.; Christensen, A.B.; Paxton, L.J.; et al. Remote Sensing of Earth’s Limb by TIMED/GUVI: Retrieval of Thermospheric Composition and Temperature. Earth Space Sci. 2015, 2, 1–37. [Google Scholar] [CrossRef]
- DeMajistre, R. Retrievals of Nighttime Electron Density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Mission Global Ultraviolet Imager (GUVI) Measurements. J. Geophys. Res. 2004, 109, A05305. [Google Scholar] [CrossRef]
- Kamalabadi, F.; Bust, G.; Dymond, K.; Gonzalez, S.; Bernhardt, P.; Chakrabarti, S.; Cotton, D.; Stephan, A.; McCoy, R.; Budzien, S.; et al. Tomographic Studies of Aeronomic Phenomena Using Radio and UV Techniques. J. Atmospheric Sol. Terr. Phys. 2002, 64, 1573–1580. [Google Scholar] [CrossRef]
- Balan, N.; Souza, J.; Bailey, G.J. Recent Developments in the Understanding of Equatorial Ionization Anomaly: A Review. J. Atmospheric Sol. Terr. Phys. 2018, 171, 3–11. [Google Scholar] [CrossRef]
- Cai, X.; Burns, A.G.; Wang, W.; Coster, A.; Qian, L.; Liu, J.; Solomon, S.C.; Eastes, R.W.; Daniell, R.E.; McClintock, W.E. Comparison of GOLD Nighttime Measurements With Total Electron Content: Preliminary Results. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027767. [Google Scholar] [CrossRef]
- Sagawa, E.; Maruyama, T.; Immel, T.J.; Frey, H.U.; Mende, S.B. Global View of the Nighttime Low-Latitude Ionosphere by the IMAGE/FUV 135.6 Nm Observations: Global view of the Equatorial Ionosphere. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Barth, C.A.; Schaffner, S. OGO 4 Spectrometer Measurements of the Tropical Ultraviolet Airglow. J. Geophys. Res. 1970, 75, 4299–4306. [Google Scholar] [CrossRef]
- Rodríguez-Zuluaga, J.; Stolle, C.; Yamazaki, Y.; Xiong, C.; England, S.L. A Synoptic-Scale Wavelike Structure in the Nighttime Equatorial Ionization Anomaly. Earth Space Sci. 2021, 8, e2020EA001529. [Google Scholar] [CrossRef]
- Sagawa, E.; Immel, T.J.; Frey, H.U.; Mende, S.B. Longitudinal Structure of the Equatorial Anomaly in the Nighttime Ionosphere Observed by IMAGE/FUV. J. Geophys. Res. 2005, 110, A11302. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Zhao, B.; Lei, J.; Wan, W. On the Relationship between the Postmidnight Thermospheric Equatorial Mass Anomaly and Equatorial Ionization Anomaly under Geomagnetic Quiet Conditions: BRIEF REPORT. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Kil, H.; DeMajistre, R.; Paxton, L.J.; Zhang, Y. Nighttime-Region Morphology in the Low and Middle Latitudes Seen from DMSP F15 and TIMED/GUVI. J. Atmospheric Sol. Terr. Phys. 2006, 68, 1672–1681. [Google Scholar] [CrossRef]
- Henderson, S.B.; Swenson, C.M.; Christensen, A.B.; Paxton, L.J. Morphology of the Equatorial Anomaly and Equatorial Plasma Bubbles Using Image Subspace Analysis of Global Ultraviolet Imager Data. J. Geophys. Res. 2005, 110, A11306. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Hsiao, C.C.; Liu, J.Y.; Liu, C.H. Longitudinal Structure of the Equatorial Ionosphere: Time Evolution of the Four-Peaked EIA Structure: LONGITUDINAL EIA STRUCTURE. J. Geophys. Res. Space Phys. 2007, 112, e2007JA012455. [Google Scholar] [CrossRef]
- Lin, C.H.; Liu, J.Y.; Fang, T.W.; Chang, P.Y.; Tsai, H.F.; Chen, C.H.; Hsiao, C.C. Motions of the Equatorial Ionization Anomaly Crests Imaged by FORMOSAT-3/COSMIC. Geophys. Res. Lett. 2007, 34, L19101. [Google Scholar] [CrossRef]
- Laskar, F.I.; Eastes, R.W.; Martinis, C.R.; Daniell, R.E.; Pedatella, N.M.; Burns, A.G.; McClintock, W.; Goncharenko, L.P.; Coster, A.; Milla, M.A.; et al. Early Morning Equatorial Ionization Anomaly From GOLD Observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027487. [Google Scholar] [CrossRef]
- Cai, X.; Qian, L.; Wang, W.; McInerney, J.M.; Liu, H.; Eastes, R.W. Investigation of the Post-Sunset Extra Electron Density Peak Poleward of the Equatorial Ionization Anomaly Southern Crest. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030755. [Google Scholar] [CrossRef]
- Cai, X.; Qian, L.; Wang, W.; McInerney, J.M.; Liu, H.; Eastes, R.W. Hemispherically Asymmetric Evolution of Nighttime Ionospheric Equatorial Ionization Anomaly in the American Longitude Sector. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030706. [Google Scholar] [CrossRef]
- Jee, G. Analysis of TEC Data from the TOPEX/Poseidon Mission. J. Geophys. Res. 2004, 109, A01301. [Google Scholar] [CrossRef]
- Immel, T.J.; Sagawa, E.; England, S.L.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Control of Equatorial Ionospheric Morphology by Atmospheric Tides. Geophys. Res. Lett. 2006, 33, L15108. [Google Scholar] [CrossRef]
- Guo, B.; Xu, J.; Sun, L.; Lin, Y.; Yuan, W. The Seasonal and Longitudinal Variations of Nighttime OI 135.6-nm Emission at Equatorial Ionization Anomaly Crests Observed by the DMSP/SSUSI. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027764. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, L.; Jiang, F.; Hu, X.; Liu, C.; Zhang, X.; Li, J.; Ren, Z.; He, F.; Sun, L.; et al. Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite. Atmos. Meas. Tech. 2022, 15, 1577–1586. [Google Scholar] [CrossRef]
- Jiang, F.; Mao, T.; Zhang, X.; Wang, Y.; Fu, L.; Hu, X.; Wang, D.; Jia, N.; Wang, T.; Sun, Y. The Day-Glow Data Application of FY-3D IPM in Monitoring O/N2. J. Atmospheric Sol. Terr. Phys. 2020, 205, 105309. [Google Scholar] [CrossRef]
- Wang, D.; Fu, L.; Jiang, F.; Jia, N.; Wang, T.; Dou, S. Inversion of Ionospheric O/N2 by Using FY-3D Ionospheric Photometer Data. Spectrosc. Spectr. Anal. 2021, 41, 1004–1010. [Google Scholar] [CrossRef]
- Eastes, R.W.; McClintock, W.E.; Burns, A.G.; Anderson, D.N.; Andersson, L.; Codrescu, M.; Correira, J.T.; Daniell, R.E.; England, S.L.; Evans, J.S.; et al. The Global-Scale Observations of the Limb and Disk (GOLD) Mission. Space Sci. Rev. 2017, 212, 383–408. [Google Scholar] [CrossRef] [Green Version]
- Eastes, R.W.; McClintock, W.E.; Burns, A.G.; Anderson, D.N.; Andersson, L.; Aryal, S.; Budzien, S.A.; Cai, X.; Codrescu, M.V.; Correira, J.T.; et al. Initial Observations by the GOLD Mission. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027823. [Google Scholar] [CrossRef]
- Greer, K.R.; Eastes, R.; Solomon, S.; McClintock, W.; Burns, A.; Rusch, D. Variations of Lower Thermospheric FUV Emissions Based on GOLD Observations and GLOW Modeling. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027810. [Google Scholar] [CrossRef]
- Tsai, T.C.; Jhuang, H.K.; Lee, L.C.; Ho, Y.Y. Ionospheric Peaked Structures and Their Local Time, Seasonal, and Solar Activity Dependence Based on Global Ionosphere Maps. J. Geophys. Res. Space Phys. 2019, 124, 7994–8014. [Google Scholar] [CrossRef]
- Li, K.-F.; Lin, L.-C.; Bui, X.-H.; Liang, M.-C. The 11 Year Solar Cycle Response of the Equatorial Ionization Anomaly Observed by GPS Radio Occultation. J. Geophys. Res. 2018, 123, 848–861. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K.; Lee, J. Equatorial Ionospheric Anomaly (EIA) and Comparison with IRI Model during Descending Phase of Solar Activity (2005–2009). Adv. Space Res. 2014, 53, 724–733. [Google Scholar] [CrossRef]
- Huang, Y.-N.; Cheng, K. Solar Cycle Variations of the Equatorial Ionospheric Anomaly in Total Electron Content in the Asian Region. J. Geophys. Res. Space Phys. 1996, 101, 24513–24520. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Field of view | ∼3.5°(along orbit) × 1.6°(cross orbit) |
Band of detection | night mode: 135.6 nm |
day mode: 135.6 nm and N2LBH | |
Sensitivity | day mode: N2LBH channel: 11 counts/s/Rayleigh |
135.6 nm channel: 8 counts/s/Rayleigh night mode: | |
135.6-nm channel: 226 counts/s/Ray leigh | |
Bandwidth | 135.6nm@day mode: FWHM = 7.5-nm |
N2LBH@day mode: FWHM = 25 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Fu, L.; Mao, T.; Hu, X.; Jiang, F.; Jia, N.; Wang, T.; Peng, R.; Wang, J. Statistical Study of Equatorial Ionospheric Anomaly after Midnight Based on FY-3(D) Ionospheric Photometer. Atmosphere 2022, 13, 2068. https://doi.org/10.3390/atmos13122068
Zhang B, Fu L, Mao T, Hu X, Jiang F, Jia N, Wang T, Peng R, Wang J. Statistical Study of Equatorial Ionospheric Anomaly after Midnight Based on FY-3(D) Ionospheric Photometer. Atmosphere. 2022; 13(12):2068. https://doi.org/10.3390/atmos13122068
Chicago/Turabian StyleZhang, Bin, Liping Fu, Tian Mao, Xiuqing Hu, Fang Jiang, Nan Jia, Tianfang Wang, Ruyi Peng, and Jinsong Wang. 2022. "Statistical Study of Equatorial Ionospheric Anomaly after Midnight Based on FY-3(D) Ionospheric Photometer" Atmosphere 13, no. 12: 2068. https://doi.org/10.3390/atmos13122068
APA StyleZhang, B., Fu, L., Mao, T., Hu, X., Jiang, F., Jia, N., Wang, T., Peng, R., & Wang, J. (2022). Statistical Study of Equatorial Ionospheric Anomaly after Midnight Based on FY-3(D) Ionospheric Photometer. Atmosphere, 13(12), 2068. https://doi.org/10.3390/atmos13122068