Quantifying the Source Contributions to Poor Atmospheric Visibility in Winter over the Central Plains Economic Region in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Visibility Data
2.2. Air Quality Model
2.3. Calculation of Light Extinction Coefficient
3. Results
3.1. Model Validation
3.2. Sector Source Contribution to bext
3.3. Regional Source Contribution to bext
3.4. Impact of Emission Reduction on bext
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Statistical Parameter | Calculation Formula |
---|---|
R (correlation coefficient) | |
NMB (normalized mean bias) | |
MFB (mean fractional bias) | |
MFE (mean fractional error) | |
FAC2 (fraction of data that satisfy ) | FAC2 = NV/N |
References
- Wang, X.Y.; Zhang, R.H.; Yu, W. The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Yuan, X.; Zeng, G.; Liang, J.; Li, X.; Xu, W.; Luo, Y.; Chen, G. Effects of human activities and climate change on the reduction of visibility in Beijing over the past 36 years. Environ. Int. 2018, 116, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, N.P. Impaired visibility: The air pollution people see. Atmos. Environ. 2009, 43, 182–195. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.; Zheng, F.; Zhou, Y.; Guo, Y.; Feng, Z.; Li, C.; Zhang, Y.; Hakala, S.; Chan, T.; et al. Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmos. Chem. Phys. 2021, 21, 12173–12187. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, G.; Tan, T.; Li, C.; Zong, T.; Xu, N.; Zhu, W.; Hu, M. Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China. Environ. Pollut. 2021, 290, 118032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Xiao, Z.; Tang, G.; Li, H.; Gao, R.; Dao, X.; Wang, Y.; Wang, W. Heavy haze pollution during the COVID-19 lockdown in the Beijing-Tianjin-Hebei region, China. J. Environ. Sci. 2021, 114, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Chen, J. Formation, features and controlling strategies of severe haze-fog pollutions in China. Sci. Total Environ. 2017, 578, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lei, L.; Du, A.; Zhang, Z.; Li, Y.; Yang, Y.; Chen, C.; Xu, W.; Sun, J.; Li, Z.; et al. Unexpected Increases of Severe Haze Pollution During the Post COVID-19 Period: Effects of Emissions, Meteorology, and Secondary Production. J. Geophys. Res. Atmos. 2022, 127, e2021JD035710. [Google Scholar] [CrossRef]
- Li, J.; Du, H.; Wang, Z.; Sun, Y.; Yang, W.; Li, J.; Tang, X.; Fu, P. Rapid formation of a severe regional winter haze episode over a megacity cluster on the North China Plain. Environ. Pollut. 2017, 223, 605–615. [Google Scholar] [CrossRef]
- Zou, J.; Liu, Z.; Hu, B.; Huang, X.; Wen, T.; Ji, D.; Liu, J.; Yang, Y.; Yao, Q.; Wang, Y. Characteristics of the chemical compositions of aerosols in the North China Plain and their impact on the visibility in Beijing and Tianjin. Atmos. Res. 2017, 201, 235–246. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Sun, Y.L.; Jiang, Q.; Du, W.; Sun, C.Z.; Fu, P.Q.; Wang, Z.F. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China. J. Geophys. Res. Atmos. 2015, 120, 12708–12722. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Gao, J.; Wang, H.; Chai, F.; Wang, S. Aerosol chemical composition and light scattering during a winter season in Beijing. Atmos. Environ. 2015, 110, 36–44. [Google Scholar] [CrossRef]
- Yao, L.; Kong, S.; Zheng, H.; Chen, N.; Zhu, B.; Xu, K.; Cao, W.; Zhang, Y.; Zheng, M.; Cheng, Y.; et al. Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. npj Clim. Atmos. Sci. 2021, 4, 40. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Li, J.; Shi, Z.; Wang, Y.; Zhang, H.; Ying, Q.; Yu, X.; Liao, H.; Hu, J. Source contributions to poor atmospheric visibility in China. Resour. Conserv. Recycl. 2019, 143, 167–177. [Google Scholar] [CrossRef]
- Brewer, P.; Moore, T. Source Contributions to Visibility Impairment in the Southeastern and Western United States. J. Air Waste Manag. Assoc. 2009, 59, 1070–1081. [Google Scholar] [CrossRef]
- Wang, S.B.; He, B.; Yuan, M.H.; Su, F.C.; Yin, S.S.; Yan, Q.S.; Jiang, N.; Zhang, R.Q.; Tang, X.Y. Characterization of individual particles and meteorological conditions during the cold season in Zhengzhou using a single particle aerosol mass spectrometer. Atmos. Res. 2019, 219, 13–23. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, N.; Zhang, R.; Yu, X.; Li, S.; Miao, Q. Composition analysis of PM2.5 at multiple sites in Zhengzhou, China: Implications for characterization and source apportionment at different pollution levels. Environ. Sci. Pollut. Res. 2021, 28, 59329–59344. [Google Scholar] [CrossRef]
- Shenbo, W.; Wang, L.; Fan, X.; Wang, N.; Ma, S.; Zhang, R. Formation pathway of secondary inorganic aerosol and its influencing factors in Northern China: Comparison between urban and rural sites. Sci. Total Environ. 2022, 840, 156404. [Google Scholar] [CrossRef]
- Du, H.; Li, J.; Wang, Z.; Yang, W.; Chen, X.; Wei, Y. Sources of PM2.5 and its responses to emission reduction strategies in the Central Plains Economic Region in China: Implications for the impacts of COVID-19. Environ. Pollut. 2021, 288, 117783. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Wang, Z.; Wang, L.; Dao, X.; Zhu, L.; Pan, X.; Li, Y.; Sun, Y.; Ma, S.; et al. Source apportionment of PM2.5 in the most polluted Central Plains Economic Region in China: Implications for joint prevention and control of atmospheric pollution. J. Clean. Prod. 2020, 283, 124557. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, J.; Zhao, B.; Xia, X.; Hu, B.; Chen, H.; Wei, J.; Liu, M.; Bian, Y.; Fu, D.; et al. Surface brightening in eastern and central China since the implementation of the Clean Air Action in 2013: Causes and implications. Geophys. Res. Lett. 2020, 48, e2020GL09110. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM 2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sun, Y.; Wang, Q.; Xin, J.; Sun, J.; Lei, L.; Li, J.; Fu, P.; Wang, Z. Nitrate and secondary organic aerosol dominated particle light extinction in Beijing due to clean air action. Atmos. Environ. 2021, 269, 118833. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhao, C.; Su, T. Changes in surface aerosol extinction trends over China during 1980–2013 inferred from quality-controlled visibility data: Change of Aerosol Trends in China. Geophys. Res. Lett. 2016, 43, 8713–8719. [Google Scholar] [CrossRef] [Green Version]
- Griffing, G.W. Relations between the prevailing visibility, nephelometer scattering coefficient and sunphotometer turbidity coefficient. Atmos. Environ. 1980, 14, 577–584. [Google Scholar] [CrossRef]
- WMO. Aerodrome Reports and Forecasts: A User’s Handbook to the Codes, 5th ed.; ld Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Wang, Z.F.; Maeda, T.; Hayashi, M.; Hsiao, L.F.; Liu, K.Y. A nested air quality prediction modeling system for urban and regional scales: Application for high-ozone episode in Taiwan. Water Air Soil Pollut. 2001, 130, 391–396. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.Y.; Wang, Z.F.; Chen, H.S.; Hu, B.; Li, J.J.; Sun, Y.L.; Huang, Y. A modeling study of source-receptor relationships in atmospheric particulate matter over Northeast Asia. Atmos. Environ. 2014, 91, 40–51. [Google Scholar] [CrossRef]
- Wu, J.B.; Wang, Z.; Wang, Q.; Li, J.; Xu, J.; Chen, H.; Ge, B.; Zhou, G.; Chang, L. Development of an on-line source-tagged model for sulfate, nitrate and ammonium: A modeling study for highly polluted periods in Shanghai, China. Environ. Pollut. 2017, 221, 168–179. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Nenes, A. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Odum, J.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.; Seinfeld, J. Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environ. Sci. Technol. 1996, 30, 2580–2585. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Wang, Z.; Du, H.; Yang, W.; Sun, Y.; Hu, B.; Li, J.; Wang, W.; Wang, T.; et al. Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia. Sci. Total Environ. 2018, 622, 1327–1342. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Li, J.; Wang, Z.; Dao, X.; Guo, S.; Wang, L.; Ma, S.; Wu, J.; Yang, W.; Chen, X.; et al. Effects of Regional Transport on Haze in the North China Plain: Transport of Precursors or Secondary Inorganic Aerosols. Geophys. Res. Lett. 2020, 47, e2020GL087461. [Google Scholar] [CrossRef]
- Chen, X.; Yu, F.; Yang, W.; Sun, Y.; Chen, H.; Du, W.; Zhao, J.; Wei, Y.; Wei, L.; Du, H.; et al. Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module. Atmos. Chem. Phys. 2021, 21, 9343–9366. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models; NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 1994; p. 85. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Bai, L.; Lu, X.; Yin, S.; Zhang, H.; Ma, S.; Wang, C.; Li, Y.; Zhang, R. A recent emission inventory of multiple air pollutant, PM2.5 chemical species and its spatial-temporal characteristics in central China. J. Clean. Prod. 2020, 269, 122114. [Google Scholar] [CrossRef]
- Seinfeld, J.; Pandis, S. From Air Pollution to Climate Change. Atmos. Chem. Phys. 1998, 51, 1326. [Google Scholar]
- Malm, W.C. Spatial and Seasonal Patterns and Temporal Variability of Haze and Its Constituents in the United States: Report III (Chapter 3); Cooperative Institute for Research in the Atmosphere, Colorado State University: Fort Collins, CO, USA, 2000; pp. 1–38. [Google Scholar]
- Pan, X.L.; Yan, P.; Tang, J.; Ma, J.Z. Observational study of aerosol hygroscopic growth factors over rural area near Beijing mega-city. Atmos. Chem. Phys. Discuss. 2009, 9, 5087–5118. [Google Scholar]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Thunis, P.; Clappier, A.; Tarrason, L.; Cuvelier, C.; Monteiro, A.; Pisoni, E.; Wesseling, J.; Belisa, C.A.; Pirovano, G.; Janssen, S.; et al. Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environ. Int. 2019, 130, 104832. [Google Scholar] [CrossRef] [PubMed]
City | MO | MP | R | NMB | MFB | MFE | FAC2 |
---|---|---|---|---|---|---|---|
Zhumadian | 0.35 | 0.30 | 0.44 | −0.15 | −0.14 | 0.33 | 0.88 |
Anyang | 0.38 | 0.37 | 0.54 | −0.02 | 0.01 | 0.36 | 0.86 |
Zhengzhou | 0.42 | 0.42 | 0.71 | −0.02 | 0.20 | 0.44 | 0.77 |
Zhoukou | 0.28 | 0.33 | 0.75 | 0.20 | 0.20 | 0.36 | 0.88 |
Beijing | 0.29 | 0.20 | 0.69 | −0.31 | −0.26 | 0.45 | 0.77 |
Xingtai | 0.31 | 0.38 | 0.58 | 0.21 | 0.43 | 0.58 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Li, J.; Chen, X.; Yang, W.; Wang, Z.; Wang, Z. Quantifying the Source Contributions to Poor Atmospheric Visibility in Winter over the Central Plains Economic Region in China. Atmosphere 2022, 13, 2075. https://doi.org/10.3390/atmos13122075
Du H, Li J, Chen X, Yang W, Wang Z, Wang Z. Quantifying the Source Contributions to Poor Atmospheric Visibility in Winter over the Central Plains Economic Region in China. Atmosphere. 2022; 13(12):2075. https://doi.org/10.3390/atmos13122075
Chicago/Turabian StyleDu, Huiyun, Jie Li, Xueshun Chen, Wenyi Yang, Zhe Wang, and Zifa Wang. 2022. "Quantifying the Source Contributions to Poor Atmospheric Visibility in Winter over the Central Plains Economic Region in China" Atmosphere 13, no. 12: 2075. https://doi.org/10.3390/atmos13122075
APA StyleDu, H., Li, J., Chen, X., Yang, W., Wang, Z., & Wang, Z. (2022). Quantifying the Source Contributions to Poor Atmospheric Visibility in Winter over the Central Plains Economic Region in China. Atmosphere, 13(12), 2075. https://doi.org/10.3390/atmos13122075