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Abstract: ERA5 monthly averaged reanalysis data during 1979–2020 are used to analyze the anoma-
lous characteristics of summertime circulation types over Eurasia and their connections with the
North Atlantic Oscillation (NAO) modulated by North Atlantic sea surface temperature (SST). A
circulation index (CI) is defined to describe the anomalous characteristics of summertime circulation
types over the Eurasian mid-high latitude and classify the anomalous circulation into a double-ridge
type (DR-type) and double-trough type (DT-type). The results show that these anomalous circulation
types are closely related to the variation of the western Pacific subtropical high (WPSH), East Asian
subtropical jet (EASJ), South Asia high (SAH) and summer precipitation anomalies in China. There is
a significant negative correlation between summer NAO and circulation types over Eurasia. The pos-
itive CI is favorable for the southward movement of the EASJ and two positive height anomalies over
the Ural Mountains and the Sea of Okhotsk, respectively. Accompanied by moisture convergence and
a strong ascending motion over the middle and lower reaches of the Yangtze River Valley (MLYRV),
the summer rainfall will be above normal. These patterns are reversed in positive NAO-index years.
The connection between the NAO and circulation types over Eurasia is modulated by a tri-pole SST
anomaly pattern over the North Atlantic, which may induce the NAO-like atmospheric circulation
and strengthen the impacts of the NAO on Eurasian circulation types. A wave train from the North
Atlantic to East Asia, which is aroused by the tri-pole SST anomaly pattern, is the potential mechanism
for linking summer NAO and circulation types over Eurasia.

Keywords: Eurasian anomalous circulation; North Atlantic Oscillation; North Atlantic SST anomalies;
summer precipitation in China

1. Introduction

Anomalous atmosphere circulation can exert substantial influences on the weather
and climate features over the surrounding areas [1,2]. Atmospheric blocking, one of the
most notable characteristics of anomalous atmosphere circulation at mid-high latitude,
is associated with severe precipitation anomalies and extreme high or low temperatures
over East Asia [3–6]. Studies demonstrate that the double-blocking high type over the
Ural Mountains and the Sea of Okhotsk, along with an intensified trough between them,
is favorable for persistent low temperature and the occurrence of snowstorm and wet-
freezing events in China [7,8]. Moreover, the anomalous precipitation in the Yangtze River
Valley (YRV) is found to be greatly affected by the anomalous atmosphere circulation over
Eurasia at mid-high latitudes [9,10]. The most severe and devastating summer monsoon
flooding in 1998 that occurred along the YRV coincided with mid-tropospheric blocking
over northeast Eurasia [11]. The circulation pattern with two blocking high anomaly centers
over the eastern Ural Mountains and the western Sea of Okhotsk can facilitate cold air from
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high latitudes moving southward and westward to the upper YRV and play a key role in
abundant rainfall over the YRV [12]. Owing to the upstream wave energy dispersion from
the blocking over the Ural Mountains, a much stronger blocking high anomaly develops
near the Sea of Okhotsk, which is beneficial for the establishment of the East Asia/Pacific
pattern and ultimately contributes to persistent extreme precipitation events in the YRV [13].
Thus, it is necessary to pay attention to the causes of the anomalous circulation over Eurasia.

Previous studies show that the NAO has a remote impact on the downstream weather
and climate anomalies over East Asia through teleconnection patterns and the propagation
of anomalous planetary wave activity [14–16]. Characterized by a north–south dipole of
the sea level pressure (SLP) anomalies over the Icelandic low and the Azores high, the NAO
is the dominant mode of atmospheric variability over the North Atlantic [17,18]. As the
most powerful phenomenon dominating the wintertime Northern Hemisphere, the winter
NAO is closely related to the East Asian winter monsoon, which is accompanied by the
frequent occurrence of the Ural–Siberian blocking and the strengthening of the East Asian
trough [19–21]. The NAO can also impact the downstream weather and climate anomalies
over East Asia in the subsequent months. The positive winter NAO provides an eastward-
extended cooling signal over northern Africa, which reaches India and eastern China in
February and March, respectively [22]. A considerable negative correlation is investigated
between the December NAO and the East Asian summer monsoon, which is attributed
to an atmospheric wave train originating from the North Atlantic [23]. Moreover, many
studies show that the impacts of spring NAO/AO on the following East Asian summer
monsoon are also evident, which is significantly correlated with anomalous summer rainfall
over East Asia [24–27]. Although the summer NAO possesses a relatively smaller spatial
extent and weaker signals than the winter NAO, the EOF analysis of observed summertime
extratropical North Atlantic pressure at mean sea level still gives a dipole pattern parallel to
the winter NAO [17]. The summer NAO also explains a large portion of the total variance
in the atmosphere circulation over the North Atlantic region [28]. Some studies have
shown that the summer NAO exerts a vital influence on the climate, including the summer
air temperature and rainfall in the Northern Hemisphere [29,30]. The major patterns of
summer climate over China are also highly connected with the interannual variation of
summer NAO, supporting a teleconnection between the North Atlantic region and East
Asia [31]. Previous studies mainly focus on the impact of the winter NAO on weather and
climate anomalies over East Asia, but less attention is paid to the influence of summer
NAO on the atmospheric circulation over Eurasia. Thus, this study aims to investigate the
connection between summer NAO and circulation types over Eurasia.

Furthermore, SST plays an important role in climate variability. A number of studies
demonstrated the impacts of ENSO-related SST anomalies over the Pacific and Indian
oceans on atmospheric circulation and climate feature over East Asia [32–35]. Recently,
there has been increasing evidence of the remote impact of Atlantic Ocean SST anomalies
on Eurasia. Through inducing an atmospheric wave train extending from the North
Atlantic to Eurasia, spring North Atlantic SST anomalies can modulate summer surface air
temperature anomalies over Eurasia [26,36,37]. Some studies suggested that the wave train
also explains why the North Atlantic SST anomalies can affect the precipitation variability
in East Asia [12,38,39]. Additionally, the North Atlantic SST anomalies play a crucial role
in prolonging the influence of the winter NAO on the atmospheric circulation anomalies
over the subtropics of the Northern Hemisphere in the following seasons [20,40]. The
ocean model simulations suggest that positive Atlantic SSTs near the equator persist in
their locations and strengths until summer, playing key roles in connecting spring AO to
East Asian summer monsoons by a positive air–sea feedback [41]. The anomalous NAO
in spring impacts the following East Asian summer monsoon via inducing a tri-pole SST
anomaly pattern in the North Atlantic, which persists into the ensuing summer and excites
a subpolar teleconnection extending from northern Europe to East Asia [27,42]. The above
studies indicated that the wave train aroused by the North Atlantic SST anomalies acts as
an important bridge in the influence of the NAO on the weather and climate anomalies
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over East Asia. In this study, we further examine whether summer North Atlantic SST can
modulate the connection between summer NAO and circulation types over Eurasia.

Therefore, this study aims to investigate the anomalous characteristics of summer-
time circulation types over Eurasia and their connections with the NAO modulated by
North Atlantic SST. The paper is organized as follows. Section 2 describes data and
methods. Section 3.1 presents the anomalous characteristics of summertime circulation
types over Eurasia. Section 3.2 investigates the connection between summer NAO and
circulation types over Eurasia. Section 3.3 explores the modulation of summer North
Atlantic SST anomalies on the connection between the NAO and Eurasian circulation
types. Sections 4 and 5 give the discussion and conclusion, respectively.

2. Materials and Methods

The datasets used in the present study include (1) the ERA5 monthly averaged re-
analysis data during 1979–2020 derived from the European Centre for Medium-Range
Weather Forecasts [43] with a horizontal resolution of 1.0◦, including geopotential height,
u-component of wind, v-component of wind, SLP, vertical velocity, SST and latent heat
flux, and (2) the daily precipitation data derived from the China Meteorological Adminis-
tration (CMA). Summer mean values based on the monthly data are calculated from June
to August (JJA).

The wave activity flux formulated by Plumb [44] is used to study the stationary wave
propagation. The formulation of the wave activity flux may be expressed as:

Fs = p cos ϕ×


v′2 − 1

2Ωa sin 2ϕ

∂(v′Φ′)
∂λ

−u′v′ + 1
2Ωa sin 2ϕ

∂(u′Φ′)
∂λ

2Ω sin ϕ
S

[
v′T′ − 1

2Ωa sin 2ϕ

∂(T′Φ′)
∂λ

]
 (1)

where p is pressure (hPa)/1000 hPa and ϕ and λ are latitude and longitude, respectively.
The Earth’s rotation rate, radius of the Earth and static stability are given by Ω, a and S,
respectively.

The SST and precipitation data used in this study have all removed the impact of ENSO
by defining the Niño4 index as the area-averaged SST from 5◦ S–5◦ N and 160◦ E–150◦ W,
and calculating the linear regression patterns of the SST and precipitation fields to the
Niño4 index, then removing these patterns from the original fields [45].

3. Results
3.1. The Anomalous Characteristics of Summertime Circulation Types over Eurasia
3.1.1. Classification of Summertime Anomalous Circulation Types over Eurasia

The blocking high pressure, one of the main circulation systems affecting summer
droughts and floods in East Asia, mainly occurs over the Ural Mountains, Lake Baikal and
the Sea of Okhotsk [9,10,12]. Liu et al. [46] analyzed the temporal and spatial distributions
of atmosphere blockings high in Asia during summer and indicated three active areas
of blocking events, including the Sea of Okhotsk, the Ural Mountains and Lake Baikal,
accounting for 30.4%, 27.5% and 23.8% of the accumulative numbers, respectively. Ac-
cording to principal component analysis using 500 hPa geopotential heights, the summer
blocking was regarded as the major mode in these areas [47]. To investigate the charac-
teristics of summertime anomalous circulation types over Eurasia, the three areas with a
high frequency of blocking high pressure are chosen as the key areas, which include the
Ural Mountains (40◦ N–50◦ N, 40◦ E–70◦ E), Lake Baikal (50◦ N–60◦ N, 80◦ E–110◦ E) and
the Sea of Okhotsk (50◦ N–60◦ N, 120◦ E–150◦ E). Based on the circulation characteristics
of these key areas, the summer anomalous circulation over Eurasia can be classified into
double-ridge type (DR-type) and double-trough type (DT-type). The DR-type is mainly
characterized by the ridges over the Ural Mountains and the Sea of Okhotsk, and a trough
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over Lake Baikal. The positions of the troughs and ridges for DT-type are opposite. Since
the two types resemble well the leading EOF modes of Eurasian 500 hPa height in a pre-
vious study [48], it is reasonable to regard them as Eurasian-dominant variations in the
summer. Additionally, the normalized latitudinal deviation is a defining method for ana-
lyzing persistent anomalies in the extratropical atmospheric circulation of the Northern
Hemisphere [49]. Based on the normalized latitudinal deviation, a circulation index (CI) is
defined as follows to describe the anomalous characteristics over Eurasia:

CI = hu + ho − hb (2)

where hu, hb and ho represent the normalized regional mean of the latitudinal devia-
tion of summer 500 hPa height in the key areas of the Ural Mountains (40◦ N–50◦ N,
40◦ E–70◦ E), Lake Baikal (50◦ N–60◦ N, 80◦ E–110◦ E) and the Sea of Okhotsk (50◦ N–60◦ N,
120◦ E–150◦ E), respectively. The normalized time series of CI for 1979–2020 is shown in
Figure 1a, which reveals an interannual variation clearly. The years in which the normalized
CI values are higher than +1.0 standard deviation are defined as the DR-type, and the
years in which the normalized CI values are lower than −1.0 are defined as the DT-type.
From Figure 1a we can see that there were seven DR-type years (1988, 1989, 1997, 1998,
2008, 2010 and 2014) and seven DT-type years (1979, 1994, 2001, 2003, 2004, 2005 and
2018). To obtain a better understanding of the spatial structure of summertime anomalous
circulation types over Eurasia related to the CI, Figure 1b,c present the composite summer
geopotential height anomalies at 500 hPa for the DR-type and DT-type, respectively. There
is a wave train with alternating positive and negative height anomalies over the Eurasian
mid-high latitude. As for the DR-type (Figure 1b), significant negative height anomalies at
500 hPa can be seen over the east of Europe and Lake Baikal and significant positive height
anomalies over the Ural Mountains and the Sea of Okhotsk. Compared with the DR-type,
significant height anomalies for the DT-type (Figure 1c) are opposite. It is noteworthy
that the positive height anomalies over the northern Pacific extend southwestward to the
eastern coast of China, implying that the WPSH is more intense and more northwestward
than that of the DR-type.

3.1.2. The Anomalous Characteristics of Summertime Circulation Types over Eurasia

To further investigate the anomalous characteristics of summertime circulation types
over Eurasia, the composite summer geopotential height anomalies at 200 hPa and zonal
wind at 200 hPa are plotted in Figure 2. An anomalous wave train pattern at 200 hPa over
Eurasia, which originates from the North Atlantic and propagates eastward to East Asia,
can be clearly identified, which is consistent with the wave train at 500 hPa (Figure 1b,c).
Compared with the DR-type, the EASJ for the DT-type expands westward and the jet core
moves from the northwest of China to the Caspian Sea. It also can be found that the area of
SAH is smaller and more westward, whose border arrives west of 120◦ E.

As the circulation characteristics are shown in Figures 1 and 2, the WPSH is weaker
and further southeastern, and the location of the EASJ and the SAH deviate eastward for the
DR-type, which is demonstrated to cause a “southern flood and northern drought” summer
rainfall pattern over eastern China [50,51]. Thus, the composite summer horizontal wind
anomalies at 850 hPa and precipitation anomalies are illustrated in Figure 3. A distribution
of an anticyclone–cyclone–anticyclone pattern at 850 hPa is shown along the eastern coast
of the Asian continent from south to north for the DR-type (Figure 3a). The western
North Pacific is dominated by the cyclone anomalies, which are accompanied by the
southeastward movement of WPSH. In this pattern, the southerly winds from low latitude
anticyclone and the northerly winds from middle latitude cyclone converge over the
MLYRV, which provides favorable conditions for extreme precipitation events. Compared
with the DR-type, the distribution of horizontal wind anomalies at 850 hPa for the DT-type
(Figure 3b) is opposite, which is consistent with the northwestward extension of WPSH.
Consequently, the southerly winds from the middle-latitude anticyclone transport the
moisture farther northward, causing precipitation to concentrate over the north of China.
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These results are demonstrated by the distribution of summer composite precipitation
anomalies. As for the DR-type, significant positive precipitation anomalies appear over
the MLYRV, and significant negative precipitation anomalies are seen over north China.
These patterns are in contrast to the precipitation anomalies for the DT-type. Notably, a
distinct meridional wave pattern along the East Asian coast can be observed in Figure 3a
(Figure 3b), which resembles well the positive (negative) phase of the East Asia/Pacific
(EAP) pattern [52]. Previous studies revealed that persistent circulation anomalies during
the positive (negative) EAP phase may result in floods (droughts) in the YRV [13,53],
consistent with the distribution of precipitation anomalies in Figure 3. Thus, the anomalous
precipitation may be influenced by the combination of Eurasian circulation types and the
EAP, which is worth investigating in detail in future work.
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units: dagpm) for (b) DR-type and (c) DT-type. The 500 hPa geopotential height anomalies significant
at the 90% confidence level are dotted.
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90% confidence level are dotted.
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Sufficient water vapor and appropriate transportation of water vapor play an im-
portant role in precipitation, so we investigate the composite summer vertical integral of
moisture flux anomalies and its divergence anomalies (Figure 4). Under the control of an
anomalous anticyclone, anomalous southwestern winds prevail over the south of China,
increasing the water vapor transported from the South China Sea to the MLYRV for the
DR-type (Figure 4a), which leads to the anomalous convergence of water vapor and more
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precipitation. At the same time, dominated by the northerly winds, it is unbeneficial for the
transportation of water vapor to the north of China, so anomalous divergence and less pre-
cipitation appear over there. Corresponding to the DT-type (Figure 4b), more water vapor
is transported from the Pacific Ocean to the north of China by southeastern winds, leading
to the anomalous convergence of water vapor over the north of China and divergence over
the MLYRV. It can be clearly seen that the transportation of water vapor flux matches well
with the patterns of the precipitation anomalies in Figure 3. The above evidence points
to the fact that the precipitation is likely to occur in the MLYRV for the DR-type but in
the north of China for the DT-type, which indicates that there exists a close relationship
between the typical anomalous circulation types over Eurasia and precipitation in China.
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moisture flux divergence anomalies significant at the 90% confidence level are dotted.

3.2. The Connection between Summer NAO and Circulation Types over Eurasia

The anomalous circulation over Eurasia can be attributed to the NAO [19–21]. To
investigate whether the summertime circulation types over Eurasia are linked to the NAO,
the composite summer SLP anomalies are shown in Figure 5. The distribution of SLP for the
DR-type (Figure 5a) is characterized by a north–south-orientated seesaw pattern over the
North Atlantic. A positive anomalous center is observed over Greenland, and a negative
one is found over the Azores. This pattern resembles well a negative phase of summer
NAO revealed in previous studies [17,54]. As for the DT-type (Figure 5b), there also exists
a significant seesaw pattern but with a positive anomalous center over the Azores and
a negative one over Greenland, which represents a positive phase of NAO. The result
suggests a connection between summer NAO and circulation types over Eurasia.

The variability of the NAO is quantified by the NAO index, which is defined as the
difference between the normalized monthly SLP over the North Atlantic sector averaged
from 80◦ W to 30◦ E at 35◦ N and that at 65◦ N [55] marked in Figure 5. The statistical
relationship between summer NAO and circulation types over Eurasia can be further
interpreted by the normalized time series of the CI and the NAO index for 1979–2020. As
shown in Figure 6, it can be seen that the CI and the NAO index highly co-vary out of
phase. The correlation coefficient between these two indices is −0.49, which is significant
at the 99.9% confidence level. This result reconfirms that there is a significantly negative
correlation between summer NAO and circulation types over the Eurasian mid-high
latitude.
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(b) DT-type. The surface level pressure anomalies significant at the 90% confidence level are dotted.
The black solid lines (from 80◦ W to 30◦ E at 35◦ N and 65◦ N) indicate the latitudinal band for
calculating NAO index.
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To confirm what is the possible mechanism linking the summer NAO and circulation
types over Eurasia, we first analyzed the regression patterns of summer zonal wind at
200 hPa onto the CI and the NAO index, respectively. In Figure 7a, there are positive
anomalies of 200 hPa zonal wind from MLYRV to Japan and negative anomalies over the
northeast of China, which reveals that the EASJ shifts southward and dominates the MLYRV.
However, in Figure 7b, the positive anomalies are seen in the northeast of China, indicating
the northward movement of the EASJ, which has contributed to abundant rainfall over
north China. Previous studies show that the EASJ, as a summer monsoon component, plays
an important role in the East Asian summer precipitation. In general, a southward EASJ
that appears from the YRV to Korea and Japan can lead to extreme summer precipitation
located over the YRV. A northward EASJ may benefit the heavy precipitation over the north
of China [56,57]. Therefore, the impact of anomalous circulation types at mid-high latitude
on the movement of EASJ and the variation of summer rainfall is opposite to the NAO.
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Figure 7. Regression of summer (a,b) zonal wind at 200 hPa (units: m·s−1), (c,d) geopotential height
at 500 hPa (units: dagpm) and wave activity fluxes (vector, units: m2·s−2), (e,f) vertical integral
of moisture flux (vector, units: kg·m−1·s−1) and its divergence (shading, units: 10−6kg·m−2·s−1),
(g,h) vertical velocity averaged along 90◦ E to 120◦ E (units: 10−3 Pa·s−1) onto (a,c,e,g) the CI and
(b,d,f,h) the NAO index. The areas significant at the 95% confidence level are dotted.

Moreover, the regression patterns of the summer geopotential height at 500 hPa onto
the CI are shown in Figure 7c. It can be seen that a wave train appears from the North
Atlantic through Eurasia to East Asia at mid-high latitude, resembling the composite
geopotential height anomalies of the DR-type (Figure 2a), with negative height anomalies
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over the east of Europe and Lake Baikal, and positive height anomalies over the Ural
Mountains and the Sea of Okhotsk, respectively. Due to two positive height anomalies over
the Ural Mountains and the Sea of Okhotsk, the cold air from the mid-high latitudes invades
persistently into the MLYRV and converges with the warm air from low latitudes, triggering
a positive effect on precipitation. The regression patterns of the summer geopotential
height at 500 hPa onto the NAO index (Figure 7d) also show a wave train but with the
opposite phase to Figure 7c, which is accompanied by negative height anomalies over
the Ural Mountains and the Sea of Okhotsk and less precipitation over the MLYRV. These
results indicate that the wave train from the North Atlantic to East Asia may be a major
bridge between summer NAO and circulation types over Eurasia and play a role in the
precipitation over the MLYRV. Previous studies have dealt with the wave train between
the North Atlantic and East Asia. The downstream extension of the NAO is caused by
quasi-stationary Rossby waves along the Asian jet waveguide and excited by a vorticity
source associated with the NAO [58]. In association with the positive (negative) NAO
in May, the Rossby wave train propagates eastward along the northward (southward)
westerly jet, which plays an important role in linking the May NAO and the summer
extreme precipitation frequency over MLYRV [25].

Figure 7e,f show the regression patterns of the vertical integral of moisture flux and
its divergence onto the CI and the NAO index, respectively. In Figure 7e, the divergence
anomalies of moisture flux dominate the western North Pacific and north China, and the
convergence anomalies appear from the MLYRV to Japan as a result of the water vapor from
the South China Sea being transported by anomalous southwestern winds over the south
of China. Corresponding to the positive NAO index years (Figure 7f), water vapor from the
Pacific Ocean turns northward to the north of China by southeastern winds over eastern
China, contributing to the moisture convergence over northern China and divergence over
the MLYRV. Such patterns are favorable for less rainfall in the MLYRV but for more in
north China.

A strong convergence pattern is associated with the development of convection, so the
regression patterns of summer vertical velocity averaged along 90◦ E to 120◦ E onto the CI
and the NAO index are shown in Figure 7g,h, respectively. In Figure 7g, there are significant
negative vertical velocity anomalies along 25◦ N to 33◦ N and positive anomalies over the
north of the Yellow River Basin and the South China, which implies that a strong ascending
motion dominates the MLYRV. These patterns increase atmospheric instability and enhance
the convergence of moisture, resulting in abundant rainfall over the MLYRV. In Figure 7h,
an anomalous sinking motion appears over the MLYRV, which imposes a negative effect on
the precipitation. In conclusion, the patterns in positive CI years are all opposite to those in
positive NAO-index years, which further indicates a negative correlation between summer
NAO and circulation types over the Eurasian mid-high latitude.

3.3. The Modulation of Summer North Atlantic SST Anomalies on the Connection between the
NAO and Eurasian Circulation Types

Recently, a number of studies demonstrated the impacts of the North Atlantic SST
anomalies on the atmospheric circulation and climate features over East Asia [26,36,37,39]. A
tri-pole pattern of North Atlantic SST can produce NAO-like atmospheric anomalies [59,60].
Thus, can the summer North Atlantic SST anomalies modulate the connection between
the NAO and Eurasian circulation types? To answer this question, the composite summer
SST anomalies for the DR-type and DT-type are shown in Figure 8a,b. There is a tri-pole
pattern with two significant positive anomalies over the low and high latitudes of the
North Atlantic, and a significant negative anomaly over the south of Newfoundland in the
midlatitudes for the DR-type, and the opposite SST anomalies are seen for the DT-type.
Additionally, the tri-pole pattern that displays a positive–negative–positive distribution
from north to south in the North Atlantic can also be seen in the correlation between the CI
and summer SST anomalies (Figure 8c), indicating a close relationship between the tri-pole
pattern of North Atlantic SST and anomalous circulation types over Eurasia. This tri-pole



Atmosphere 2022, 13, 2093 11 of 17

SST anomaly pattern is consistent with previous studies and was demonstrated to induce
significant weather and climate changes in remote regions via a triggering atmospheric
teleconnection pattern [26,61,62].
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Figure 8. Composite summer SST anomalies (unit: °C) for (a) DR-type and (b) DT-type. (c) Correlation
between the CI and summer SST anomalies. The SST anomalies significant at the 90% confidence
level are dotted.

From the above analyses, a tri-pole SST pattern index (TSI) is defined by the difference
of the average summer SST between the areas of the positive correlation in the high and
low latitudes and the area of the negative correlation in the midlatitudes based on Figure 8c,
as follows:

TSI = SSTh + SSTl − SSTm (3)

where SSTh, SSTm and SSTl represent the summer average SST fields in the curvilinear
rectangle (50–58◦ N, 15–50◦ W), (30–42◦ N, 52–70◦ W) and (7–30◦ N, 15–52◦ W) of Figure 8c,
respectively. Figure 9 shows the normalized time series of the TSI, the CI and the NAO
index for 1979–2020, which displays a significant positive correlation (0.32) at the 95% con-
fidence level between the TSI and the CI, and a significant negative correlation (−0.41) at
the 99% confidence level between the TSI and the NAO index. The result reconfirms the
negative correlation between the NAO and Eurasian circulation types and indicates that
the correlation may be modulated by summer North Atlantic SST anomalies. Thus, corre-
sponding to a higher (lower) TSI, a negative (positive) phase of the NAO and a DR-type
(DT-type) circulation over Eurasian mid-high latitude are more likely to appear, and the
precipitation will increase (decrease) over the MLYRV.
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Figure 10 depicts the regression patterns of summer SLP and horizontal wind at
850 hPa onto the TSI. A seesaw pattern of SLP anomalies can be clearly seen over the
North Atlantic, with a positive anomaly over high latitudes and a negative one over
midlatitudes, which implies that a negative phase of the NAO appears in the positive
TSI years. Significant westerly wind anomalies are seen around 25◦–35◦ N and easterly
wind anomalies are observed around 45◦–60◦ N over the North Atlantic, with anticyclonic
wind anomalies over the high latitudes and cyclonic wind anomalies over the midlatitudes,
which resembles well the regression patterns of SLP. The results reveal that the tri-pole SST
anomaly pattern in the summer North Atlantic can contribute to the variability of NAO,
which may further prolong and strengthen the impacts of the NAO on circulation types
over the Eurasian mid-high latitude.
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Figure 10. Regression of summer surface level pressure (shading, units: hPa) and horizontal wind at
850 hPa (vector, units: m·s−1) onto the TSI. The surface level pressures significant at the 95% confi-
dence level are dotted.

The atmosphere circulation over the North Atlantic is likely stimulated by anomalous
convective latent heating of the region [63]. As shown in the regression patterns of summer
latent heat flux onto the TSI (Figure 11), there are significant negative centers over the
low and high latitudes of the North Atlantic, indicating that more latent heat flux is
transferred from the ocean to the atmosphere. Thus, corresponding to a tri-pole SST
pattern, the increasing released latent heat flux can enhance the convection activity of
the region, consequently exerting an impact on the NAO. Additionally, the formation of
NAO-like atmospheric circulation can be explained by the wave-mean flow interaction
and the transient eddy feedback process [64,65]. Some numerical studies suggest that the
SST anomaly with strong meridional gradient in the oceanic frontal zones can affect the
eddy-driven jet and annular mode variable through either the surface energy fluxes or the
eddy-mediated processes [66,67]. This study using statistical method indicates that the
tri-pole pattern can produce NAO-like atmospheric anomalies, and further analysis related
to air–sea coupling or numerical experiments need to be conducted to confirm this process.
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Figure 11. Regression of summer latent heat flux (shading, units: W·m−2) onto the TSI. The latent
heat fluxes significant at the 95% confidence level are dotted.

As is mentioned above, the wave train from the North Atlantic to East Asia may
be an important channel linking the summer NAO and circulation types over Eurasia
(Figure 7c,d). To further demonstrate whether the wave train is related to the North Atlantic
SST anomalies, we chose years in which the TSI values are higher than +1.0 standard
deviation (1987, 1995, 1997, 2005, 2007 and 2012) and diagnosed the composite summer
geopotential height at 200 hPa and the wave activity fluxes (Figure 12). The wave train
shown by geopotential height at 200 hPa is in good agreement with Figure 7c, implying that
the origins of the wave train associated with the NAO may be traced to the North Atlantic.
Additionally, wave activity fluxes show that the wave train originates from the North
Atlantic and propagates eastward along the geopotential height anomalies centers (−+−+).
The wave activity fluxes propagate strongly between the negative and positive centers
of geopotential height anomalies, which is favorable for maintaining and reinforcing the
anomalous geopotential heights. Compared with positive TSI cases, the wave train for
negative TSI cases can also be seen from the North Atlantic to East Asia (not shown), but
the wave activity fluxes are much weaker over the Ural Mountains and the Sea of Okhotsk,
which is unfavorable to the establishment of blocking high anomalies and precipitation
over the MLYRV. The above analyses demonstrate that anomalous circulation types over
Eurasia can be attributed to the wave train from the North Atlantic to East Asia, which is
aroused by the tri-pole SST anomaly pattern in the North Atlantic and should be considered
as a link between the NAO and circulation types over Eurasia. Corresponding to a high TSI,
the positive height anomalies over the Ural Mountains and the Sea of Okhotsk increase,
leading to more summer precipitation over the MLYRV.
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4. Discussion

It should be noted that the coupling between the NAO and the tri-pole SST anomaly
pattern is a complicated issue. [40,64,68,69]. Not only can the tri-pole pattern lead to the
formation of NAO, but also the NAO plays a key role in the formation of the tri-pole
pattern in response to the changes in surface heat fluxes, which depend upon the surface
wind-speed distribution [27,64]. Therefore, the SST should be regarded as a factor related
to NAO, and further studies are needed to investigate the NAO’s influence on SST and the
impact of the air–sea coupling process on anomalous circulation over Eurasia. Additionally,
this study puts emphasis on the modulation of North Atlantic SST on the connection
between summer NAO and anomalous circulation over Eurasia. Aside from the North
Atlantic SST, other extratropical atmospheric dynamic processes can also produce and
maintain the NAO mode and variability [70], which also requires further investigation.

5. Conclusions

ERA5 monthly averaged reanalysis data during 1979–2020 are used to analyze the
anomalous characteristics of summertime circulation types over Eurasia and their connec-
tions with the NAO modulated by North Atlantic SST. A circulation index (CI) is defined to
describe the anomalous characteristics of summertime circulation types over the Eurasian
mid-high latitude and classify the anomalous circulation into DR-type and DT-type. The
main conclusions are as follows.

(1) A wave train pattern is shown over the Eurasian mid-high latitude with opposite
phases for the DR-type and DT-type. Compared with the DR-type, the WPSH is
more intense and northwestward for the DT-type, and the EASJ and SAH expand
more westward. Moreover, there exists a close relationship between the anomalous
circulation types over Eurasia and precipitation in China. There is more precipitation
over north China, and less precipitation over the MLYRV for the DT-type, which is
opposite to the DR-type.

(2) The summertime circulation types over Eurasia are closely connected to the NAO.
In positive CI years, the EASJ shifts southward and dominates the MLYRV. With
two positive height anomalies over the Ural Mountains and the Sea of Okhotsk,
the cold air from the mid-high latitudes invades persistently into the MLYRV and
converges with the warm air from the low latitudes. The moisture convergence and a
strong ascending motion can be seen over the MLYRV, which is favorable for more
precipitation. By contrast, the above patterns are reversed in positive NAO-index
years, indicating a significantly negative correlation between summer NAO and
circulation types over Eurasia.

(3) A tri-pole SST anomaly pattern over the North Atlantic can modulate the connection
between summer NAO and circulation types over Eurasia. This tri-pole pattern can
induce NAO-like atmospheric circulation and strengthen the impacts of the NAO
on Eurasian circulation types. Additionally, a wave train that originates from the
North Atlantic and propagates eastward to East Asia is the potential mechanism of
linking the NAO and summertime circulation types over Eurasia. The wave train is
aroused by the tri-pole SST anomaly pattern and is favorable for maintaining and
strengthening the anomalous circulation types over the Eurasian mid-high latitude.
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