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Abstract: This work focuses on the prediction of an air pollutant called particulate matter (PM2.5)
across the Paso Del Norte region. Outdoor air pollution causes millions of premature deaths every
year, mostly due to anthropogenic fine PM2.5. In addition, the prediction of ground-level PM2.5 is
challenging, as it behaves randomly over time and does not follow the interannual variability. To
maintain a healthy environment, it is essential to predict the PM2.5 value with great accuracy. We used
different supervised machine learning algorithms based on regression and classification to accurately
predict the daily PM2.5 values. In this study, several meteorological and atmospheric variables were
retrieved from the Texas Commission of Environmental Quality’s monitoring stations corresponding
to 2014–2019. These variables were analyzed by six different machine learning algorithms with
various evaluation metrics. The results demonstrate that ML models effectively detect the effect of
other variables on PM2.5 and can predict the data accurately, identifying potentially risky territory.
With an accuracy of 92%, random forest performs the best out of all machine learning models.

Keywords: ground PM; air quality; machine learning algorithms; Paso del Norte; classification

1. Introduction

Paso del Norte (PdN) is the largest metropolitan area on the border between the United
States of America and Mexico, with a population estimation of 2.4 million. This region is
made up of three large cities: El Paso, Texas; Las Cruces, New Mexico; and Ciudad Juarez,
Mexico, all of which share the PdN airshed. Similar to any other developing metropolis,
PdN is confronted with the ever-increasing issues of poor air quality. Additionally, as an
international cross-border location, there is growing concern about its air quality for both
the United States and Mexico [1,2].

Fine particulate matter (PM2.5) is an air pollutant with an aerodynamic diameter of
less than or equal to 2.5 µm, which becomes hazardous to people’s health when the PM
concentration levels in the air are above a certain standard. These small particles can absorb
a variety of chemical components, including metals, salts, poisons, organic compounds,
and biological groups, such as pollens [3]. PM2.5 levels are rising as a result of automobiles,
power generation, and other anthropogenic factors. Ammonium sulfate, Ammonium
nitrate, and organic and elemental carbon are all major components of PM2.5 [4]. These
PM2.5 chemicals have a significant impact on human health and can lead to cardiovascular
problems [5]. Even the tiniest airways and lungs can be invaded by these microorganisms,
causing increased respiratory oxidative stress and inflammation [6].

The ambient PM2.5 concentrations in the PdN region surpassed the U.S. Environmental
Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS) on many
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occasions. The majority of PM2.5 in this area originated from geological and industrial
sources as well as vehicle exhaust and household cooking and heating. The desert environ-
ment is characterized by sporadic calm winds, frequent stagnation due to high atmospheric
stability, and sporadic shallow convective and nocturnal boundary layer heights, all of
which contribute to the rising PM2.5 concentrations [7].

In recent years, machine learning algorithms showed their feasibility in predicting
the concentration of air pollutants. Scientists and researchers from across the globe have
used different algorithms and techniques to predict air pollutants. Several studies [8–12]
found that machine learning, including deep learning [13], random forest [14], and ensemble
models [15], are highly capable of estimating PM2.5 concentration on different temporal
and spatial scales.

According to the literature review above, the majority of the existing forecasting
models are capable of predicting daily PM2.5 concentrations and high PM days; however,
because of the complex geography and topography of the Paso del Norte region [7,16,17],
as well as its exceptional meteorological conditions, these analyses cannot be applied to
our study area. Therefore, this study is dedicated to conducting an in-depth analysis
of historical PM2.5 concentrations and proposes an efficient ML method for forecasting
future high/low PM concentration days in the PdN region. The novelties of this study are
as follows: (1) analyzing the temporal characteristics of PM2.5 concentration patterns by
month based on the historical data collected from designated locations in the PdN region;
(2) analyzing PM2.5 concentration data using several ML models with good prediction
effectiveness and comprehensible results to address various inadequacies from prior studies;
(3) identifying the primary variables causing the high particulate matter concentration in
this area; and (4) investigating the complex link between PM2.5 and other meteorological
and air pollutant variables based on ground station data using various ML techniques.

In this study area, researchers have conducted a number of studies to better under-
stand the chemical and physical processes responsible for causing high PM2.5 concentra-
tions [16,18–20]. The majority of these investigations were diagnostic, or they modeled
the situation using an idealized profile [21,22] or a specific method that was limited by
the technology at that time [23]. Furthermore, the topography of the study area makes it
difficult for forecast and prediction accuracy of air quality models to accurately predict
pollutants [24]. Hence, the approach in our study certainly overcomes those limitations
and fills the research gap.

In this study, various machine learning (ML) algorithms are utilized to predict par-
ticulate matter concentration. The study uses data on air pollutants and meteorological
variables collected from several locations in the Paso del Norte region during the years
from 2014 to 2019. The ML models used include ridge regression, logistic regression, MARS
(multivariate adaptive regression splines), SVM (support vector machine), and RF (random
forest). This study has three objectives: first, to predict high/low PM2.5 levels; second, to
determine the features that contribute to high PM2.5 concentrations; and finally, to forecast
the PM2.5 concentration values using penalized linear regression. Detailed research has
been conducted to determine how PM2.5 concentrations affect other air pollutants and
meteorological variables.

We organized this article according to the following pattern: Section 2 presents a
basic overview of machine learning methods with regularization techniques to suit the
best model. A significant part of Section 3 is dedicated to the details of experimental
data, including an explanation of the data properties and air quality standards. Section 4
discusses the association between the variables and other exploratory analyses. Then,
Section 5 presents results from the application of ML models to the data sets, as well as
the accuracy and parameter estimates of the models. Finally, Section 6 summarizes the
fitted models used to classify the PM2.5 levels, along with the most important variables
responsible for a high or low PM2.5 concentration in the study area.
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2. Methodology

In this section, the machine learning techniques used in this study are briefly discussed.
Regularization approaches are also presented in order to achieve the best prediction model.
We also show how to estimate the tuning parameters to obtain the lowest misclassification
rate, predictive accuracy, mean squared error (MSE), and other metrics. The flowchart of
the methodology is presented in Figure 1.

Figure 1. Flowchart of the methodology.

2.1. Penalized Linear Regression

A linear regression model can be expressed as:

y = δ0 +
k

∑
i=1

δixi

where δ0 is the intercept, and δ1 · · · δk are weights.
The penalty in the lasso is determined by the L1 norm, i.e., the sum of the absolute

values of the weights. This penalty makes the estimated weights shrink towards zero,
where we can identify the significant and insignificant variables. Therefore, the lasso works
for both shrinkage and variable selection [25]. In particular, the lasso is an efficient method
to find the sparse/parsimonious model when a data set has a large number of features. It
can be expressed as:

1
2m

m

∑
i=1
{hδ(x(i))− yi}2 +

λ

2m

n

∑
j=1
| j|
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where λ is a tuning parameter [26]. In a ridge regression, λ
2m ∑n

j=1 w2
j (L2 norm) is added to

the cost function to shrink the large coefficients of model as follows:

1
2m

m

∑
i=1
{hw(x(i))− yi}2 +

λ

2m

n

∑
j=1

w2
j

However, lasso and ridge sometimes are assumed to be involved with some bias. In
these models, the prediction of the target variable might be highly dependent on specific
predictors. In such a case, elastic net is used as a combination of the lasso and ridge
regressions as follows:

1
2m

m

∑
i=1
{hw(x(i))− yi}2 +

λ

2m

(
(1− α)

m

∑
j=1

w2
j + α

m

∑
j=1
|wj|

)
where α is any value between 0 and 1. Elastic net turns into a ridge when α = 0 and into a
lasso when α = 1.

2.2. Logistic Regression

Logistic regression is one of the most popular models for classification. Typically,
this method is used when the target variable is binary categorical. The probability of the
response variable can be classified by employing the Sigmoid function [27]. Mathematically
the model has the following form:

p = (1− p)e 0+∑k
i=1 ii (1)

here, p is the probability, and { 0, 1, · · · · k} are the coefficient parameters of the event. To
estimate is, the maximal likelihood is used to fit the model as follows:

l( ) =
N

∑
i=1

( T
i i − log(1 + e

T
i )
)

(2)

In this study, a lasso regularization technique is used with L1 regularization presented in
Equation (2). We can write the penalized versions to maximize it as follows:

lλ( ) =
N

∑
i=1

( T
i i − log(1 + e

T
i )
)
− λ

p

∑
j=1
| j| (3)

here, λ > 0 is the regularization parameter. We obtain the ordinary least square estimation
when lambda is 0, and an under-fitting situation occurs when lambda is large due to the
high weight of the data. The lasso approach can help us to reduce the coefficient of the less
significant feature to zero. Moreover, in the case of feature selection, it works well if the
data contains a large number of features [28].

2.3. Ridge Regression

We add Equation (2), known as a ridge regression function, to narrow the coefficients.
This also helps us decrease the model’s complexity and multicollinearity. The optimized
model and the L2 penalized versions are as follows:

lλ( ) =
N

∑
i=1

( T
i i − log(1 + e

T
i )
)
− λ

p

∑
j=1

2
j (4)

We use cross-validation to examine the findings and determine which tuning parameter
has the lowest mean squared error λ [29].
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2.4. Random Forest

Random forest is another frequently used classification algorithm similar to the decision
tree. Many decision trees are required to build the model. Then, the majority of votes from the
trees are used to perform the classification [30]. For optimum accuracy of the model, we tuned
the parameters, such as node size, number of predictor samples from splitting, and number
of trees. The mean decrease Gini (MDG) and mean decrease accuracy (MDA) are applied to
accumulate other remarkable information. Here, the MDA helps us measure the significance
of a variable, and the MDG determines the variable’s contribution to the homogeneity of
the nodes and leaves [31].

2.5. Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric regression model. The model is built with different predic-
tor values using multiple linear regression. For training, the data sets are divided into
piece-wise linear segments with varying gradients that are connected using knots in a
smooth manner [32]. We develop the basic function to improve the flexibility of the model
as follows:

(−t)+ =

{
−t, if > t
0 otherwise

(5)

and (t−)+ =

{
t−, if < t
0 otherwise

(6)

Now, we can represent f (x) in the following manner:

f () = 0 +
M

∑
m=1

mλm(X) (7)

where each λm is a BF, i is the constant coefficient when estimating a least-squares method.
Similar to the other tree-based model, the MARS model also uses a pruning technique to
fit a very large model and avoid over-fitting [33]. In addition to pruning, the backward
deletion technique is used to obtain the best sub-model for eliminating less important terms.
Finally, a generalized cross-validation (GCV) technique is implemented to determine the
best model among the sub-models.

2.6. Support Vector Machine (SVM)

Support vector machine (SVM) is a machine learning model that examines the data
used for both classification and regression analysis. This model tries to put a hyperplane
between two classes in order to maximize the margin between them. In this model, we
use kernel functions to handle the linearly non-separable data. A discriminant function
that maximizes the geometric margin is known as the maximum margin classifier 1

‖‖ [34],

which is the same as minimizing the function 1
2 || ||2 with the following constraints:

i(
t
i+) ≥ 1 for, i = 1, · · · , n. (8)

3. Data Background

The air quality index(AQI) is used for reporting the daily air quality for any specific
location. It indicates the quality of air, such as whether it is clean or polluted. It also demon-
strates the health risks associated with air quality. Different countries have different air quality
indices. The Table 1 below shows the average PM2.5 concentration in the United States for a
24-h period.
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Table 1. EPA AQI Table for PM2.5 concentration (24 hour avg.).

AQI Range PM2.5 Value (µg/m3) AQI Category

0–50 0–12 Good
51–100 12.1–35.4 Moderate
101–150 35.5–55.4 Unhealthy for sensitive
151–200 55.5–150.4 Unhealthy
201–300 150.5–250.4 Very Unhealthy

El Paso is a non-attainment city for carbon monoxide (CO) and PM2.5, and it has
several days of high PM2.5 concentration during the months from May to September. Data
from urban, suburban, industrial, and rural areas were used to calculate PM2.5 precursor
substances in Table 2. The data sets included both air pollutants and meteorological
variables.

Table 2. Ground station locations in the Paso Del Norte region.

Sites Latitude Longitude Type

UTEP/CAMS 12 31.7709 N 106.5046 W Urban
Santa Teresa 31.8729 N 106.6978 W Rural
Skyline Park 31.8924 N 106.4257 W Urban

Socorro Hueco 31.61712 N 106.28822 W Rural

The Paso del Norte (PdN) region has become a major environmental concern for both
countries in recent decades. The PdN region is made up of the cities of El Paso, Texas; Ciudad
Juarez, Mexico; and a few more cities from New Mexico [35]. Our study area includes deserts
such as The Chihuahuan, mountain ranges, shared rivers, wetlands, state parks, and protected
areas. Around 12 million people live along the border, almost equally divided between the
two countries. With 0.7 million people, El Paso is the U.S.’s eighth largest city; adjacent to it,
another 1.3 million people live in Cuidad Juarez, Mexico [23]. El Paso, a southwestern U.S.
city, has the typical warm and arid climate, but its air quality is typically large because of
the industrial activity along the U.S./Mexico border, as well as the unique meteorological
conditions created by geography [18,20]. Due to a mix of high population density, industrial
effects, and weather circumstances, El Paso has historically been in non-attainment for the
U.S. NAAQS for O3, CO and PM10, and PM2.5 [19,36].

In this work, data were collected from the Continuous Ambient Monitoring Station
(CAMS) of TCEQ. Data from different CAMS in the Paso del Norte region were used to
collect hourly average PM2.5 concentrations at ground level. In Figure 2, the AQI days were
displayed from the year 2014 to 2019 in the El Paso region. As shown, most of the moderate
and unhealthy AQI days were in the summer and winter seasons. In addition, recent years
have shown increases in unhealthy days throughout the year.

Table 2 and Figure 3 provide details about those locations.

Figure 2. Different PM concentration days in El Paso during 2014–2019 [37].
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Figure 3. Data location sites in the Paso del Norte area.

4. Exploratory Data Analysis

El Paso, Texas, is considered to have the highest levels of PM2.5 in the United States.
It has a history of high PM2.5 exceedances every year. To demonstrate the trend for high
PM2.5 days, we conducted an extensive study of the years from 2014 to 2019.

Figure 4 shows the box and whisker plot of all the meteorological and air pollutant
variables used for our study. On the vertical axis, the numerical values for all of the
variables are presented, and the names of the variables are presented on the horizontal axis.
As most of the data were collected in the summer season, due to the high PM concentration
days, the mean value of the outdoor temperature is around 80 degrees Fahrenheit. The
relative humidity is around 30–40%, and the Ozone is around 50–60 parts per billion.

Figure 4. Box and whisker plot of all variables.

Figure 5 illustrates the correlation between all of the predictors of PM2.5 from the data
set. Several meteorological variables, such as wind speed, resultant wind speed, and maxi-
mum wind gust, have a better positive correlation with PM2.5. On the contrary, dew point
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temperature and relative humidity have a negative correlation with the target variable, i.e.,
PM2.5. Figure 6 shows the scatter plot matrix with the slope values between the variables
and a histogram of the diagonal element. This histogram provides a sense of the shape of
the univariate distribution for each variable. Additionally, above each scatter plot, the
slope of the linear fit is demonstrated with its statistical significance indicated by one
asterisk (*) sign, which denotes p < 0.05, or two asterisk signs (**), which shows p < 0.01. As
illustrated, with our target variable, PM2.5, all pollutants are in positive associations, and
there are statistically significant relationships between them.

Figure 5. Correlation among the predictors with histogram of PM2.5 data set.

Figure 6. Scatter plots with the slope values.
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5. Results

This section will discuss the data processing approaches, the results, and the applica-
tions of machine learning models for predicting the ground-level PM2.5 concentration in
the atmosphere. In this study, 70% of the training data was used in the prediction model,
and 30% of the test data was used to evaluate the model. The regularization techniques are
considered to obtain the best model by using bias-variance trade-off rules. To predict PM2.5
data, we first use penalized regression based on several meteorological variables. The lasso
regression was used to predict the PM2.5 with reduced predictors. The coefficients obtained
from the lasso and its evaluation metrics are presented in Table 3.

Table 3. Coefficients of lasso model.

Variables Coefficients

Nitric Oxide 0.0057
Nitrogen Dioxide 0.03147

Oxides of Nitrogen 0.0183
Ozone −0.0039

Wind Speed 0.0282
Resultant Wind Speed 0.0576

Resultant Wind Direction −0.0019
Maximum Wind Gust 0.0198

Std. Dev. Wind Direction 0.0109
Outdoor Temperature 0.0275

Dewpoint Temperature −0.0137
Relative Humidity 0.0066

Solar Radiation −0.3004

We also used the ridge and elastic net regression methods to overcome the multi-
collinearity issue and to predict the PM2.5, including all the variables. Figure 7 shows the
sample path of the tuning parameter λ for the above three models when cross-validation
is applied. From these figures, we see how the tuning parameter λ was picked using
cross-validation. At this point, the two dotted lines show the two lambda values. The left
one gives the minimum cross-validation error, and the right one gives the most highly
regularized model within 1 S.D. of the minimum error for a fixed α.
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Figure 7. Sample path of tuning parameter λ for the three penalized models. (a) Lasso λ path. (b) Ridge
λ path. (c) Net λ path.

In the logistic regression, we used the lasso regularization with the L1 penalty and
obtained the tuning parameter λ with cross-validation. The L1 penalty is significant
for variable selection and shrinkage because it forces some of the coefficients’ estimates
to be zero [38]. Table 4 demonstrates the coefficients of the predictors where Nitrogen
Dioxide, Oxides of Nitrogen, Wind Speed, Resultant Wind Direction, Std. Dev. Wind
Direction, Outdoor temperature, and Relative Humidity are the important factors for PM2.5
classification.

In addition to L1, we used the logistic regression model with an L2 penalty to reduce
the multicollinearity issue of the data set. The tuning parameter λ is optimized via ten-fold
cross-validation until we achieve the best predictive model. For the MARS model, the
cross-validation of the training data was used to choose a reliable classifier. This model
regulates the training process with the residual sum of squares (RSS). In the random forest
model, five-hundred trees were used. and three variables were sampled at each split to
classify the levels. Using the mean decrease accuracy and mean decrease Gini indices,
we ordered the predictors based on their importance. Figure 8 shows that the predictors
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Nitrogen Dioxide, Wind Speed, Oxides of Nitrogen, and Maximum Wind Gust are important
variables for high PM2.5 levels in the atmosphere.

Table 4. Coefficients of important predictors using LGR(L1) model.

Variables Coefficients

Nitric Oxide 0.000
Nitrogen Dioxide 0.049

Oxides of Nitrogen 0.018
Ozone 0.000

Wind Speed 0.225
Resultant Wind Speed 0.000

Resultant Wind Direction -0.002
Maximum Wind Gust 0.000

Std. Dev. Wind Direction 0.005
Outdoor Temperature 0.024

Dewpoint Temperature 0.000
Relative Humidity -0.006

Solar Radiation 0.000

Std.Dev.WindDirection
ResultantWindDirection
SolarRadiation
DewPointTemperature
Ozone
NitricOxide
ResultantWindSpeed
OutdoorTemperature
RelativeHumidity
MaximumWindGust
OxidesofNitrogen
WindSpeed
NitrogenDioxide

60 100
MeanDecreaseAccuracy

SolarRadiation
Std.Dev.WindDirection
ResultantWindDirection
DewPointTemperature
OutdoorTemperature
Ozone
RelativeHumidity
NitricOxide
OxidesofNitrogen
ResultantWindSpeed
MaximumWindGust
NitrogenDioxide
WindSpeed

0 10 25
MeanDecreaseGini

Variable Importance Ranking

Figure 8. Variable importance plot using mean decrease accuracy and Gini indices.

Table 5 shows the prediction mean squared error and misclassification rate of the
models, and we also analyze the confusion metrics to choose the best classifier for the
PM2.5 concentration.Lastly, the kernel SVM is studied to classify the PM2.5 concentration,
where ten-fold cross-validation and different cost levels were used. The optimized cost and
accuracy were found for the parameter γ of 0.001.

Table 5. Model evaluation.

Models Prediction Mean Squared Error Misclassification Rate

LGR 0.100 0.120
RGR 0.106 0.112
RF 0.067 0.072

MARS 0.113 0.163
SVM 0.084 0.109

In Table 6, RMSE and R-Square values of tuning parameter λ for the three penalized
models are presented.
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Table 6. Model parameter and evaluation metrics for penalized linear regression.

Regression Models α λ (min) RMSE R-Square

Lasso 1.0000 0.0009 0.7028 0.5761
Ridge 0.0000 0.0431 0.7056 0.5737

Elastic Net 0.5000 0.00169 0.7028 0.5760

Model Accuracy

This section compares and contrasts our proposed models using a variety of evaluation
metrics (see Table 7). The true positive rate, or the fraction of detected positives in the
target variable, represents the sensitivity in this case. The true negative rate (TNR), or the
fraction of recognized negatives, is measured by specificity. At this point, the ROC curve is
also presented where the X axis shows the true positive rate, or sensitivity, and the Y axis
shows the false positive rate, or 1-specificity. The confidence of interval is a range of values
that is likely to include a population value with a certain degree of confidence. Accuracy is
the proportion of the total number of predictions that are correct. The diagonal line of the
ROC curve represents the threshold (0.5), which separates the ROC space (see Figure 9). A
good classifier tends towards a value of one. From Table 7 and Figure 9, it is concluded
that the random forest model performs well compared to others.

Table 7. Model evaluation using classification metrics

Models Sensitivity Specificity Accuracy Conf. Interval
(%) (%) (%) (%)

LGR 88.65 86.67 88.00 (83.50–91.60)
RGR 87.77 87.36 87.64 (83.15–91.28)

MARS 88.64 74.75 83.64 (78.72–87.81)
SVM 92.44 83.50 89.09 (84.79–92.52)
RF 93.18 91.92 92.73 (88.99–95.50)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Alarm Rate

H
it 

R
at

e

Area under ROC =  0.928 with 95% CI ( 0.895 , 0.961 ).

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve − Ridge Regression Model

False Alarm Rate

H
it 

R
at

e

Area under ROC =  0.928 with 95% CI ( 0.894 , 0.963 ).

(b)

Figure 9. Cont.



Atmosphere 2022, 13, 2100 13 of 16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Alarm Rate

H
it 

R
at

e

Area under ROC = 0.905 with 95% CI ( 0.868 , 0.942 ).

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Alarm Rate

H
it 

R
at

e

Area under ROC =  0.962 with 95% CI ( 0.932 , 0.991 ).

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curve

False Alarm Rate

H
it 

R
at

e

Area under ROC =  0.945 with 95% CI ( 0.918 , 0.972 ).

(e)

Figure 9. (a) ROC curve for logistic regression. (b) ROC curve for ridge regression. (c) ROC curve for
MARS model. (d) ROC curve for random forest. (e) ROC curve for SVM kernel.

6. Conclusions

In recent years, scientists have proposed and implemented numerous models for
forecasting and predicting air pollutants across different geographical locations. The results
of this study suggest that machine learning techniques are effective for predicting PM2.5
concentrations based on meteorological and air pollution variables. The purpose of this
study was to analyze methodologies for predicting ground-level fine particle concentrations.
Several meteorological parameters, including temperature, wind speed, relative humidity,
and different air pollutants, including CO, NOx, and Ozone are used for classification.

Our proposed penalized regression models with L1 and L2 regularization provide impor-
tant features for detecting high or low PM2.5 days. To determine the significant predictors for
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high PM2.5 concentration days, we used various ML algorithms such as random forest, MARS,
logistic regression, and SVM. Cross-validations of the training data were used to examine
the various cost functions, yielding the models’ tuning parameters. The tuning parameter
determines which model is best for predicting the test data. After fitting the test data with
the optimized predictive models, several metrics were computed to assess the prediction.
In addition, the accuracy, sensitivity, specificity, precision, and recall metrics have been
compared (see Table 6) to obtain the best classifier. According to empirical research, the ran-
dom forest model correctly classifies 92.73% of PM2.5 data as high or low with a confidence
interval of (89% to 96%). It also demonstrates that several meteorological elements, such as
Nitric Oxide, Wind Speed, and Maximum Wind Gust have a significant impact on PM2.5’s
high concentration. The areas under the ROC curves for all ML approaches are shown in
Figure 9, where the RF and SVM models depict high accuracy in classifying high and low
PM2.5 days. The results of this study can contribute to an evaluation of the long-term effects
of PM2.5 air pollution and the diseases caused by exposure to PM2.5. Furthermore, the
analysis provides valuable information which can be useful in the prevention and control
of air pollution in the binational airshed. The future work of this research work will focus
on the prediction of an unanticipated increase in PM2.5 in the study area during the peak
season of air pollution using deep learning, i.e, LSTM (long short-term memory) analysis, a
feed-forward neural network using multiple neurons, stochastic approaches [39], causality
discovery approaches [40], etc. Further, it can be used as the basis for many future advanced
research projects involving machine learning/deep learning-based air pollution prediction,
since extended historical data can be collected for training tailored to this region.
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