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Abstract: Low-level wind shear (LLWS) is a rare occurrence and yet poses a major hazard to the
safety of aircraft. LLWS event occurrence within 800 feet of the runway level are dangerous to
approaching and departing aircraft and must be accurately predicted. In this study, first the Bayesian
Optimization–Ensemble Learning Classifiers (BO-ELCs) including Adaptive Boosting, Light Gradient
Boosting Machine, Categorical Boosting, Extreme Gradient Boosting, and Random Forest were
trained and tested using a dataset of 234 LLWS events extracted from pilot flight reports (PIREPS) and
weather reports at Hong Kong International Airport. Afterward, the SHapley Additive exPlanations
(SHAP) algorithm was utilized to interpret the best BO-ELC. Based on the testing set, the results
revealed that the Bayesian Optimization–Random Forest Classifier outperformed the other BO-ELCs
in accuracy (0.714), F1-score (0.713), AUC-ROC (0.76), and AUR-PRC (0.75). The SHAP analysis
found that the hourly temperature, wind speed, and runway 07LA were the top three crucial factors.
A high hourly temperature and a moderate-to-high wind speed made Runway 07LA vulnerable to
the occurrence of critical LLWS events. This research was a first attempt to forecast the criticality of
LLWS in airport runway vicinities and will assist civil aviation airport authorities in making timely
flight operation decisions.

Keywords: low-level wind shear; ensemble learning classifiers; Bayesian optimization; SHapley
Additive exPlanations

1. Introduction

Globally, the civil aviation industry has grown rapidly in the last decade as a con-
sequence of enhanced economic development. Passenger traffic worldwide surpassed
8.8 billion in 2018 and is expected to triple to 10 billion by 2037. It is projected to grow at
a 3.7% annual rate in the long run and reach 19.7 billion by 2040 [1]. Although there is a
boom in the aviation industry worldwide, weather is one of the key factors that has a major
impact on overall airline operations. It is a significant contributor to flight cancellations,
delays, and—in the worst-case scenario—accidents. Wind shear is an aviation term that
refers to a sudden, abrupt change in wind direction or speed, whereas low-level wind
shear (LLWS) refers to wind shear that occurs below 1600 feet (500 m) above ground level
(AGL). Low-level jet streams, frontal systems, low-level temperature inversions, and LLWS
are closely associated, more specifically with the unique wind-shear conditions created by
man-made structures such as the distribution of various buildings, terrain roughness, and
natural obstructions such as mountains and water/land interfaces, among other factors, at
and around a particular airport [2].
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1.1. Low-Level Wind Shear: Pilots’ Invisible Enemy

The cockpit remains extremely active during the landing phase, and the captain
and co-pilot must make a number of quick decisions to complete their landing checklist.
However, poor weather conditions, complex terrain, and the presence of buildings near the
airport will increase turbulence along the glide path. Therefore, the occurrence of LLWS
below 800 feet above the ground is regarded as the most critical phenomenon for both
approaching and departing aircraft. The pilot must contend with violent updrafts and
downdrafts as well as abrupt changes in the aircraft’s horizontal and vertical movement
while completing the landing checklist. As depicted in Figure 1, this critical condition
may lead to a missed approach, landing short of the runway (loss of lift), or deviation
from the actual flight path during final approach. Basically, there are two detrimental
and potentially hazardous effects of LLWS on approaching aircraft: perturbation of the
glide path and deviancy of the approach speed from the established (set) value [3]. As a
result, the pilot may perceive additional pressure during the approach phase when the
engine power is low and the airspeed is close to stall speed due to unexpected changes
in wind direction or speed. This effect of declining and raising headwind shear on an
aircraft during an approach is depicted in Figure 2 (assuming no pilot intervention is being
used); both scenarios utilize a conventional instrument landing system with a 3-degree
glide path and final approach speed (υa). In the first scenario (Figure 2a), the approaching
aircraft is subjected to a declining headwind with the headwind speed (υhw). As the aircraft
approaches the ground, its airspeed (the aircraft’s speed in relation to the surrounding air
flow) declines, thereby lowering lift and tending to result in a greater descent angle due to
the transient force imbalance. In this scenario, the aircraft may possibly land short of the
runway. The second case (Figure 2b) assumes a rising headwind on the same glide path and
slope (3 degrees). As a result, the aircraft’s airspeed increases in relation to the surrounding
air flow, thereby generating more lift and resulting in a flatter angle of descent or even a
climb. In this scenario, landing may possibly be aborted and a go-around initiated.
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Figure 2. Detrimental and potentially hazardous effects of LLWS on approaching aircraft: (a) de-

clining headwind during final approach; (b) rising headwind during final approach. 
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1.2. Low-Level Wind Shear Detection Technologies

Airports worldwide have profited significantly from the availability of meticulous,
high-resolution technologies for remote sensing including Terminal Doppler Weather
Radar (TDWR) and Doppler Light Detection and Ranging (LiDAR) [4–6]. By far, the
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most extensively used approaches for detecting wind shear are TDWR, ground-based
anemometer networks, and wind profilers. This approach has been shown to be effective
in alerting LLWS since the mid-1990s, most notably during the passage of tropical cyclones
and thunderstorms. When the weather is clear, the TDWR system does not offer accurate
wind information. Certain LLWS incidents, on the other hand, are connected to airflow
that reaches the airport from rugged terrain. To deal with these scenarios, a new method
of detection that is not dependent on humid conditions must be developed. The LiDAR
system has been added as a booster to the TDWR in order to identify and warn of LLWS in
clear skies. When the air is clear, Doppler LiDAR can detect return signals from aerosols and
offer precise Doppler wind measurements. To ensure the safety of civil aircraft, TDWRs and
LiDARs have been extensively installed at major airports worldwide. However, only a few
airports worldwide, including Japan, Malaysia, Germany, France, Korea, Singapore, and
Hong Kong, possess these LLWS alerting system technologies due to high maintenance and
equipment costs, a lack of pertinent research, and specific geographical characteristics [7].
Additionally, these LLWS alerting technologies, which are based on remote sensing and/or
on-site measurements, have been demonstrated to be successful and operational. When an
LLWS event is detected or observed, these detection- or observation-based technologies
send notifications. However, these detection- or observation-based technologies cannot
predict when the next LLWS event will occur or what risk factors contribute to its occurrence
as well as the criticality [8].

Extreme weather conditions such as microbursts and sea breezes, as well as the
geographic surroundings of an airport, which include complex topography and struc-
tures, both contribute to wind shear events. Over 70% of pilot flight reports illustrated
terrain-induced wind shear at Hong Kong International Airport (HKIA, International Civil
Aviation Organization (ICAO) code: VHHH) [9]. Several researchers used analytical and
simulation techniques to assess the impact of LLWS, such as Lei et al. [10], who employed
a computational fluid dynamics (CFD) model to simulate the shedding of vortices from
the mountains near HKIA. It was observed that accurately modeling this shedding had
a considerable impact on forecasting terrain-induced wind shear at airports. Using data
from TDWRs and LiDARs, a high-resolution aviation model (AVM) [11] was developed to
evaluate the occurrence of terrain-induced wind shear at HKIA. The model was proven to
accurately simulate terrain-induced wind shear, including microbursts caused by Lantau
Island’s mountains. During the winter, when wind shear occurs over the runway owing to
turbulence generated by neighboring hills, Shimoyama et al. [12] researched the turbulence
over Japan’s Shonai Airport. According to the models, terrain attributes may have a consid-
erable impact on the amount of turbulence encountered along flight paths, implying that
aircraft safety may be influenced by wind direction. Furthermore, it was demonstrated that
the turbulence induced by terrain features may be predicted using this modeling method
depending on the degree to which the findings match the turbulence measured using a
Doppler radar.

1.3. Ensemble Learning Classifiers and Interpretation

In comparison to prior hardware-based techniques and numerical and simulation
models, we proposed in this study to use Bayesian Optimization–Ensemble Learning
Classifiers (BO-ELCs) to predict the criticality of LLWS events. ELCs have been applied in a
number of fields, including health care modeling, transportation and traffic safety, finance,
and economics [13–20]. However, there is a significant gap in the literature regarding the
use of ELCs in the civil aviation safety domain. In the past, Liu et al. [21] developed a neural-
network-based prediction model for the assessment of wind fields along the glide path near
HKIA using LiDAR data. It was quite effective at predicting wind shear. However, one
could argue that neural network models are difficult to comprehend since their structures or
weights include only a limited amount of information about the estimated function [22,23].
On the other hand, decision-tree-based machine learning models are easy to understand
and their outcomes can be easily explained. The models empower predictive models with
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high accuracy and stability. The predictions of ELCs do not, however, explicitly and clearly
demonstrate the relationship between changes in input and output variables, in contrast
to statistical or empirical models. The interpretation of the model is equally important
for appropriately assessing the model’s performance. Previously, the ELC results were
interpreted using the variable-importance analysis technique. The variable-importance
analysis methodologies, however, can only provide a ranking of the variables’ importance
and are unable to explain how each variable individually influences the prediction of
model. The SHapley Additive exPlanations (SHAP) algorithm, which is based on the
concept of game theory [24], has been utilized in recent studies to quantify each variable’s
effect on the outcomes and to provide information about the strength and direction of each
variable’s influence on each individual sample [25–30]. Civil aviation safety researchers
should take advantage of this opportunity because understanding the complex interactions
between several risk factors that determine the criticality of LLWS is crucial for aviation
and meteorological applications.

1.4. Research Process

The purpose of this research was to develop a model for predicting the criticality
of LLWS events in the vicinity of an airport runway and then to interpret the results via
SHAP analysis. There were four stages to the research procedure. Before constructing and
comparing the ELCs, the hyperparameters were adjusted via Bayesian Optimization (BO),
which is one of the machine learning hyperparameter tuning techniques [31]. The reasons
for which we chose the BO technique in contrast to the Grid Search CV [32] and Random
Search CV [33] techniques were its ability to lower the time needed to obtain an optimal
set of hyperparameters and its better generalized performance on the test instances. The
Bayesian-optimized models were subsequently compared to evaluate their performance. A
SHAP analysis was then employed in both the individual and global interpretation of risk
factors. It investigated the significance of risk factors and their interactions. This research is
expected to fill a gap in the literature on ensemble learning applications in civil aviation
safety.

2. Materials and Methods

In this study, five state-of-the-art ELCs, namely the Light Gradient Boosting Machine
(LGBM) [34], Random Forest (RF) [35], the Extreme Gradient Boosting Machine (XG-
Boost) [36], Categorical Boosting (CatBoost) [37], and Adaptive Boosting (AdaBoost) [38]
optimized via BO were used to predict the criticality of LLWS in the vicinity of runways
at HKIA. The data for modeling, which was extracted from Pilot Flight Reports (PIREPs)
and Hong Kong Observatory (HKO) weather reports, included the LLWS magnitude and
altitude experienced by the pilots of approaching or departing aircrafts, runway used by
approaching and departing aircraft, wind direction, time of the day, mean hourly tem-
perature, and mean wind speed. Based on these input data, the BO-ELC models were
developed for the prediction of LLWS criticality. The hyperparameters such as n_estimators,
learning rate, num_leaves, reg_lambda, reg_alpha, max_depth were a few hyperparameters
of the ELC models that were considered for optimization via the BO technique. Using
the well-tuned ELCs, a performance assessment was conducted to obtain the necessary
performance measures and assess the best model.

Afterward, using the best ELC, the Shapley additives values were computed to char-
acterize the influence of each factor on the final inference of LLWS criticality. The best
model was assessed from global and local perspectives using the SHAP model. The SHAP
algorithm is basically a local explainability model but can be employed to construct a
global explanation after taking the average of all of the local instances that illustrate macro-
level details. The global interpretations based on SHAP were consistent with the local
explanations. Figure 3 depicts the entire operational paradigm proposed in this research.
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2.1. Study Location

HKIA is located on an artificial Lantau island surrounded on three sides by open
sea water with mountains to the south that reach elevations of over 900 m above sea
level. Numerous observational and modeling studies have shown that HKIA’s intricate
orography and complex land–sea contrast are conducive to the occurrence of LLWS [39]. It
is one of the most susceptible airports to wind shear in the world. Significant LLWS events
occur once every 400 to 500 flights [40]. As shown in Figure 4, the mountainous terrain to
the south of HKIA amplifies LLWS, which disrupts airflow and generates mountain waves,
gap discharges, and other disturbances along the HKIA flight paths. Two runways exist
at HKIA: the North Runway and the South Runway. They are oriented in the 070◦ and
250◦ directions, respectively. Due to the fact that each runway can be used for takeoffs
and landings in either direction, there are a total of eight possible configurations. For
example, runway ‘07LA’ denotes landing (‘A’ refers to arrival) with a heading angle of 070◦

(shortened to ‘07’) using the left runway (hence ‘L’); this shows aircraft landing on North
Runway from the western side of HKIA. Likewise, an aircraft departing from the South
Runway in the west would use runway 25LD.

2.2. Data Processing from PIREPs and Hong Kong Observatory

In aviation, pilot reports are abbreviated as PIREPs. Pilots who encounter hazardous
weather conditions report them to air traffic controllers. The traditional PIREPs typically
include information on turbulence and aircraft icing and cover the flight’s en-route phase.
However, information about the timing, location (to the nearest nautical mile), speed
(to the nearest 5 knots), and altitude (to the nearest 50 or 100 feet) of an LLWS event is
encapsulated in the HKIA wind shear PIREPs. The positive or negative signs show a gain
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or loss, respectively, in headwind. Pilots can submit a report form after landing or taking
off, or they can use on-board radio communication to communicate LLWS events to the air
traffic controller at HKIA.
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A substantial amount of wind shear data was essential to develop the prediction
models. To this end, 243 LLWS data were obtained from the PIREPs and HKO weather
reports. The PIREPs were used to ascertain the LLWS height and intensity as well as the
runway that arriving and departing aircraft used. As depicted in Figure 3, the occurrence
location of LLWS was divided into two zones—the critical zone and the non-critical zone—
based on the PIREPs. All LLWS events occurring within 800 ft of the surface were deemed
critical, whereas all others were deemed non-critical. An LLWS event was therefore a binary
factor with two possible outcomes as indicated by Equation (1):

LLWS =

{
1
0

C− LLWS, if LLWS is 800ft above runway level
NC− LLWS, otherwise

(1)

The combined wind shear data from HKO weather reports and PIREPs contained both
nominal factors (such as runway orientation, wind direction, month of the year, and time of
the day) and continuous factors (such and mean hourly temperature and mean wind speed).
Any i-th LLWS event in the original dataset could be represented as (Xi, yi) = (Ci, Ni, yi),
where Ci is the continuous factors, Ni is the nominal factors, and yi is the target factors. The
nominal factors N of the dataset were one-hot encoded as shown in Table 1. Each nominal
value in the dataset was translated into a new column, and the column was assigned a 0 or
1 value. The number of columns was equal to the number of nominal values. For example,
an eight-column matrix was created from a nominal factor “Runway” with six different
values (07LA, 07RA, 07RD, 25LA, 25LD, and 25RA). The continuous factors of the wind
shear datasets, on the other hand, were normalized as stated in Equation (2):

Cnorm
i,j =

Corig
i,j −min Cj

max Cj−min Cj
(2)

where Cnorm
i,j represents the j-th normalized continuous factors of the i-th instance of the

data, and Corig
i,j represents the original j-th continuous factors in the i-th instance of the data.

The min Cj and max Cj represent the minimum and maximum of the j-th continuous factor
in the combined wind shear dataset, respectively. Finally, there were 22 dependent factors
in the standardized wind shear dataset; i.e., normalized continuous factors (2 × factors)
and one-hot encoded nominal factors (20 × factors).
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Table 1. One-hot encoding of categorical factors for the modeling.

Factor Codes and Description

Runway Orientation
07LA 1: If a wind shear event is reported at Runway 07LA, 0: Otherwise
07RA 1: If a wind shear event is reported at Runway 07RA, 0: Otherwise
25RA 1: If a wind shear event is reported at Runway 25RA, 0: Otherwise
25LA 1: If a wind shear event is reported at Runway 25LA, 0: Otherwise
25LD 1: If a wind shear event is reported at Runway 25LD, 0: Otherwise
07RD 1: If a wind shear event is reported at Runway 07LD, 0: Otherwise

Wind Direction
N 1: If wind direction is North, 0: Otherwise

NE 1: If wind direction is North-East, 0: Otherwise
E 1: If wind direction is East 0: Otherwise

SE 1: If wind direction is South-East, 0: Otherwise
S 1: If wind direction is South, 0: Otherwise

SW 1: If wind direction is South-West, 0: Otherwise
W 1: If wind direction is West, 0: Otherwise

NW 1: If wind direction is North-West, 0: Otherwise

Season of the Year
Winter 1: If a wind shear event occurs in Winter, 0: Otherwise
Spring 1: If a wind shear event occurs in Spring, 0: Otherwise

Summer 1: If a wind shear event occurs in Summer, 0: Otherwise
Autumn 1: If a wind shear event occurs in Autumn, 0: Otherwise

Time of the Day
Day Time 1:If a wind shear event occurs during day time, 0: Otherwise

Night Time 1:If a wind shear event occurs during night time, 0: Otherwise

2.3. Hybrid Bayesian Optimization–Ensemble Learning Classifier (BO-ELC)

In this work, BO was utilized in conjunction with ELCs to train and tune the ELCs
and find the optimal hyperparameters. The BO assembled a probability model for finding
the value that automatically diminished the objective function based on the precedent
estimation outcome of the objective. Figure 5 shows the flowchart of the hybrid BO-ELC
approach. The step-by-step procedure for ELC optimization via BO is also given below.
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2.3.1. Initialization

In this step, the appropriate hyperparameters settings were initialized randomly (Equa-
tion (3)), which could be used to train the ELCs based on k-fold cross validation. In addition,
a loss function

(
L f

)
, which was the black-box function and that was required to be opti-

mized, was also initialized. The aim was to determine the optimal set of hyperparameters
that globally optimized the loss function

(
L f

)
.

H =



h1,1 h1,2 .. h1,l
h2,1 h2,2 .. h2,l
h3,1 h3,2 .. h3,l

: : :
: : :

hm,1 hm,2 .. hm,l

 (3)

2.3.2. Fitness Function

The random number of the solution was generated from the initialized values. The fit-
ness function was used to minimize the objective function based on the following Equation (4):

fitness function
(

L
H

)
=

{
D(H)
G(H)

L < L∗

L ≥ L∗
(4)

where L denotes the loss value; D(H) denotes the density estimation, which was based
on the loss value during the observations; G(H) is produced by the leftover observations
value of loss, and L∗ represents the particular quantiles.

2.3.3. Sequential Model-Based Optimization

Sequential model-based optimization was one of the concise forms of BO used to
tune the hyperparameters of the ELCs. Sequential model-based optimization operates by
finding the optimal hyperparameter setting H∗ by building the Gaussian process Θz with a
sampled point, which can be obtained using the following Equation (5):

H∗ = argminΘz−1(H) (5)

The loss value can be determined under the optimal hyperparameter setting by using
Equation (6):

L = L f (H∗) (6)

The corresponding L and the H∗ setting were stored in the corresponding trails, which
can be represented as Ω. These corresponding trails (Ω) were used for parameter settings
and evaluation purposes. The Ω update could be determined with the help of the following
Equation (7):

Ω = Ω ∪ (H∗, L) (7)

Finally, we built the Gaussian process Θz model based on the updated Ω.

2.3.4. Acquisition Function

The acquisition function of BO was employed to compute the next iteration in the
search process. In this study, the expected improvement was chosen as an acceptable perfor-
mance criterion of the ELCs, which was the maximization of AUC-ROC. The improvement
could be obtained with the help of L by using Equation (8):

D(H) = max(Lmin − L(H), 0) (8)
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2.3.5. Termination

In this step, the optimal hyperparameters were obtained for the ELCs with the help of
the BO.

2.4. Evaluation of BO-ELCs

In EL modeling, performance assessment of the classifiers is a vital task. When a
classification problem requires checking or visualizing the performance, the area under the
receiver operating characteristics curve (AUC-ROC) and the area under the Precision and
Recall curve (AUC-PRC) can be used. Both the AUC-ROC and AUC-PRC were used as
performance metrics for the assessment of the classification models’ performances. In the
case of the ROC, the AUC-ROC ranged from 0 (fully incorrect) to 1 (perfectly classified).

In addition, we also used a confusion matrix, which provided an in-depth examination
of the model’s performance when predictions were made for each class. For the binary
classification problem, one class was the majority (the negative) and its sample size was
represented by n1; the other class was the minority (the negative) and its sample size was
represented by n2. Let n represent the total size of the training data set (n = n1 + n2).
The binary classifier predicted whether each instance was positive or negative. Therefore,
it generated four types of outcomes: true positive Tρ, false positive Fρ, true negative Tn,
and false negative Fn (see Figure 6). The Accuracy, Recall, Precision, and F1-score were
extracted from the confusion matrix and are given as Equations (9)–(12).

Classification Accuracy =
Tρ+Tη

Tρ+Fη+Tη+Fρ (9)

Precision =
Tρ

Tρ+Fρ (10)

Recall =
Tρ

Tρ+Fη (11)

F1− Score =
Tρ

Tρ + 1
2 (Fη+Fρ)

(12)
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On the basis of the recall and precision extracted from the confusion matrix, we could
also plot the precision–recall curve and calculate area under the curve (AUC-PRC).
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2.5. BO-ELC Interpretation Using Shapley Additive exPlanations (SHAP)

The SHAP analysis is based on a game-theory mechanism for interpretation of en-
semble learning models. The fundamental concept behind the SHAP tool is to compute
the marginal contribution of factors to the ELC output and then a “black box model” is
interpreted from both the global and local perspectives. During the training or testing
of the ELCs, a prediction value was computed for each instance, and the SHAP value
corresponded to the value assigned to each factors in the instance. The contribution of each
factors denoted by the Shapley value was computed using Equation (13):

ϕi = ∑
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where ϕi indicates the contribution of the i-th factor; Π represents the set of all factors;
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sponded to the value assigned to each factors in the instance. The contribution of each 
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was defined as a linear sum of the input factors (Equation (14)):

g(z′)= ϕ0 +
Λ

∑
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ϕiz′ (14)

where z′ ∈ {0, 1}Λ when a factor is observed = 1, otherwise = 0; Λ denotes the number
of input factors; ϕ0 is the base values (i.e., the predicted outcome without factors); and ϕi
denotes the Shapley value of the i-th factor. The SHAP model was used in this study for the
interpretation of Bayesian-optimization (BO)-ELC; the important factors that are likely to
cause critical LLWS were assessed. The SHAP tool performed a factor-interaction analysis
as well.

3. Results and Discussion

To evaluate the capability of five BO-ELCs to predict LLWS criticality, the combined
PIREPs and HKO weather reports were separated into training and testing sets at a 7:3
ratio. Using Bayesian Optimization and 10-fold cross-validation, the hyperparameters for
each ELC were tuned to obtain the optimal set of hyperparameters. Each tuned ELC was
then evaluated using unseen instances from the testing set. In addition, the performance of
the BO-ELCs on the testing set was compared to determine the best BO-ELC model. Finally,
the game-theory-based SHapley Additive exPlanation mechanism was implemented using
the best BO-ELC model to provide explanations for the prediction of LLWS events. Based
on the 234 PIREPs, 96 (39.51%) of the LLWS events occurred over runway 07LA, 13 (5.34%)
occurred over runway 07RA, 34 (13.99%) occurred over runway 07RD, 8 (2.30%) occurred
over runway 25LA, 67 (27.57%) occurred over runway 25RA, and 25 (10.28%) occurred over
runway 25LD. In the winter season (January, February, and December), 26 LLWS events
occurred out of a total of 234 wind shear events; 139 LLWS events occurred in spring 2016
(March, April, and May); 53 occurred in summer (June, July, and August); and 25 occurred
in autumn (September, October, and November). The PIREPs also illustrated that 61.9% of
the LLWS events occurred during day time (07:00 AM–07:00 PM) and 38.1% during night
time. At the time of the LLWS event occurrence, the HKO weather reports illustrated north-
bound wind flows 1.73% of time, northeast-bound 7.35% of time, east-bound 51.9% of the
time, southeast-bound 10.3% of the time, south-bound 7.7% of the time, southwest-bound
12.1% of the time, west-bound 4.7% of the time, and northwest-bound 3.8% of the time.
The HKO weather reports also provided the hourly temperature and wind speed at the
time of the LLWS occurrences. Figure 7 shows the distribution bar plots of LLWS events
with respect to the runway orientation, seasons of the year, wind direction, and time of day
or night. The figure also contains box plots of the hourly temperature and wind speed that
show the maximum, minimum, Q1, Q3, and median values.
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3.1. Hyperparameter Tuning Using Bayesian Optimization

Table 2 shows the optimal hyperparameters along with their ranges and optimal
values that were obtained via the hybrid BO-ELC approach. Each ELC model with the
optimal hyperparameters was then used for the performance evaluation.

Table 2. Hyperparameter tunings of ELCs.

Algorithm Hyperparameters Range Optimal Values

LGBM {(n_estimators), (num_leaves), (learning
rate), (reg_lambda), (reg_alpha}

{(100–1500), (30–100), (0.001–0.2),
(1.1–1.5), (1.1–1.5)} {900, 38, 0.07, 1.24, 1.18}

CatBoost {(n_estimators), (max_depth),
(learning rate)} {(200–1500), (2–15), (0.001–0.2)} {727, 5, 0.1}

AdaBoost {(n_estimators), (learning rate)} {(100–1500), (0.001–0.2)} {871, 0.08}
RF {(n_estimators), (max_depth)} {(50–1000), (2–15)} {1041, 7}

XGBoost {(n_estimators), (num_leaves), (learning
rate), (reg_lambda), (reg_alpha}

{(100–1500), (30–100), (0.001–0.2),
(1.1–1.5), (1.1–1.5)} {1105, 46, 0.05, 1.41, 1.27}

3.2. Performance Assessment of BO-ELCs

To assess the performances of the BO-ELCs, the ROC curves were plotted and the
AUC-ROC was calculated for each ensemble classifier. The AUC-ROC curves were used
to provide a basis for the comparison between each classifier. Figure 8 demonstrates that
all models utilized showed strong predictive values. All the developed classifiers showed
AUC-ROC values greater than 0.50. The most accurate classifier among all of the classifiers
was the BO-Random Forest model, which had an AUC-ROC of 0.759. The worst AUC-ROC
was shown by BO-AdaBoost, which was equal to 0.687.
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Figure 8. Combined ROC curve for all Bayesian-optimized ELC models.

Although the AUC-ROC is a helpful metric for determining the overall accuracy of a
binary prediction model, it does not provide class-specific accuracy (predicted accuracy
of NC-LLWS vs. predicted accuracy of C-LLWS). To illustrate the accuracy of both pre-
dictions, a confusion matrix for each classifier was generated, and several performance
indicators including accuracy, precision, recall, and the F1-score, were extracted. Table 3
reports the comparison results among five BO-ELCs and Figure 9 illustrates the AUC-PRC
when employing the testing dataset. The BO-Random Forest Classifier showed the highest
Accuracy, Precision, Recall and F1-score (Accuracy = 0.714, Precision = 0.724, Recall = 0.710,
F1-score = 0.713, AUC-PRC = 0.75). The CatBoost model was the second-best model (Ac-
curacy = 0.681, Precision = 0.674, Recall = 0.689, F1-score = 0.686, and AUC-PRC = 0.69).
The XGBoost model had the worst prediction performance among all the classifier (Accu-
racy = 0.652, Precision = 0.664, Recall = 0.652, F1-score = 0.566, and AUC-PRC = 0.68). Based
on the results of the AUC-ROC, the performance indicators that were extracted from the
confusion matrix, and AUC-PRC, the BO-Random Forest classifier had a better predicted
LLWS criticality performance and could be used for the SHAP analysis interpretation.

Table 3. Performance measures of BO-ELCs.

BO-ELC
Performance Metrics

Accuracy Precision Recall F1-Score

LGBM 0.672 0.681 0.672 0.676
AdaBoost 0.681 0.673 0.661 0.663
Random Forest 0.714 0.724 0.710 0.713
CatBoost 0.681 0.674 0.689 0.686
XGBoost 0.652 0.664 0.652 0.656



Atmosphere 2022, 13, 2102 13 of 19Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 9. Combined precision–recall curve (PRC) for all Bayesian-optimized ELC models. 

3.3. Sensitivity Analysis 

Developing a concise LLWS criticality prediction model is essential because more 

precise models may capture the relationship between LLWS criticality and risk factors 

better. The capability to interpret the classifier modeling results is equally essential. This 

section describes how the SHAP method was implemented to interpret the BO-Random 

Forest classifier results and the BO-CatBoost classifier results to estimate the impact of the 

top three individual risk factors and their interactions. 

3.3.1. Global Factors’ Importance and Contribution 

For the global factors’ importance and contribution analysis, we used the BO-Ran-

dom Forest classifier, which was the best model in our case, followed by the BO-CatBoost 

classifier, which was the second-best model. In using these two optimal models with ac-

curate LLWS criticality predictions, there was strong merit in investigating which factors 

were the most important and quantifying how these factors contributed to the final pre-

dictions. To explore the impact of each factor on the final prediction, the SHAP values 

were used. It is worth mentioning that factor importance is not the same as factor contri-

bution. Factor importance indicates which factors have the greatest impact on a model’s 

performance. The factor contributions not only identify relevant factors, but they also pro-

vide a logical explanation for the observed outcome (NC-LLWS or C-LLWS). This study 

determined the importance of each factor and its contribution to the model estimate using 

the top two BO-ELCs with better accuracies. Figure 10a illustrates the SHAP global im-

portance scores for the factors used in the BO-Random Forest classifier. However, the out-

come did not indicate the proportionate contribution of each factor to the likelihood of an 

LLWS criticality. It showed that the most important factor that caused the occurrence of 

C-LLWS was the hourly temperature, which had a mean SHAP value of +0.98, followed 

by the mean wind speed with a mean SHAP value of +0.64 and Runway 07LA (+0.41). 

Figure 10b illustrates the SHAP global importance scores for the factors using the Cat-

Boost model. The results revealed that the most important factor that caused C-LLWS was 

the hourly temperature (+0.82) followed by wind speed (+0.49) and Runway 07LA (+0.38). 

The sequences of the factor importance in the case of both the BO-Random Forest classifier 

and the BO-CatBoost classifier were consistent, while there was a slight difference in their 

SHAP values. 
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3.3. Sensitivity Analysis

Developing a concise LLWS criticality prediction model is essential because more
precise models may capture the relationship between LLWS criticality and risk factors
better. The capability to interpret the classifier modeling results is equally essential. This
section describes how the SHAP method was implemented to interpret the BO-Random
Forest classifier results and the BO-CatBoost classifier results to estimate the impact of the
top three individual risk factors and their interactions.

3.3.1. Global Factors’ Importance and Contribution

For the global factors’ importance and contribution analysis, we used the BO-Random
Forest classifier, which was the best model in our case, followed by the BO-CatBoost classi-
fier, which was the second-best model. In using these two optimal models with accurate
LLWS criticality predictions, there was strong merit in investigating which factors were the
most important and quantifying how these factors contributed to the final predictions. To
explore the impact of each factor on the final prediction, the SHAP values were used. It
is worth mentioning that factor importance is not the same as factor contribution. Factor
importance indicates which factors have the greatest impact on a model’s performance.
The factor contributions not only identify relevant factors, but they also provide a logical
explanation for the observed outcome (NC-LLWS or C-LLWS). This study determined the
importance of each factor and its contribution to the model estimate using the top two
BO-ELCs with better accuracies. Figure 10a illustrates the SHAP global importance scores
for the factors used in the BO-Random Forest classifier. However, the outcome did not
indicate the proportionate contribution of each factor to the likelihood of an LLWS criticality.
It showed that the most important factor that caused the occurrence of C-LLWS was the
hourly temperature, which had a mean SHAP value of +0.98, followed by the mean wind
speed with a mean SHAP value of +0.64 and Runway 07LA (+0.41). Figure 10b illustrates
the SHAP global importance scores for the factors using the CatBoost model. The results
revealed that the most important factor that caused C-LLWS was the hourly temperature
(+0.82) followed by wind speed (+0.49) and Runway 07LA (+0.38). The sequences of the
factor importance in the case of both the BO-Random Forest classifier and the BO-CatBoost
classifier were consistent, while there was a slight difference in their SHAP values.
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Figure 10. SHAP global importance plots: (a) Random Forest; (b) CatBoost.

Similarly, a SHAP contribution evaluation was conducted to conduct a more in-
depth examination of the Random Forest and CatBoost models using SHAP beeswarm
plots (Figure 11). We created a quantitative value from the SHAP contribution plots that
combined the Shaply values and expressed the classifier contributions of factors. The input
factors were arranged on the vertical axis in order of increasing influence, starting with
the most influential. The SHAP value is shown on the horizontal axis, and the significance
of the factor is shown by the color scale, (blue to pinkish-red for low significance to high
significance). The SHAP beeswarm plots of the Random Forest and CatBoost models
illustrate that most of the moderate-to-high mean wind speeds resulted in the occurrence
of C-LLWS events, which are represented by the pinkish-red color toward the right side of
the vertical reference line with positive SHAP values (Figure 11a,b). The blue color toward
the left of the vertical reference line indicates the occurrence of NC-LLWS events due to
a low mean wind speed. Similarly, in the case of the mean hourly temperature, a high
temperature (represented in red) is shown to the right of the vertical reference line with a
positive SHAP value and blue to the left of the vertical reference line. It shows that high
temperatures resulted in C-LLWS events while low temperatures were more likely to cause
NC-LLWS events. The same was the case for wind speed and Runway 07LA.
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3.3.2. Factor Dependence and Interaction

There was no obvious correlation between the changes in the factor value and the
changes in the SHAP value in the factor global importance and contribution (beeswarm)
plot. Figure 12 supplements the contribution plot by providing more information about
how the SHAP values varied with the eigenvalues and by displaying the individual
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interpretation outcomes for the three major factors. The SHAP dependence and interaction
plots were examined to ascertain the extent to which the input variables used to evaluate
the Random Forest classifier interacted in terms of their contributions (see Figure 12). The
SHAP dependence plot is a scatter plot that demonstrates the effect a single factor had on
the predictions made by the classifier, which in our case was the Random Forest model.
The SHAP interaction plot shows the effect of two factors on the models’ predictions.
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hourly temperature.

The dependence and interaction plot examines the top three influential factors; namely,
hourly temperature, wind speed, and Runway 07LA. Other factor interactions, however,
could be explored as well. Figure 12a depicts the effect of wind speed on the models’
predictions. The points with high density fell above the SHAP 0.0 reference line and at
wind speeds of more than 4.4 m/s up to 8 m/s had a positive impact on the prediction
of LLWS, which meant that wind speeds higher than 4.4 m/s were more likely to cause
C-LLWS events. The results were consistent with the findings of previous studies [41,42].
However, it is pertinent to mention that for the occurrence of C-LLWS events, the variation
in wind speed is more important than the mean wind speed. The duration of a C-LLWS
event that might be encountered by an aircraft is generally within a few seconds to a few
minutes. Therefore, the hourly mean wind speed can hardly provide an accurate indication
of LLWS criticality. Therefore, more refined data on wind conditions such as a 1 min mean
in turbulence intensity may be required to improve the models’ accuracies.
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Figure 12b depicts the effect of hourly temperature on the models’ predictions. The
points with high density fell above the SHAP 0.0 reference line at an hourly temperature of
23 ◦C to 31 ◦C, which had a positive impact on the predictions of LLWS. This illustrated that
C-LLWS events were more likely to occur at temperatures between 23 ◦C and 31 ◦C. The
SHAP value for Runway 07LA when labeled ‘1’ was higher than reference 0.0 and lower
when labeled as ‘0′ (Figure 12c). This illustrated that Runway 07LA was highly vulnerable
to the occurrence of C-LLWS events. This also showed that C-LLWS events were more
likely to occur under the easterly, southeasterly, southerly, and southwesterly winds, which
was also consistent with the previous findings [5,43,44]. Pilots should be cautious when
making a “final approach” to Runway 07LA. Figure 12d demonstrates the interaction of
the wind speed and hourly temperature and their combined influence on the BO-Random
Forest classifier prediction. When the wind speed ranged from 4.2 m/s to 9.8 m/s and
the hourly temperature ranged from 24.8 ◦C to 29.5 ◦C, high density points formed in the
shaded area above the SHAP 0.0 reference line. Within these ranges, C-LLWS events were
more likely to occur.

3.3.3. Local Factor Interpretation

Figure 13 shows the SHAP explanatory force chart for two randomly selected cases
from the actual estimations. The base value (0.045) on the graph represents the mean of the
BO-Random Forest classifier estimations for the training data set. The NC-LLWS condition
occurred when the outcome value of classifier was less than the classifier’s base value.
C-LLWS events occurred when the classifier’s output value exceeded the base value. The
blue arrows illustrate the magnitude of an input factor’s effect on the likelihood of an
NC-LLWS occurrence. The likelihood of occurrence of a C-LLWS event was influenced
by input factors as indicated by the red arrows. Each arrow’s area occupied by a factor
reflects the magnitude of that factor’s effect. Consider two instances of the BO-Random
Forest classifier that were correctly classified as C-LLWS and NC-LLWS from the training
dataset. The two instances depicted in Figure 13 correctly classified as NC-LLWS and
C-LLWS had estimated values of −2.91 and 3.62, respectively. For the first randomly
selected instance (Figure 13a), when the wind speed was equal to 3.4 m/s with a moderate
hourly temperature equal to 23.8 ◦C, an NC-LLWS occurred. This figure also illustrates that
seasons other than spring can have occurrences of NC-LLWS events. The spring season
designated as 0 highlighted that for this randomly selected instance, the spring season did
not contribute to the occurrence of NC-LLWS events. Contrary to this (Figure 13b), the
combination of a moderate temperature equal to 21.6 ◦C with a high wind speed and spring
season, a C-LLWS event occurred. However, the autumn season did not contribute to the
occurrence of C-LLWS events. Similarly, for this very instance, Runway 07LA contributed
to the occurrence of a C-LLWS event. In a similar fashion, we could randomly select other
correctly classified instances for their local interpretation.
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4. Conclusions and Recommendations

This study presented the application of five state-of-the-art BO-ELCs in the prediction
of the occurrence of an LLWS criticality. Six factors, including the hourly temperature,
wind speed, runway orientation, wind direction, time of day, season, and the height of the
LLWS as a binary target factor from the PIREPs and HKO weather reports, were used as
inputs. Under the comprehensive evaluation criteria, all models achieved a high prediction
accuracy. Nevertheless, ensemble learning algorithms are frequently criticized for their lack
of interpretability and transparency. Despite the fact that engineering-domain models are
more flexible and frequently more accurate than traditional predictive statistical techniques,
this has an effect on their widespread acceptability. In this study, the model with the best
prediction was interpreted using the SHAP algorithm, and the influence of the top three
factors on the occurrence of an LLWS criticality was demonstrated. Based on the study, the
following conclusions were drawn:

• In the testing dataset, the BO-Random Forest classifier had the best overall performance
of all BO-ELCs investigated in this study with an AUC-ROC of 0.759 and accuracy,
precision, recall, F1-score, and AUC-PRC values of 0.714, 0.724, 0.710, 0.713, and 0.75,
respectively.

• The performance of each individual BO-ELC varied marginally. Despite the fact that
XGBoost’s AUC-ROC was 0.73, its accuracy, recall, precision, F1-score, and AUC-PRC
values were 0.652, 0.656, 0.664, 0.656, and 0.68, respectively.

• The AdaBoost and LGBM models demonstrated the lowest AUC-ROC (0.687) and
AUC-PRC (0.67) scores, respectively.

• SHAP demonstrated efficacy in interpreting the optimal model’s outcome (BO-Random
Forest classifier). In terms of the factor influence, the SHAP analysis revealed that
the hourly temperature is the most influential factor followed by the wind speed and
runway 07LA.

• When the wind speed was moderate to high (>4.2 m/s) and the temperature was
moderate to high (>24.5 ◦C), aircrafts on a final approach to Runway 07LA were more
likely to experience critical LLWS.

The technique proposed in this research work can be utilized to undertake a large-
scale investigation of wind shear and can serve as a useful resource for aviation authorities
and researchers who are concerned with aviation safety. In addition, this paper focused
exclusively on the prediction of LLWS criticality as computed by using five BO-ELC
classifiers (CatBoost, XGBoost, LGBM, RF, and AdaBoost) in aggregation with the SHAP
model. This study was limited to the application of machine learning models. Future
studies might be undertaken by combining a number of other BO-ELCs such as a stacking
ensemble as well as neural network models with a range of additional risk factors such as
inter-annual changes in wind shear events and their spatial distributions.
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