Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity
Abstract
:1. Introduction
2. Technical Analysis
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, P.; Latocha, M.; Dorman, L.; Pelliccioni, M.; Rollet, S. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere. Radiat. Prot. Dosim. 2007, 126, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Meier, M.M.; Copeland, K.; Kloble, K.E.J.; Matthia, D.; Plettenberg, M.C.; Schennetten, K.; Wirtz, M.; Hellweg, C.E. Radiation in the atmosphere. A hazard to aviation safety? Atmosphere 2020, 11, 1358. [Google Scholar] [CrossRef]
- National Council on Radiation Protection and Measurements. Ionizing Radiation Exposure of the Population of the United States; NCRP Technical Report No. 160; NCRP: Bethesda, MD, USA, 2009. [Google Scholar]
- European Commission. Directive 96/29/EURATOM of 13 May 1996 Laying Down Basic Safety Standards for the Protection of the Health of Workers and the General Public Against the Dangers Arising from Ionizing Radiation; Publications Office: Luxembourg, 1996. [Google Scholar]
- European Commission. Comparison of Codes Assessing Radiation Exposure of Aircraft Crew Due to Galactic Cosmic Radiation, Directorate-General for Energy, Directorate D—Nuclear Safety & Fuel Cycle; Unit D4—Radiation Protection; Publications Office: Luxembourg, 2012. [Google Scholar]
- Latocha, M.; Beck, P.; Rollet, S. AVIDOS—A software package for European accredited aviation dosimetry. Radiat. Prot. Dosim. 2009, 136, 286–290. [Google Scholar] [CrossRef] [PubMed]
- SIEVERT. Available online: https://www.sievert-system.org/ (accessed on 20 October 2021).
- Copeland, K. CARI-7A: Development and validation. Radiat. Prot. Dos. 2017, 175, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, C.J.; Meier, M.M.; Brown, S.; Norman, R.B.; Xu, X. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather 2013, 11, 603–635. [Google Scholar] [CrossRef] [Green Version]
- SPENVIS. Available online: https://www.spenvis.oma.be/ (accessed on 20 October 2021).
- Paschalis, P.; Mavromichalaki, H.; Dorman, L.I.; Plainaki, C.; Tsirigkas, D. Geant4 software application for the simulation of cosmic ray showers in the Earth’s atmosphere. New Astron. 2014, 33, 26–37. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Dubois, P.A.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Methods A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Paschalis, P.; Tezari, A.; Gerontidou, M.; Mavromichalaki, H.; Nikolopoulou, P. Space Radiation Exposure Calculations during Different Solar and Galactic Cosmic Ray Activities. arXiv 2016, arXiv:1612.08937. [Google Scholar]
- Paschalis, P.; Tezari, A.; Gerontidou, M.; Mavromichalaki, H.; Karaiskos, P. Radiation exposure of aircrews due to Space Radiation. HNPS Adv. Nucl. Phys. 2019, 26, 210–213. [Google Scholar]
- International Commission on Radiological Protection. Radiological protection from cosmic radiation in aviation. Ann. ICRP 2016, 45, 132. [Google Scholar]
- International Commission on Radiation Units and Measurements. Reference data for the validation of doses from cosmic-radiation exposure of aircraft crew. ICRU Report 84. J. Int. Comm. Radiat. Units Meas. 2010, 10. [Google Scholar]
- ESA. ESA SSA P3 SWE-III Acceptance Test Report, R.137 Dynamic Atmospheric Tracking Interactive Model Application (DYASTIMA); ESA: Paris, France, 2019. [Google Scholar]
- Tezari, A.; Paschalis, P.; Mavromichalaki, H.; Karaiskos, P.; Crosby, N.; Dierckxsens, M. DYASTIMA: Simulating air showers in the atmosphere of a planet. In Proceedings of the 70th IAC, Washington, DC, USA, 21–25 October 2019. [Google Scholar]
- Tezari, A.; Paschalis, P.; Mavromichalaki, H.; Karaiskos, P.; Crosby, N.; Dierckxsens, M. Assessing Radiation Exposure Inside The Earth’s Atmosphere. Radiat. Prot. Dos. 2020, 190, 427–436. [Google Scholar] [CrossRef]
- Athens Cosmic Ray Group. DYASTIMA Software User Manual. 2019. Available online: http://cosray.phys.uoa.gr/apps/DYASTIMA/DYASTIMA_USER_MANUAL.pdf (accessed on 17 January 2022).
- Paouris, E.; Mavromichalaki, H.; Belov, A.; Guischina, R.; Yanke, V. Galactic cosmic ray modulation and the last solar minimum. Sol. Phys. 2012, 280, 255–271. [Google Scholar] [CrossRef]
- ISO 2533:1975; ISO Standard Atmosphere. International Organization for Standardization: Geneva, Switzerland, 2007.
- Sanz Fernandez de Cordoba, S. 100 km altitude boundary for astronautics. Federation Aeronautique Internationale: Astronautic Records Commission (ICARE). 2004. Available online: https://www.fai.org/page/icare-boundary (accessed on 1 March 2021).
- ISO 15390:2004; ISO Space Environment (Natural and Artificial)—Galactic Cosmic Ray Model. International Organization for Standardization: Geneva, Switzerland, 2004.
- Plainaki, C.; Paschalis, P.; Grassi, D.; Mavromichalaki, H.; Andriopoulou, M. Interactions of cosmic rays with the Venusian atmosphere during different solar activity conditions. Ann. Geophys. 2016, 34, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Smart, D.F.; Shea, M.A. World grid of calculated cosmic ray vertical cutoff rigidities for epoch 2000.0. In Proceedings of the 30th International Cosmic Ray Conference, Yucatán, Mexico, 3–11 July 2007. [Google Scholar]
- Gerontidou, M.; Katzourakis, N.; Mavromichalaki, H.; Yanke, V.; Eroshenko, E. World grid of cosmic ray vertical cut-off rigidity for the last decade. Adv. Space Res. 2021, 67, 2231–2240. [Google Scholar] [CrossRef]
- Forbush, S. Cosmic ray intensity variations during two solar cycles. J. Geophys. Res. 1958, 63, 651–669. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, D.; Singh, R.P. Impact of galactic cosmic rays on earth’s atmosphere and human health. Atmos. Environ. 2011, 45, 3806–3818. [Google Scholar] [CrossRef]
- Meier, M.M.; Hubiak, M.; Matthia, D.; Wirtz, M.; Reitz, G. Dosimetry at aviation altitudes (2006–2008). Radiat. Prot. Dos. 2009, 136, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Mrigakshi, A.I.; Matthiä, D.; Berger, T.; Reitz, G.; Wimmer-Schweingruber, R.F. Estimation of galactic cosmic ray exposure inside and outside the Earth’s magnetosphere during the recent solar minimum between solar cycles 23 and 24. Adv. Space Res. 2013, 52, 979–998. [Google Scholar] [CrossRef]
- Dorman, L.I.; Paschalis, P.; Plainaki, C.; Mavromichalaki, H. Estimation of the cosmic ray ionization in the Earth’s atmosphere during GLE71. In Proceedings of the 34th International Cosmic Ray Conference, Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar]
- Mishev, A.L.; Usoskin, I.G. Assessment of the radiation environment at commercial jet-flight altitudes during GLE 72 on 10 September 2017 using neutron monitor data. Space Weather 2018, 16, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C. Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 2014, 12, 633–649. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Gerontidou, M.; Paschalis, P.; Paouris, E.; Tezari, A.; Sgouropoulos, C.; Crosby, N.; Dierckxsens, M. Real-Time Detection of the Ground Level Enhancement on 10 September 2017 by A.Ne.Mo.S.: System Report. Space Weather 2018, 16, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Núñez, M.; Reyes-Santiago, P.J.; Malandraki, O.E. Real-time prediction of the occurrence of GLE events. Space Weather 2017, 15, 861–873. [Google Scholar] [CrossRef]
- Meier, M.M.; Matthiä, D. A space weather index for the radiation field at aviation altitudes. J. Space Weather Space Clim. 2014, 4, A13. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tezari, A.; Paschalis, P.; Stassinakis, A.; Mavromichalaki, H.; Karaiskos, P.; Gerontidou, M.; Alexandridis, D.; Kanellakopoulos, A.; Crosby, N.; Dierckxsens, M. Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity. Atmosphere 2022, 13, 166. https://doi.org/10.3390/atmos13020166
Tezari A, Paschalis P, Stassinakis A, Mavromichalaki H, Karaiskos P, Gerontidou M, Alexandridis D, Kanellakopoulos A, Crosby N, Dierckxsens M. Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity. Atmosphere. 2022; 13(2):166. https://doi.org/10.3390/atmos13020166
Chicago/Turabian StyleTezari, Anastasia, Pavlos Paschalis, Argyris Stassinakis, Helen Mavromichalaki, Pantelis Karaiskos, Maria Gerontidou, Dimitris Alexandridis, Anastasios Kanellakopoulos, Norma Crosby, and Mark Dierckxsens. 2022. "Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity" Atmosphere 13, no. 2: 166. https://doi.org/10.3390/atmos13020166
APA StyleTezari, A., Paschalis, P., Stassinakis, A., Mavromichalaki, H., Karaiskos, P., Gerontidou, M., Alexandridis, D., Kanellakopoulos, A., Crosby, N., & Dierckxsens, M. (2022). Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity. Atmosphere, 13(2), 166. https://doi.org/10.3390/atmos13020166