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Abstract: Regional climate models (RCMs) are crucial for climate studies and may be an alternative
source of meteorological data in data-scarce regions. However, the effectiveness of the numeri-
cal weather prediction (NWP) models applied in RCMs is hampered by the parameterization of
unresolved physical processes in the model. A major source of uncertainties in NWP models is
the parameterization of the planetary boundary layer (PBL). This study evaluates the influence of
seven PBL parameterization schemes in the Weather Research and Forecasting (WRF) model on
the retrieval of four meteorological variables over the Kenyan highlands. The seven PBL schemes
consist of four local schemes: the Mellor-Yamada-Janjic (MYJ), Mellor-Yamada-Nakanishi-Niino
(MYNN), Bougeault-Lacarrere (BouLac), quasinormal scale elimination (QNSE), and three nonlocal
schemes: asymmetrical convective model version 2 (ACM2), Shin and Hong (SHIN) and Yonsei
University (YSU). The forcing data for the WRF model was obtained from the fifth generation of
the European ReAnalysis (ERA5) dataset. The results were validated against observational data
from the Trans-African Hydro-Meteorological Observatory (TAHMO). WRF was found to simulate
surface meteorological variables with spatial details coherent with the complex topography within
the Kenyan highlands, irrespective of the PBL scheme. A comparison between 2-meter temperature
(T2) derived from the YSU scheme and T2 from the land component of ERA5 (ERA5-Land) indicates
that surface meteorological variables derived from WRF are better suited for applications over the
Kenyan highlands. The choice of the PBL scheme was found to primarily influence the simulation
of the 10-meter wind speed (WS10) and rainfall as opposed to T2 and the 2-meter relative humidity
(RH2). The insensitivity of the 2-meter variables to the choice of the PBL scheme is attributed to the
influence of the surface layer parameterization near the surface. Results from the rainfall simulation
indicate that the YSU scheme provides a more realistic depiction of PBL dynamics within the study
area. Hence, the YSU scheme is best suited for simulating surface meteorological variables over the
Kenyan highlands.

Keywords: RCMs; NWP; planetary boundary layer; parameterization; WRF; Kenyan highlands

1. Introduction

Regional climate models (RCMs) are increasingly being adopted in studies and appli-
cations at the regional and local scale to provide quality spatial-temporally refined weather
and climate-related variables [1]. The RCM concept, also known as dynamical downscal-
ing, applies high-resolution numerical weather prediction (NWP) models over regional
model domains to resolve the sub-grid variability in the climate fields derived from general
circulation models (GCMs). The climate fields from the GCM, which describe the global
atmospheric circulation response to large-scale forcings related to the Earth’s differential
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heating, are used as the initial and lateral boundary conditions in RCMs. On the other hand,
a better representation of the physics in the NWP model is used to describe the processes’
influence at the local scale related to orography, inland water bodies, vegetation, and land
use [2]. Cognizant to the importance of local-scale processes, especially for land applica-
tions, GCM derived datasets with a relatively high resolution, e.g., the land component of
the fifth generation of European ReAnalysis (ERA5) dataset [3] referred to as ERA5-land,
have been developed. The ERA5-land dataset has the highest spatial resolution (9 km)
currently available of any dataset of its kind. However, the dataset is still too coarse to
effectively capture the local-scale processes, especially in regions characterized by complex
terrain, emphasizing the need for RCMs.

Generally, an RCM utilizes a cascade of nested model domains of increasing spa-
tial resolutions in the inner model domains at predefined nesting ratios, allowing for a
physically-based interpolation of the GCM-derived climate fields to the regional and local
scales. A major challenge in the application of RCMs is that they are not readily transferable
due to the sensitivity of models to the initial and lateral boundary conditions, differences in
the physical processes characteristic to a region, and the choice of physics schemes [1,3–5].
The representation of the unresolved physical processes, popularly referred to as parame-
terization, has been cited as a major source of uncertainties in NWP models [6]. As such,
scores of studies have been carried out to analyze the effects of various parameterizations
on the prediction skill of NWP models, e.g., cumulus parameterization [7–9], cloud micro-
physics [10–12], planetary boundary layer (PBL) parameterization [13–15], among other
studies. The forecast skill of NWP models has been shown to be highly sensitive to PBL
parameterizations [16,17]. For instance, a study by Li and Pu [13] found that the param-
eterization of the PBL was as influential to the development of hurricane intensity and
associated precipitation in a similar manner to the parameterization of cloud microphysics,
further emphasizing the importance of PBL parameterization in NWP models.

The PBL is defined as that portion of the troposphere that responds directly to forcings
emanating from the Earth’s surface at timescales of one hour or less [18]. The PBL layer is
characterized by a strong vertical mixing and a marked diurnal variation in depth. The PBL
plays an important role in the development of weather phenomena due to the exchange
of heat and momentum fluxes between the land surface and the atmosphere through
turbulence transport. However, the complex, chaotic nature of turbulent flow due to eddies
of disproportionate sizes and time lengths within the PBL limits the explicit solution of the
governing equations of atmospheric flow. Thus, PBL parameterizations suffice as efficient
approximate solutions for turbulence in the atmospheric flow. PBL parameterizations are
used to describe the background (time-averaged) atmospheric state and the perturbations
(deviations) from the mean state associated with turbulent motions within the PBL based
on the Reynolds averaging technique [6]. PBL parameterization schemes are classified into
first-order closure or higher-order turbulent kinetic energy (TKE) closure schemes. First-
order closure schemes do not require additional prognostic equations to describe the effects
of turbulence on the mean flow variables. In addition, first-order closure schemes allow
for the exchange of fluxes between all layers in the PBL through large convective eddies
and are thus also referred to as nonlocal closure schemes. On the other hand, higher-order
TKE closure schemes include an additional prognostic equation for the TKE. TKE closure
schemes are also known as local closure schemes since they only allow for the exchange of
fluxes between adjacent model layers. Generally, local order closure schemes are suited for
the simulation of stable boundary layers, whereas nonlocal schemes are better at simulating
unstable boundary layers characterized by strong convection [6,15]. However, as reported
in García-Díez et al. [3], PBL schemes are highly sensitive to seasonality, forecast length,
and geographic location and thus may not necessarily produce consistent results across a
spectrum of atmospheric conditions.

Several studies aimed at evaluating the performance of PBL parameterization schemes
across regions and under varying weather phenomena have been carried out. Among
them is the study by Shin and Hong [15], who compared the performance of five PBL
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parameterization schemes available in the Weather Research and Forecasting (WRF) model
under stable and unstable atmospheric conditions in Kansas, USA. They found that PBL
parameterization schemes based on local mixing approaches generally performed better
under stable conditions than those based on a nonlocal mixing approach. The opposite
was found to be true for unstable conditions. Cohen et al. [18], analyzed the ability of
PBL schemes in the WRF model to simulate two tornado events in the southeastern USA.
They reported a better representation of the lapse rates within the first three kilometers
using nonlocal schemes as opposed to the local schemes. In addition, they observed that
the nonlocal schemes were less biased in the retrieval of temperature fields, which they
attributed to a better representation of entrainment processes in nonlocal schemes. Similar
findings have been reported in Avolio et al. [14], in southern Italy, during an experimental
campaign; Banks et al. [19], over Athens in Greece; Hazra and Pattnaik [20], over Odisha
state in India; and Boadh et al. [21], over a tropical station in India. Contrastingly, in a
study by Chaouch et al. [22], local schemes were found to represent PBL variables and
structure relatively well compared to nonlocal schemes under dry fog conditions in the
United Arab Emirates. Better performance with local parameterization schemes has also
been reported in Ooi et al. [23], over Kuala Lumpur, Malaysia; Tyagi et al. [24], in Southern
Italy; Madala et al. [25], in a region in India; Gbode et al. [26], in a monsoon regime over
West Africa; and in de Lange et al. [27], in the Highveld region of South Africa. However,
as reported in Hazra and Pattnaik [20] and Yang et al. [28], the skill of a PBL scheme varies
widely depending on the target variable. The findings by García-Díez et al. [3], Hazra and
Pattnaik [20], Yang et al. [28], and Li and Pu [13], among others, emphasize the need to
evaluate the impacts of PBL parameterization schemes on RCMs.

The Kenyan highlands rank among the most vulnerable regions to climate change and
variability globally [29]. According to projections presented in Gebrechorkos et al. [30], the
region is expected to witness a significant rise in extreme climate-related events, such as
floods and droughts. On the other hand, the region is among the most meteorologically
poorly gauged regions in the world [31]. As such, RCM provides an alternative source of
meteorological data to support the monitoring and sustainable use of natural resources and
the implementation of climate adaptation and mitigation strategies in the region. Although
several studies related to RCM have been conducted in this region [7,32,33], most of them
have focused on the sensitivity of RCMs to the parameterization of cumulus and cloud
microphysics schemes in simulating precipitation. This study evaluates how the various
PBL schemes in the Weather Research and Forecasting (WRF) model influence the retrieval
of surface meteorological variables over the Kenyan highlands.

2. Materials and Methods
2.1. Model Description

Since its release in 2000, the Weather Research and Forecasting (WRF) model has
become one of the most widely used atmospheric models [34]. WRF is a mesoscale NWP
model designed for atmospheric research and operational weather forecasting and is
suitable for applications ranging in scale from hundreds of meters to several kilometers.
WRF simulations can either be real cases (based on observational or analysis datasets) or
idealized simulation experiments. The WRF model simulates the atmospheric state and
its evolution, and amongst its outputs are various columnar and surface meteorological
variables. Consequently, the WRF modeling framework has been applied in multiple
applications ranging from but not limited to; air pollution studies, hydrology, hurricanes,
regional climate studies, urban heat island, and others [34,35].

WRF comprises a suite of physical parameterizations and dynamics representing
interactions between the land surface and the atmosphere. Different physical parameteri-
zations are used in WRF to describe the PBL, radiation budget, cumulus processes, cloud
microphysics, the surface layer, and the land surface. The model architecture allows for
portability, data assimilation, system extensibility, and parallel computing. WRF consists of
two dynamic solvers (cores), namely the Nonhydrostatic Mesoscale Model (NMM) core
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developed at the National Centers for Environmental Prediction (NCEP) and the Advanced
Research WRF (ARW) core mainly developed and maintained by the National Center for
Atmospheric Research (NCAR) with broad support from the model’s community user
base. The NMM core is essentially a fully compressible hydrostatic model modified by
Janjic [36] through an add-on module that can be turned on to account for non-hydrostatic
motions. On the other hand, the ARW core [37] is a fully compressible Euler-based non-
hydrostatic model, which includes a run-time hydrostatic option. The ARW core uses
a terrain-following vertical grid stretching permitting dry hydrostatic-pressure vertical
coordinates with an invariant pressure surface model top. The horizontal grid is based on
the Arakawa C-grid staggering and supports four different map projections for real data
simulations. Being a non-hydrostatic model, the ARW core is more suitable for representing
sub-grid scale processes than the NMM core. In addition, thanks to contributions from its
immense community user base, a wider range of physical parameterization options are
available in the ARW core than in the NMM core. As a result, the ARW core is the most
widely used WRF core in RCM studies.

2.2. PBL Parameterization Schemes in WRF

This study utilized the WRF-ARW model version 4.0.3. This version of the model
includes twelve PBL parameterization schemes. Seven commonly used schemes were
evaluated in this study. Each of these schemes is briefly described in this section.

2.2.1. Asymmetrical Convective Model Version 2

The asymmetrical convective model version 2 (ACM2) scheme [38,39] is a first-order
closure scheme. It is a hybrid local, nonlocal closure scheme. In the ACM2 scheme, the
upward fluxes from the surface interact with each layer to account for convective plumes
emanating from the surface. On the other hand, the downward fluxes only interact between
adjacent layers. Eddy diffusion is treated locally for both the upward and downward
fluxes. The scheme utilizes only the local mixing for upward and downward mixing in
stable or neutral flow regimes. In ACM2, the calculation of the PBL height is based on the
bulk Richardson number (RiB). It is determined as the height where the RiB calculated
above the neutral buoyancy level is greater than a critical RiB value of 0.25. According
to validation results by Pleim [38], the inclusion of both local and nonlocal mixing in the
scheme improves the depiction of the profiles of potential temperature and velocity within
the PBL layer. However, Coniglio et al. [40] report that the scheme produces PBLs that are
too deep in the evening compared to sounding data.

2.2.2. Bougeault-Lacarrere Scheme

The Bougeault-Lacarrere (BouLac) scheme [41] is a 1.5-order local closure scheme
based on a prognostic equation for TKE. The second-order moments in the prognostic
equation for TKE are parameterized based on an eddy coefficient approximation. The
turbulence length scale is parameterized based on the mean TKE of the layer and buoyancy
and is specifically designed to capture turbulence induced by gravity waves in complex
terrain. The scheme also includes a counter gradient term to account for the effects of
large eddies in convective cases. In this scheme, PBL height is calculated as the height
where TKE falls below a prescribed threshold. Shin and Hong [15] report that the scheme
shows a better ability to represent the PBL under high static stability conditions than
nonlocal schemes. However, just like with most of the other local schemes, the scheme does
not efficiently capture the effects of large eddies, leading to undermixing in convective
PBLs [18].

2.2.3. Mellor-Yamada-Janjic Scheme

The Mellor-Yamada-Janjic (MYJ) scheme [42] is a 1.5-order local closure scheme based
on a prognostic equation for the TKE. In this scheme, nonlocal transport associated with
large eddies is accounted for by adding a counter gradient term in the heat and momentum
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transport equation. The scheme also includes a TKE diffusion outside the mixed layer,
which, combined with the counter gradient transport, improves the representation of the
entrainment at the top of the PBL. The PBL height is designated as the height at which the
TKE falls below a TKE threshold of 0.2 m2 s−2. One of the limitations of the MYJ scheme is
the underdevelopment of PBL during convective regimes resulting in a shallow cold and
moist PBL [40].

2.2.4. Mellor-Yamada-Nakanishi-Niino Scheme

The Mellor-Yamada-Nakanishi-Niino Level 2.5 (MYNN) scheme [43,44], similar to the
MYJ, is a 1.5-order local closure scheme based on a prognostic equation for TKE. Unlike
the MYJ scheme, which uses observations to derive expressions of stability and mixing
length, the MYNN scheme uses results from large eddy simulations (LES) to derive these
expressions. The revisions to the expressions of the mixing length in the MYNN scheme
make it suitable for applications over a wider range of static stability regimes than the MYJ
scheme [18]. The MYNN scheme has also been found to better represent deep convective
springtime PBL compared to nonlocal schemes [40]. However, just like the other local
closure schemes, the MYNN scheme does not fully account for deeper vertical mixing
induced by large eddies [18].

2.2.5. Quasinormal Scale Elimination Scheme

The quasinormal scale elimination (QNSE) scheme [45] is a 1.5-order local closure
scheme. It is a spectral model designed for turbulent flows characterized by stable stratifica-
tion. The scheme employs a quasi-Gaussian mapping of the velocity and temperature fields
to account for wave phenomena in stable boundary layers. A stratification scale-dependent
elimination algorithm explicitly accounts for the combined effect of turbulence and internal
waves. As stratification increases, energy is accumulated in the horizontal flow components
at the expense of the energy for the vertical flow components. The scheme calculates the
PBL height as the height at which the TKE profile decreases to a value of 0.01 m2 s−2. The
scheme has provided a realistic depiction of potential temperature and kinematic profiles
under stable conditions [18]. However, under unstable conditions, the scheme produces
PBLs that are too shallow, cool, and moist [40].

2.2.6. Shin and Hong Scheme

The Shin and Hong (SHIN) scheme [46] is a first-order nonlocal closure scheme
designed to capture the effect of grid size dependency on turbulent transport in convective
boundary layers. Effects of large eddies are represented through a nonlocal transport profile
fitted to LES simulation outputs. On the other hand, local transport is derived using an
eddy diffusivity-based transport equation. A grid-size dependent function formulated by
Shin and Hong [47] is used to scale local and nonlocal transport within the boundary layer.
According to Shin and Hong [46], the scheme performs better under convective boundary
layers than the conventional nonlocal schemes.

2.2.7. Yonsei University Scheme

The Yonsei University (YSU) scheme [48] is a first-order nonlocal closure scheme. It
utilizes a turbulence diffusion equation to derive prognostic flux variables within the mixed
layer based on an eddy diffusivity coefficient and a counter gradient correction term. The
counter gradient correction term accounts for the contribution of the large-scale eddies
to the total flux. In the YSU scheme, entrainment is explicitly parameterized through an
additional term in the turbulence diffusion equation. The scheme calculates the PBL height
by considering Rib values calculated from the surface. For unstable cases, a critical RiB
value of 0.25 is adopted, while the value is set to zero for stable cases. Although the YSU
scheme is more effective at representing deep vertical mixing in convective PBLs than most
of the other schemes, it has been found to simulate springtime convective PBLs that are too
deep, resulting in too dry of air near the surface [18].
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2.3. Study Area and Experimental Design

The study area primarily covers the Kenyan highlands and corresponds to the in-
nermost (D03) WRF model domain, as shown in Figure 1. The region experiences two
rainy seasons, with the ‘long rains’ season occurring in March, April, and May (MAM).
On the other hand, the ‘short rains’ season occurs in October, November, and December
(OND). In between the two rainy seasons, the region is generally dry. The seasonality
in this region is mainly attributed to the intertropical convergence zone (ITCZ) and its
associated monsoon winds [7,33]. The monsoon winds influence the seasonal variation in
moisture within the region. On the other hand, the highly variable topography in the region
modulates the available moisture at the local scale resulting in high spatial variability in
the distribution of rainfall and other meteorological variables. Between November and
March, a northeasterly/easterly, Indian monsoon-induced flow dominates the region and
gradually shifts into easterly flow between March and May [49]. The period between May
and October is dominated by southeasterly monsoon winds. The dry seasons generally
coincide with months (July-September, and December-February) when the monsoons are
at their peak. The period between December and February is generally hot and dry. On the
other hand, the period between June and September is mostly cool and dry. During the
rainy seasons, most of the low-lying areas are generally hot and humid, whereas higher
elevation areas experience cool and humid weather conditions.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 36 
 

 

a critical RiB value of 0.25 is adopted, while the value is set to zero for stable cases. Alt-

hough the YSU scheme is more effective at representing deep vertical mixing in convec-

tive PBLs than most of the other schemes, it has been found to simulate springtime con-

vective PBLs that are too deep, resulting in too dry of air near the surface [18]. 

2.3. Study Area and Experimental Design 

The study area primarily covers the Kenyan highlands and corresponds to the inner-

most (D03) WRF model domain, as shown in Figure 1. The region experiences two rainy 

seasons, with the ‘long rains’ season occurring in March, April, and May (MAM). On the 

other hand, the ‘short rains’ season occurs in October, November, and December (OND). 

In between the two rainy seasons, the region is generally dry. The seasonality in this re-

gion is mainly attributed to the intertropical convergence zone (ITCZ) and its associated 

monsoon winds [7,33]. The monsoon winds influence the seasonal variation in moisture 

within the region. On the other hand, the highly variable topography in the region mod-

ulates the available moisture at the local scale resulting in high spatial variability in the 

distribution of rainfall and other meteorological variables. Between November and 

March, a northeasterly/easterly, Indian monsoon-induced flow dominates the region and 

gradually shifts into easterly flow between March and May [49]. The period between May 

and October is dominated by southeasterly monsoon winds. The dry seasons generally 

coincide with months (July-September, and December-February) when the monsoons are 

at their peak. The period between December and February is generally hot and dry. On 

the other hand, the period between June and September is mostly cool and dry. During 

the rainy seasons, most of the low-lying areas are generally hot and humid, whereas 

higher elevation areas experience cool and humid weather conditions. 

The Kenyan highlands contribute to a majority of the agricultural production in 

Kenya. Furthermore, they serve as the primary water catchment areas in Kenya and are 

thus critical to the country’s economy and natural ecosystems. 

 

Figure 1. WRF Model domain configurations (a) and the study area corresponding to the inner 

model domain showing the location of the weather stations within the study area (b). The horizon-

tal resolutions of the model domains, D01, D02, and D03, are 9, 3, and 1 km, respectively. 

The experimental setup was configured into three one-way nested domains, as 

shown in Figure 1. The spatial resolution of each of the domains was set at 9, 3, and 1 km 

for the first (D01), second (D02), and third (D03) nests, respectively. The corresponding 

grid configuration for the model nests was set at 180 × 180 (D01), 250 × 250 (D02), and 349 

× 349 (D03) grids. The Mercator map projection was adopted for the experimental setup. 

The 30 arc seconds (approximately 0.92 km) spatial resolution surface geographical da-

taset provided with the WRF model was adopted to define the topography, soil type, land 

Figure 1. WRF Model domain configurations (a) and the study area corresponding to the inner
model domain showing the location of the weather stations within the study area (b). The horizontal
resolutions of the model domains, D01, D02, and D03, are 9, 3, and 1 km, respectively.

The Kenyan highlands contribute to a majority of the agricultural production in Kenya.
Furthermore, they serve as the primary water catchment areas in Kenya and are thus critical
to the country’s economy and natural ecosystems.

The experimental setup was configured into three one-way nested domains, as shown
in Figure 1. The spatial resolution of each of the domains was set at 9, 3, and 1 km for
the first (D01), second (D02), and third (D03) nests, respectively. The corresponding grid
configuration for the model nests was set at 180 × 180 (D01), 250 × 250 (D02), and 349 × 349
(D03) grids. The Mercator map projection was adopted for the experimental setup. The
30 arc seconds (approximately 0.92 km) spatial resolution surface geographical dataset
provided with the WRF model was adopted to define the topography, soil type, land use,
leaf area index, albedo, among other surface geographical variables for the model setup.

The modeling scheme consisted of 40 unequally spaced terrain-following vertical
model levels with the model top set at 50 hPa. The initial and boundary conditions were
defined using forcing data derived from the fifth generation of European ReAnalysis (ERA5)
data at a spatial resolution of 0.25◦ by 0.25◦. Although the ERA5 dataset is available at
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an hourly time step, the model was forced every 6 hours, conforming to the time step
commonly adopted in most studies.

The modeling experiment was set up to simulate surface meteorological variables for
four months between January and April 2019. A total of seven different simulation runs,
each corresponding to an associated PBL scheme, were performed. The experimental setups
varied only in terms of the PBL parameterization schemes and their associated surface
layer schemes. Each of the model runs was initialized for 1 January 2019 at 00:00 UTC,
which corresponds to 03:00 local time (LT), with the end of each run being 30 April 2019
at 00:00 UTC. The first five days (January 1st to January 5th) were used as model spin-up
time and thus, were not included in the evaluation of the model results. The study period
was separated into the dry (January and February) and wet (March and April) seasons in
the evaluation.

All the PBL schemes, apart from the QNSE and MYJ schemes, utilized the revised
MM5 surface layer scheme [50]. The QNSE scheme was coupled to the QNSE surface
layer scheme [45], whereas the Eta similarity surface layer scheme [51] was applied in the
MYJ scheme. The rest of the physics options utilized in the model setup are summarized
in Table 1.

Table 1. Physics options for the WRF model configuration.

Physics Parameterization Scheme Reference

Cloud Microphysics WRF Single-moment 5-class Hong, Dudhia
and Chen [52]

Shortwave Radiation Dudhia Shortwave Radiation Scheme Dudhia [53]
Longwave Radiation RRTM Longwave Radiation Scheme Mlawer et al. [54]
Land Surface Model Unified Noah Land Surface Model Chen and Dudhia [55]

Although a full-year simulation or more would have been ideal for capturing the
influence of seasonality on the simulations, the length of the simulations was limited to
the available computing resources. The simulations were achieved through the help of a
computing grant from the Dutch national supercomputing center (SURFsara). The available
grant was enough to simulate a period of four months for each simulation. As such, the
period between January and April was chosen since it consists of roughly two dry months
(January and February) and two wet months (March and April) for most of the study area.
The simulations were carried out on the Cartesius computing cluster at SURFsara.

2.4. Validation

The results of the simulations were validated against surface meteorological data
obtained from the Trans-African Hydro-Meteorological Observatory (TAHMO) [31]. The
locations of the stations within the study area are shown in Figure 1. In order to ascertain
the data quality of TAHMO, a comparison between TAHMO observations and observation
data obtained from the Global Surface Summary of the Day (GSOD) was carried out.
The comparison was limited to one location where a TAHMO station coincided with a
GSOD station. Details and results of the comparison are presented in Appendix A and
Figure A1. The variables considered are the air temperature and relative humidity at
2-meter height, wind speed, and precipitation. The temporal resolution of the observations
was five minutes and was eighteen seconds for the model, corresponding to the time step
for the inner model domain. The temperature, relative humidity, and wind speed fields
from the model were averaged to five-minute values to match the temporal resolution of the
observations for comparison. On the other hand, the precipitation values for both the model
and the observations were aggregated to hourly and daily totals for comparison. Since
the surface wind fields from the WRF model are output at the 10-meter height compared
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to a 2-meter height for the observational dataset, the wind power law (Equation (1)) was
applied to the observed wind speed data to interpolate it to the 10-meter height.

uz = ur

(
z
zr

)α

(1)

where uz is the wind speed at the target height z, ur is the wind speed at the reference
height zr, and α is a stability-dependent coefficient. An α value of 0.143, which is commonly
adopted over land and which assumes neutral atmospheric stability, was used in this study.

The statistical metrics used to evaluate the model performance are the correlation
coefficient (R) and the root mean squared error (RMSE). In addition, the Equitable Threat
Score (ETS), which is a measure of the skill of a model relative to chance, was used to
evaluate the ability of the PBL schemes to simulate rainfall. The theoretical basis and
formulation of the ETS can be found in Hogan et al. [56].

3. Results

Figure 2 shows a comparison between maps of T2 derived from the YSU scheme
(Figure 2a) versus T2 derived from ERA5-Land (Figure 2b). More spatial variations consis-
tent with the variations in elevation in Figure 1b are observed in the contour map for YSU
compared to ERA5. Besides, the YSU scheme-derived T2 map shows a broader range of
values compared to ERA5.
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of T2 and RH2 is less sensitive to the choice of the PBL scheme than the retrieval of WS10 

Figure 2. T2 contour map derived with the YSU scheme for the inner model domain at 1 km grid
resolution (a) and T2 contour map obtained from ERA5 at 9 km grid resolution (b), both corresponding
to 20 January 2019 at 08:00 UTC (11:00 LT), superimposed with the observed 2-meter air temperature.

The statistical performance for the four meteorological variables considered is pre-
sented as probability density function (PDF) plots, as shown in Figures 3 and 4. The results
for the R (Figure 3) indicate that overall, the performance of the WRF model in the retrieval
of T2 and RH2 is less sensitive to the choice of the PBL scheme than the retrieval of WS10
and rainfall. Relatively higher R values with relatively lower variation are observed in the
retrieval of T2 and RH2 compared to WS10 and rainfall. Some very low and even negative
correlations were observed for WS10 (Figure 3c) and rainfall (Figure 3d) with some of
the schemes.
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Figure 3. PDF plots showing the distribution of the correlation coefficient (R) values obtained using
the seven PBL schemes for T2 (a), RH (b), WS10 (c), and rainfall (d) across all the observation stations
during the entire study period, excluding the 5 days set aside for model spin-up.

The distribution of the RMSE for each of the four variables is shown in Figure 4. In
general, the RMSE obtained with all the schemes in the retrieval of T2 (Figure 4a) ranged
between approximately 1.3 to 3.3 degrees Celsius. Apart from the MYNN, QNSE scheme,
and to a lesser extent the ACM2 scheme, RMSE values for T2 with the other schemes
mostly ranged between approximately 1.3 and 2.5 degrees Celsius. The MYNN scheme
produced relatively higher RMSE values in the retrieval of T2 compared to the rest of
the schemes, followed by the QNSE and ACM2 schemes. On the other hand, the MYJ
scheme appeared to be the best suited for simulating T2, marginally edging out the BouLac
scheme. YSU and SHIN, with similar distributions of RMSE values, ranked third in the
retrieval of T2. Regarding the retrieval of RH2 (Figure 4b), the MYJ and the QNSE schemes
showed a relatively lower range of RMSE values, ranging between approximately 10% and
16%. However, the MYJ scheme showed a marginally better distribution of RH2 RMSE
values than the QNSE scheme. The SHIN, YSU, and MYNN schemes rank third, fourth,
and fifth, respectively, in the retrieval of RH2, with their RMSE values ranging between
approximately 10.5% and 19.5%. In contrast, BouLac, with RMSE values ranging between
approximately 11% and 18%, ranked sixth. The ACM2 scheme showed significantly lower
performance than the other schemes, with RMSE values ranging between approximately
12.5% and 24.5%. The distribution of the RMSE values obtained in the simulation of
WS10 is shown in Figure 4c. The SHIN scheme showed the least RMSE values compared
to the rest of the schemes, ranging from 2.5 km/h to approximately 10 km/h. MYNN,
BouLac, YSU, and ACM2 showed similar distributions, with RMSE values ranging between
approximately 4.5 km/h and 12 km/h. The lowest performance was observed with the
QNSE and MYJ schemes, with their RMSE values ranging between approximately 6 km/h
and 13 km/h, respectively, for QNSE and 14 km/h for MYJ. In terms of the ability of the
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schemes to simulate rainfall (Figure 4d), it was observed that the MYNN scheme showed
lower RMSE values compared to the rest of the schemes. The RMSE values obtained with
the MYNN scheme ranged between 1mm/day and approximately 6 mm/day. YSU and
the ACM2 schemes followed in second and third place, respectively. The YSU scheme
showed a marginally better range of RMSE values, between approximately 2 mm/day
and 6 mm/day, compared to the ACM2 scheme, whose RMSE value range was between
approximately 2 mm/day and 7 mm/day. BouLac showed the fourth-best performance
with RMSE values ranging between approximately 3 mm/day and 9 mm/day. SHIN,
whose RMSE values ranged between 2 mm/day and 13.5 mm/day, ranked fifth, owing
largely to the distribution of its RMSE values, whereas the MYJ scheme with RMSE values
ranging between 3 mm/day and 10 mm/day, ranked sixth. The QNSE scheme showed an
RMSE value of approximately 3 mm/day to 11 mm/day, which was close to the ranges
observed with the MYJ scheme. However, based on the shape of the distribution, it was
observed that the QNSE showed the lowest performance at simulating rainfall.

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 36 
 

 

approximately 12.5% and 24.5%. The distribution of the RMSE values obtained in the sim-

ulation of WS10 is shown in Figure 4c. The SHIN scheme showed the least RMSE values 

compared to the rest of the schemes, ranging from 2.5 km/h to approximately 10 km/h. 

MYNN, BouLac, YSU, and ACM2 showed similar distributions, with RMSE values rang-

ing between approximately 4.5 km/h and 12 km/h. The lowest performance was observed 

with the QNSE and MYJ schemes, with their RMSE values ranging between approxi-

mately 6 km/h and 13 km/h, respectively, for QNSE and 14 km/h for MYJ. In terms of the 

ability of the schemes to simulate rainfall (Figure 4d), it was observed that the MYNN 

scheme showed lower RMSE values compared to the rest of the schemes. The RMSE val-

ues obtained with the MYNN scheme ranged between 1mm/day and approximately 6 

mm/day. YSU and the ACM2 schemes followed in second and third place, respectively. 

The YSU scheme showed a marginally better range of RMSE values, between approxi-

mately 2 mm/day and 6 mm/day, compared to the ACM2 scheme, whose RMSE value 

range was between approximately 2 mm/day and 7 mm/day. BouLac showed the fourth-

best performance with RMSE values ranging between approximately 3 mm/day and 9 

mm/day. SHIN, whose RMSE values ranged between 2 mm/day and 13.5 mm/day, ranked 

fifth, owing largely to the distribution of its RMSE values, whereas the MYJ scheme with 

RMSE values ranging between 3 mm/day and 10 mm/day, ranked sixth. The QNSE 

scheme showed an RMSE value of approximately 3 mm/day to 11 mm/day, which was 

close to the ranges observed with the MYJ scheme. However, based on the shape of the 

distribution, it was observed that the QNSE showed the lowest performance at simulating 

rainfall. 

Figure 4. PDF plots showing the distribution of the RMSE values obtained using the seven PBL 

schemes for T2 (a), RH (b), WS10 (c), and rainfall (d) across all of the observation stations during 

the entire study period, excluding the 5 days set aside for model spin-up. 

Figure 4. PDF plots showing the distribution of the RMSE values obtained using the seven PBL
schemes for T2 (a), RH (b), WS10 (c), and rainfall (d) across all of the observation stations during the
entire study period, excluding the 5 days set aside for model spin-up.

The spatial distribution of the RMSE values for RH2 (Figure 5) revealed some spatial
patterns in the performance observed with the various PBL schemes. It is evident from
Figure 5 that higher RMSE values were mainly observed in stations located to the western
side of the study area. Although some spatial patterns were observed in RH2 RMSE maps,
no discernible spatial patterns were observed in the RMSE maps for T2, WS10, and rainfall
in Figure A2, Figure A3, and Figure A4, respectively, in the Appendix A.
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Figure 5. Spatial distribution of RMSE values for the 2-meter relative humidity (RH2) obtained using
the seven PBL schemes across the observation stations over the entire study period, excluding the
5 days set aside for model spin-up.

The time-averaged hourly diurnal variation in T2 is shown in Figure 6. It is observed
that some slight differences exist between the diurnal variations in T2 during the dry
season (Figure 6a) and the wet season (Figure 6b). During the wet season, the schemes
showed a slightly better match to the observed T2 than during the dry season, especially
over daytime hours. Generally, the schemes tend to underestimate the observed T2 for
the better part of the day in both seasons. Notably, the MYNN and the QNSE schemes
showed significant underestimation of the observed T2 during the night in both seasons.
On the other hand, the BouLac scheme tended to overestimate the nighttime T2 during the
dry season. However, BouLac showed a better match to the nighttime T2 during the wet
season than most other schemes. The rest of the schemes mostly matched the observed
nighttime T2 during the dry season and underestimated it during the wet season. Although
all the schemes consistently underestimated the daytime T2, the MYNN showed more
underestimation of the T2 during the dry season than the rest of the schemes.
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Figure 6. Time-averaged diurnal variation of the 2-meter air temperature (T2) simulated with the
seven PBL schemes compared to the observations during the dry season (a) and wet season (b). Time
(UTC) corresponds to UTC +3 hours local time (LT) for the study area.

The differences in the nighttime T2, especially with the MYNN and the QNSE schemes,
are apparent in the time-averaged T2 maps at 03:00 UTC (06:00 LT) in Figure 7. A greater
spatial extent of lower T2 values was observed in the MYNN and QNSE scheme-derived T2
maps compared to the T2 maps derived from the rest of the schemes. Unlike for the T2 maps
at 03:00 UTC (06:00 LT), not many spatial differences were observed in the time-averaged
T2 maps at 11:00 UTC (14:00 LT) in Figure A5 in the Appendix A.

To further understand the influence of the PBL parameterization schemes on the diur-
nal variations observed in Figure 6, time-averaged vertical profiles of potential temperature
(Figure 8) were analyzed. It is observed from Figure 8 that the simulated PBL from all the
schemes was slightly warmer during the wet season than in the dry season. Apart from the
slight differences in temperature between the dry and wet seasons, not many differences
were observed between the PBL temperature profiles at 03:00 UTC (06:00 LT) during the
dry season (Figure 8a) and the wet season (Figure 8c). On the other hand, some differences
were observed in the PBL temperature profiles at 11:00 UTC (14:00 LT) between the dry
season (Figure 8b) and the wet season (Figure 8d). The enhanced differences observed in
the PBL temperature profiles at 11:00 UTC (14:00 LT) during the wet season compared to
the dry season were also observed in the T2 plots in Figure 6. In general, it was observed
from Figure 8 that the local closure schemes tended to simulate a relatively cooler PBL than
the nonlocal schemes. Notably, the MYNN scheme simulated a much cooler PBL than the
rest of the schemes at 11:00 UTC (14:00 LT), especially during the dry season (Figure 8b).
However, it was observed that the BouLac scheme, despite being a local scheme, tended to
simulate a warmer PBL than the rest at 03:00 UTC (06:00 LT) in both seasons. On the other
hand, QNSE, a local closure scheme, simulated a warmer boundary layer than the rest
at 11:00 UTC (14:00 LT) during the dry season. In the wet season, QNSE simulated 11:00
UTC (14:00 LT) PBL temperature profiles in the same range as the nonlocal schemes, which
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were relatively warmer than the other local schemes. The trend observed in the profiles of
potential temperature at 03:00 UTC (06:00 LT) was consistent with the trend observed in
T2 plots at 03:00 UTC (06:00 LT) in Figure 6, especially for BouLac and QNSE. However,
although the MYJ scheme simulated a cool PBL at 03:00 UTC (06:00 LT) similar to QNSE
and MYNN, the corresponding T2 from the MYJ scheme was relatively higher than the one
simulated with the QNSE and MYNN schemes. The trend observed in the vertical profiles
of potential temperature for 11:00 UTC (14:00 LT) was consistent with the trend observed in
the T2 plots at 11:00 UTC (14:00 LT) in Figure 6 but less apparent than the trend observed at
03:00 UTC (06:00 LT). Just like at 03:00 UTC (06:00 LT), the MYJ scheme showed relatively
higher T2 values at 11:00 UTC (14:00 LT) despite a cool PBL profile at 11:00 UTC.
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Figure 7. Time-averaged maps of simulated 2-meter air temperature (T2) for the inner model domain
(1 km grid resolution) at 03:00 UTC (06:00 LT) using the seven PBL schemes during the entire study
period, excluding the 5 days set aside for model spin-up.

Figure 9 shows the time-averaged diurnal variation in RH2. No significant differ-
ences were observed between the variations in RH2 in both the dry (Figure 9a) and wet
(Figure 9b) seasons. It was also observed that the schemes tended to mostly underestimate
the observed RH2 throughout the day in both seasons. Notably, the ACM2 scheme signif-
icantly underestimated the observed RH2. Intra-scheme differences and the differences
between the schemes and the observed RH2 were more pronounced during the nighttime
than the daytime.
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Figure 8. Time-averaged vertical profiles of potential temperature corresponding to 03:00 UTC (06:00
LT) for the dry season (a) and the wet season (c), and corresponding to 11:00 UTC (14:00 LT) for the
dry season (b) and the wet season (d), as simulated by each of the seven PBL schemes.
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Figure 9. Time-averaged diurnal variation of the 2-meter relative humidity (RH2) simulated with the
seven PBL schemes compared to the observations during the dry season (a) and wet season (b). Time
(UTC) corresponds to UTC +3 hours local time (LT) for the study area.
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Figure 10 shows the time-averaged RH2 maps at 03:00 UTC (06:00 LT) over the study
area. The intra-scheme differences observed in Figure 9 were also apparent in the RH2 maps,
particularly with the QNSE scheme, and to a lesser extent, the ACM2 scheme compared to
the rest of the schemes. The lower values of RH2 observed with the ACM2 scheme were
also discernible in the time-averaged RH2 maps at 11:00 UTC (14:00 LT) in Figure A6 in the
Appendix A. The rest of the schemes depicted minimal intra-scheme variations in RH2 at
11:00 UTC (14:00 LT), a trend that is consistent with the trend observed in Figure 9.
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Figure 10. Time-averaged maps of the simulated 2-meter relative humidity (RH2) for the inner model
domain (1 km grid resolution) at 03:00 UTC (06:00 LT) using the seven PBL schemes during the entire
study period.

The time-averaged vertical profiles of RH at 03:00 UTC (06:00 LT) in Figure 11 show
that the local schemes tended to simulate a moister PBL than the nonlocal schemes. How-
ever, the local schemes tended to dry up drastically along the vertical atmospheric column
compared to the nonlocal schemes. This behavior was more pronounced with the MYNN
scheme. It was also observed that at 03:00 UTC (06:00 LT) in Figure 11a (dry season) and
Figure 11c (wet season), the BouLac scheme tended to simulate a relatively drier PBL,
similar to the nonlocal schemes, compared to the rest of the local schemes. On the other
hand, a somewhat drier PBL was simulated by the QNSE scheme at 11:00 UTC (14:00
LT) compared to the rest of the local schemes. The trend observed in the RH profiles was
consistent with the trend observed in the RH2 in Figure 9 for most of the schemes across
both the wet and dry seasons. One notable difference was that the MYJ scheme simulated a
lower RH2 than the QNSE scheme at 03:00 UTC (06:00 LT) despite a relatively more moist
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PBL at 03:00 UTC (06:00 LT). The significantly lower RH2 observed with ACM2 in Figure 9
was also clearly observed in the RH profiles.
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Figure 11. Time-averaged vertical profiles of relative humidity corresponding to 03:00 UTC (06:00
LT) for the dry season (a) and the wet season (c), and corresponding to 11:00 UTC (14:00 LT) for the
dry season (b) and the wet season (d), as simulated by each of the seven PBL schemes.

Figure 12 shows the time-averaged diurnal variations in WS10 simulated by the PBL
schemes versus the observations. Higher wind speeds were observed during the dry season
(Figure 12a) compared to the wet season (Figure 12b) based on both the observations and
the WRF simulations. In general, all the PBL schemes overestimated the nighttime WS10
and underestimated the daytime WS10 in both seasons. It was also observed that the
SHIN scheme tended to simulate relatively lower daytime WS10 compared to the rest
of the schemes. Furthermore, it failed to capture the diurnal variation depicted by the
observations, unlike the rest of the schemes. The QNSE and MYJ schemes consistently
showed the largest overestimation of the observed WS10 during the day (08:00 (11:00)–
14:00 (17:00) UTC (LT)) in both seasons. On the other hand, the ACM2 scheme consistently
showed a significant overestimation of the WS10 between 15:00 UTC (18:00 LT) and 20:00
UTC (23:00 LT) in both seasons.
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Figure 12. Time-averaged diurnal variation of 10-meter wind speed (WS10) simulated with the seven
PBL schemes compared to the observations during the dry season (a) and wet season (b). Time (UTC)
corresponds to UTC +3 hours local time (LT) for the study area.

Figure 13 shows the time-averaged maps of WS10 and wind direction at 03:00 UTC
(06:00 LT) during the wet season. Just like in Figure 12b, no significant intra-scheme
differences were observed in WS10 and the wind direction. Higher wind speeds were
observed mainly along mountain slopes. The maps also indicate that wind flow at night is
influenced primarily by topography, with no general dominant nighttime wind direction
over the study area. Similar patterns were observed in the time-averaged maps of WS10
and wind direction at 03:00 UTC (06:00 LT) during the dry season (Figure A7) in the
Appendix A.

Unlike in Figure 13, significant intra-scheme differences consistent with the differences
in Figure 12 were observed in the time-averaged maps of WS10 and wind direction at 11:00
UTC (14:00 LT) during the wet season (Figure 14). Strong easterly winds were observed in
Figure 14 in most parts of the study area apart from the north, where the winds assumed a
more northeasterly direction. On the western side of the study area, some westerly and
northwesterly winds, likely blowing from Lake Victoria, were also observed. The large
region of low wind speeds observed in the western side of the study area indicates a
convergence zone between the prevailing easterly winds and the westerly, northwesterly
lake breeze. However, as observed in Figure A8 in the Appendix A, during the dry season,
the daytime wind direction predominantly blows from the northeast with the lake breeze,
assuming a northerly flow in the western part of the study area for most of the schemes.
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Figure 13. Time-averaged maps of the simulated 10-meter wind speed (WS10) and wind direction for
the inner model domain (1 km grid resolution) at 03:00 UTC (06:00 LT) using the seven PBL schemes
and the corresponding time-averaged observed WS10 and wind direction during the wet season.
The circle on the wind barb represents calm winds with speeds of up to 2 km/h. A straight line
without a barb represents wind speeds between 2 and 4 km/h. A short barb represents wind speeds
ranging between 5 and 14 km/h, whereas a long barb represents wind speeds ranging between 15
and 23 km/h. Higher wind speeds are represented by a combination of short and long barbs.

Figure 15 shows the spatial distribution of WRF simulated rainfall using the seven
PBL schemes during the wet season. It was observed that the schemes could capture the
topography-driven spatial variations in rainfall over the study area. Although the schemes
capture the spatial distribution of rainfall depicted by the observations, they tended to
overestimate and underestimate the observed rainfall across stations indiscriminately.
Additionally, the MYNN and the ACM2 schemes showed slightly lower amounts of rainfall
compared to the rest of the schemes. Similar trends were also observed during the dry
season in Figure A9 in the Appendix A. However, during the dry season, besides the
significantly lower rainfall amounts irrespective of the scheme, the spatial extent of rainfall
was mainly restricted to the mountains and the western side of the study area close to
Lake Victoria.
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Figure 14. Time-averaged maps of the simulated 10-meter wind speed (WS10) and wind direction for
the inner model domain (1km grid resolution) at 11:00 UTC (14:00 LT) using the seven PBL schemes
and the corresponding time-averaged observed WS10 and wind direction during the wet season.
The circle on the wind barb represents calm winds with speeds of up to 2 km/h. A straight line
without a barb represents wind speeds between 2 and 4 km/h. A short barb represents wind speeds
ranging between 5 and 14 km/h, whereas a long barb represents wind speeds ranging between 15
and 23 km/h. Higher wind speeds are represented by a combination of short and long barbs.

Figure 16 shows the probability of occurrence of rain events based on simulations
with the various PBL schemes versus the observations. It was observed that the schemes
were capable of simulating rainfall events of up to 10 mm/h fairly well. Beyond rainfall
intensities of 10 mm/h, the schemes tended to underestimate the intensity of the observed
rainfall. The PBL schemes produced similar probability curves, with the main difference
being the maximum intensity simulated with each scheme. The MYNN scheme simulated
the lowest maximum intensity, approximately 22 mm/h, followed by ACM2 at 24 mm/h.
SHIN and BouLac simulated a maximum intensity of approximately 26 mm/h each. The
QNSE scheme simulated a maximum intensity of roughly 32 mm/h. The YSU scheme
simulated a maximum intensity of approximately 48 mm/h, which is approximately equal
to the maximum rainfall event of the observations. The MYJ, on the other hand, simulated
a maximum intensity of approximately 54 mm/h, which is beyond the maximum intensity
of the observations.
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Figure 15. Maps of accumulated rainfall for the inner model domain (1 km grid resolution) during
the wet season from the seven PBL schemes superimposed with the accumulated observed rainfall
during the same period. The white color on the maps represents areas with no rainfall.
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Figure 17 shows the distribution of the ETS values obtained using the seven PBL
schemes over the study area during the study period. It was observed that better perfor-
mances (higher ETS values) were obtained with the YSU scheme followed by the QNSE and
BouLac schemes. The MYNN scheme ranked fourth in performance in terms of the ETS.
The lowest performance (lower ETS values) was observed with the MYJ scheme, followed
by the ACM2 and SHIN schemes, respectively.
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Figure 17. PDF plots showing the distribution of the Equitable Threat Score (ETS) values for rainfall
obtained using the seven PBL schemes over the study area during the entire study period, excluding
the 5 days set aside for model spin-up.

4. Discussion

The WRF model has been used in various studies and applications, as reported in
Powers et al. [34]. The ability of RCMs such as WRF to add details related to local-scale
processes to climate variables derived from GCMs is vital for local climate studies. In
addition, it is beneficial for other applications that require high spatial and temporal resolu-
tion information on weather and climate, such as energy balance modeling, hydrological
applications, among others. As observed in Figure 2, the WRF-simulated T2 shows en-
hanced spatial details compared to the T2 obtained from ERA5-Land, the highest spatial
resolution (9 km) global ReAnalysis dataset currently available for land applications. At the
relatively higher spatial resolution of 1 km compared to the 9 km of ERA5-land, the WRF
model was able to capture the local scale physical processes related to topography and
land use with more details. The refined spatial details captured with the WRF-simulated
T2 in Figure 2 imply lower spatial resolution-related biases in the WRF-derived surface
meteorological variables than ERA5-land, especially in regions characterized by complex
topography. Besides the improved spatial resolution, WRF can simulate variables at higher
temporal resolutions than the hourly time scale currently available in ERA5-land.

However, as observed in the statistical results presented in Figures 2 and 3, it is
evident that despite the improved spatial resolution achieved through WRF, uncertainties
exist in the simulated surface meteorological variables irrespective of the PBL scheme.
For instance, it was observed in Figures 6 and 9 that the WRF model generally tends to
underestimate T2 and RH2 irrespective of the PBL scheme. Similar findings have been
reported in [3,19,21] for T2 and [14,21] RH2. Various other studies have also shown that the
WRF model tends to overestimate the observed wind speed [5,19], which agrees with the
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results presented in Figure 12. One source of uncertainties could be related to uncertainties
in the forcing data that might propagate into the WRF simulations. The other source of
uncertainties in the simulated surface meteorological variables could be related to the
spatial representativeness of the point observations with respect to the 1 km model grid
size, especially in complex topography. For instance, the tendency of the WRF model to
overestimate wind speed is mainly attributed to the representation of surface roughness in
the model, especially in complex environments and at coarser model grid sizes [5], which
tends to be smoother, resulting in less resistance. However, it should also be noted that
the original observation height of 2 meters might be below the surface roughness height
for some of the locations, which might have contributed to lower wind speed at 10 meters
upon interpolation using the wind power law. Moreover, the wind power law neglects the
effects of surface roughness and atmospheric stability on wind speed. Thus, uncertainties
in the observed wind data and the interpolation might have impacted the results.

The choice of a PBL scheme is largely influenced by the weather phenomenon to be
studied. Weather phenomena are highly dependent on the state of atmospheric stability.
For instance, convective storms occur under extremely unstable atmospheric regimes in
which mixing is largely driven by large eddies. On the other hand, under relatively stable
atmospheric regimes, mixing is mainly localized and occurs between adjacent layers in
the PBL. Local mixing is conducive to the formation of weather phenomena such as fog.
Nonlocal PBL schemes are generally better suited for simulating unstable atmospheric
regimes, whereas local PBL schemes are more suitable for simulating stable atmospheric
regimes. As observed in Figures 8 and 11, the PBL parameterization directly impacts
the evolution of the heat and moisture fluxes in the PBL. In general, the local schemes
tended to simulate colder, more moist PBLs, especially near the surface relative to the
nonlocal schemes. However, the local schemes showed drastic warming and drying
with height in the atmospheric column, compared to nonlocal schemes. This implies
that the local PBL schemes simulated a more stratified PBL than the nonlocal schemes.
The stratification observed with the local schemes was a result of less mixing between
the warmer, drier air entrained from the free atmosphere and the cooler, more moist air
emanating from the surface. On the other hand, the profiles simulated by the nonlocal
schemes in Figures 8 and 11 indicate more mixing between the entrained air mass from the
top of the PBL and the air emanating from the surface.

The statistical results presented in Figures 3 and 4 show that choosing a PBL scheme is
crucial in retrieving surface meteorological variables using WRF. Although the simulation
of T2 and RH2 appear less sensitive to the choice of the PBL scheme, the choice of the
PBL scheme will have an impact on the ability of WRF to simulate WS10 and rainfall.
These results generally agree with results from other studies [3,19,22,24], which have
reported better performances and lower sensitivity to the choice of PBL scheme in WRF
in the simulation of T2 and RH2 compared to other surface meteorological variables.
The influence of the PBL scheme appears more pronounced during the day when the
atmosphere is more convective and unstable than during the night when the atmosphere
is relatively stable. The trend observed in the simulated profiles of temperature and
humidity (Figures 8 and 11) is propagated to the surface as observed in the plots of T2
and RH2 in Figures 6 and 9, respectively. However, it is observed that in some instances,
the trend observed in the profiles of temperature and humidity is not consistent with the
trend observed at the surface. An example is at 03:00 UTC (06:00 LT) in Figure 6, where
MYJ simulates a relatively higher T2 than QNSE despite similar temperature profiles in
Figure 8. These discrepancies may be attributed to differences in the surface layer schemes
accompanying each PBL scheme. The influence of the surface layer schemes might also
explain the reduced sensitivity observed in T2 and RH2 since the 2-meter height will be
mostly within the surface layer, especially under a deep convective PBL. The reduced
intra-scheme differences observed in Figures 6 and 9 during the day compared to nighttime
further supports this argument.
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On the other hand, WS10 and especially rainfall are mainly influenced by the choice
of PBL scheme since the heights at which processes related to these variables occur are
within the PBL. As observed in Figures 8 and 11, the ACM2 consistently produced a
warmer and significantly drier PBL than the rest of the schemes. On the other hand, the
MYNN and MYJ schemes simulated a cool and consistently more moist PBL than the
rest. The behavior exhibited by the ACM2 and MYJ schemes is reflected in the rainfall
probability plots in Figure 16. The ACM2 tends not to capture the higher rainfall intensities,
whereas the MYJ scheme simulates some rainfall events that are sometimes way higher
than the observations. The behavior observed with the ACM2 and the MYJ schemes in
Figure 16 might partly explain the relatively lower ETS values obtained with the two
PBL schemes in Figure 17. The results in Figures 16 and 17 imply that the ACM2 scheme
might be missing more observed rainfall events than the rest of the schemes. On the other
hand, the MYJ scheme might be simulating more false rainfall events than the rest of
the schemes. As argued in Coniglio et al. [40] and Cohen et al. [18], nonlocal schemes
often tend to simulate too dry of air near the surface owing to PBLs that are too deep
and overmixed. Thus, the behavior observed with the ACM2 scheme might be due to a
tendency by the scheme to overmix the PBL. On the other hand, local PBL schemes have
suffered from undermixing, especially in deep convective environments, mainly due to
a poor representation of entrainment processes at the top of the PBL [18], resulting in a
shallow, cool, and moist PBL. Thus, MYJ may be susceptible to undermixing in simulating
the PBL in this area. Based on the temperature and humidity profiles (Figures 8 and 11) and
the rainfall plots in Figures 16 and 17, it appears that the moderately warm and moist PBL
profiles simulated by the YSU scheme are more suited for simulating rainfall in this area.

The results presented in Figure 5 also suggest that the model performance might
be impacted by the ability of the PBL schemes to represent the interactions between the
large-scale and local-scale processes. As observed in Figures 14 and A8, during the day,
processes in the western side close to Lake Victoria are influenced by the interaction
between the more large-scale wind flows from the eastern side and the lake breeze. Thus,
improper representation of the interactions between the two air masses might explain
the higher RMSE values for the RH2 observed in the western side of the study area in
Figure 5. For instance, the location of the convergence zone observed in Figure 14 will
be highly influenced by the ability of the schemes to properly simulate the direction and
strength of the lake breeze and its interaction with the prevailing wind flow. In addition,
the ability of the PBL scheme to represent local-scale turbulence related to land use and
topography and its interaction with the large-scale processes, such as the prevailing wind
flow, will have a significant impact on the performance of the model. As observed in
Figures 14 and A8, intra-scheme differences in wind speed are quite pronounced during
the day, as opposed to during the night (Figures 13 and A7). The daytime intra-scheme
differences in wind speed signify the differences in the ability of the various PBL schemes
to represent buoyancy and vertical wind shear related to the interaction between the local
scale turbulence and the larger-scale wind flow in the PBL. All these interactions influence
the wind speed and direction and the distribution of moisture within the atmosphere.
Consequently, other processes such as convection will be affected by these interactions
impacting the simulated rainfall. As such, the effectiveness of the parameterizations in
the PBL scheme in representing such interactions will determine the scheme’s success in
representing the local-scale processes.

Although the 2-meter variables appear less sensitive to the choice of the PBL scheme
in this study, the choice of a PBL scheme for studies involving 2-meter variables is still
essential. As observed in Figures 8 and 11, the representation of fluxes along the vertical
profile can vary significantly depending on the PBL scheme. Under extreme conditions,
such as heatwaves, large eddy-driven turbulent mixing will be dominant across the PBL,
significantly influencing the 2-meter variables as well. As such, modeling of the PBL should
be carefully considered even for studies involving 2-meter variables.
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5. Conclusions

This study evaluated the influence of PBL parameterization schemes in WRF in the
retrieval of surface meteorological variables over the Kenyan highlands. The experimental
setup was configured into three one-way nested model domains, with the innermost
domain being at a spatial resolution of 1 km. The model was driven by forcing data from
ERA5 at six hourly intervals. The study evaluated seven PBL schemes, namely: ACM2,
BouLac, MYJ, MYNN, QNSE, SHIN, and YSU. The evaluation was only carried out for
the innermost model domain. The surface meteorological variables considered are the
T2, RH2, WS10, and rainfall. The surface meteorological variables were validated against
observations from TAHMO.

In general, WRF was found to simulate surface meteorological variables that exhibited
spatial variability consistent with the complex topography within the Kenyan highlands. A
comparison between T2 simulated by WRF and T2 obtained from ERA5-Land revealed more
spatial details with WRF than ERA5. Thus, WRF-derived surface meteorological variables
are better suited for land applications within the Kenyan highlands than ERA-5 land.

On the influence of PBL schemes on surface meteorological variables, it was observed
that T2 and RH2 are less sensitive to the PBL scheme’s choice than WS10 and rainfall. T2
and RH2 are less sensitive to the choice of the PBL owing partly to the influence of the
surface layer parameterization on these variables. Since the processes related to rainfall
mainly occur in the PBL, we conclude that rainfall better reflects the influence of the PBL
schemes. Thus, based on the results of the simulated rainfall, the YSU scheme provides a
more realistic depiction of the PBL dynamics within the study area.

One of the limitations to this study is the lack of observations of fluxes along the
vertical profile, which hinders a comprehensive evaluation of PBL dynamics within the
study area. Additionally, the study considered only a period of four months owing to
limitations in computation resources. This period may be inadequate, especially in the
evaluation of the seasonal dynamics within the study area.

Future studies should incorporate observations on the atmospheric profile. The studies
should also consider simulations over more extended periods to determine the influence of
seasonality on the model performance within the study area.
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Figure A1. Results of the comparison between the GSOD and TAHMO for daily average temperature
(a), daily average relative humidity (b), daily average wind speed (c), and the total daily rainfall
(d) for the year 2019 at Dagoretti in Nairobi.

The GSOD data was retrieved from https://www.ncei.noaa.gov/access/search/data-
search/global-summary-of-the-day (accessed on 19 October 2021). The station code for
the GSOD station at Dagoretti in Nairobi is 637410 and is located at −1.3◦ and 36.75◦ in
terms of latitude and longitude, respectively. The location of the TAHMO station close to
the GSOD station at Dagoretti in Nairobi is −1.30184◦ and 36.7602◦ in terms of latitude and
longitude, respectively.

The comparisons presented in Figure A1 show a good agreement between the GSOD
data and the TAHMO data for all the variables apart from the wind variable. The TAHMO
data tend to overestimate the wind speed obtained from the GSOD data.

https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day


Atmosphere 2022, 13, 169 26 of 35

Atmosphere 2022, 13, x FOR PEER REVIEW 27 of 36 
 

 

Figure A1. Results of the comparison between the GSOD and TAHMO for daily average tempera-

ture (a), daily average relative humidity (b), daily average wind speed (c), and the total daily rain-

fall (d) for the year 2019 at Dagoretti in Nairobi. 

The GSOD data was retrieved from https://www.ncei.noaa.gov/access/search/data-

search/global-summary-of-the-day, on 19 October 2021. The station code for the GSOD 

station at Dagoretti in Nairobi is 637410 and is located at –1.3° and 36.75° in terms of lati-

tude and longitude, respectively. The location of the TAHMO station close to the GSOD 

station at Dagoretti in Nairobi is –1.30184° and 36.7602° in terms of latitude and longitude, 

respectively. 

The comparisons presented in Figure A1 show a good agreement between the GSOD 

data and the TAHMO data for all the variables apart from the wind variable. The TAHMO 

data tend to overestimate the wind speed obtained from the GSOD data. 

Figure A2. Spatial distribution of RMSE values for the 2-meter air temperature (T2) obtained using 

the seven PBL schemes across the observation stations over the entire study period, excluding the 

5 days set aside for model spin-up. 

Figure A2. Spatial distribution of RMSE values for the 2-meter air temperature (T2) obtained using
the seven PBL schemes across the observation stations over the entire study period, excluding the
5 days set aside for model spin-up.
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Figure A3. Spatial distribution of RMSE values for the 10-meter wind speed (WS10) obtained using
the seven PBL schemes across the observation stations over the entire study period, excluding the
5 days set aside for model spin-up.
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Figure A4. Spatial distribution of RMSE values for rainfall obtained using the seven PBL schemes
across the observation stations over the entire study period, excluding the 5 days set aside for
model spin-up.
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Figure A5. Time-averaged maps of simulated 2-meter air temperature (T2) for the inner model
domain (1 km grid resolution) at 11:00 UTC (14:00 LT) using the seven PBL schemes over the entire
study period, excluding the 5 days set aside for model spin-up.
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Figure A7. Time-averaged maps of simulated 10-meter wind speed (WS10) and wind direction for the
inner model domain (1 km grid resolution) at 03:00 UTC (06:00 LT) using the seven PBL schemes and
the corresponding observed WS10 and wind direction during the dry season. The circle on the wind
barb represents calm winds with speeds of up to 2 km/h. A straight line without a barb represents
wind speeds between 2 and 4 km/h. A short barb represents wind speeds ranging between 5 and
14 km/h, whereas a long barb represents wind speeds ranging between 15 and 23 km/h. Higher
wind speeds are represented by a combination of short and long barbs.
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Figure A8. Time-averaged maps of simulated 10-meter windspeed (WS10) and wind direction for the
inner model domain (1 km grid resolution) at 11:00 UTC (14:00 LT) using the seven PBL schemes and
the corresponding observed WS10 and wind direction during the dry season. The circle on the wind
barb represents calm winds with speeds of up to 2 km/h. A straight line without a barb represents
wind speeds between 2 and 4 km/h. A short barb represents wind speeds ranging between 5 and
14 km/h, whereas a long barb represents wind speeds ranging between 15 and 23 km/h. Higher
wind speeds are represented by a combination of short and long barbs.
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